CN104114711B - 用于拆分环丙基二酯的方法 - Google Patents

用于拆分环丙基二酯的方法 Download PDF

Info

Publication number
CN104114711B
CN104114711B CN201380010594.8A CN201380010594A CN104114711B CN 104114711 B CN104114711 B CN 104114711B CN 201380010594 A CN201380010594 A CN 201380010594A CN 104114711 B CN104114711 B CN 104114711B
Authority
CN
China
Prior art keywords
compound
minutes
penicillin
formula
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380010594.8A
Other languages
English (en)
Other versions
CN104114711A (zh
Inventor
A.戈斯瓦米
郭直惟
仇玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Publication of CN104114711A publication Critical patent/CN104114711A/zh
Application granted granted Critical
Publication of CN104114711B publication Critical patent/CN104114711B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本公开提供用于外消旋1,1‑二烷基氧羰基环丙烷的立体有择水解的方法。

Description

用于拆分环丙基二酯的方法
相关申请的交叉引用
本申请要求提交于2012年2月24日的美国临时申请系列号61/602,811的权益。
本公开提供用于外消旋1,1-二烷基氧羰基环丙烷的立体有择水解的方法。
反式-(1R,2S)-1-叔丁氧基羰基氨基-1-羧基-2-乙烯基环丙烷(1)是用于某些丙肝病毒蛋白酶抑制剂的合成的重要手性中间体。
不同的合成方法已被报道。Fliche等报道了化学酶途径,其涉及酶法拆分外消旋二甲酯(2)以制备对应的一元酸顺式-(1S,2S)-(6a),随后化学转化(6a)成所需手性中间体(1)(方案1)。
方案1
在这种方法中,所有被评估的酶仅表现出中等的对映选择性,而即使使用最好的酶,酶法拆分也必须进行两次以将ee提高到对药物中间体的对映选择性合成实际应用必需的水平。通过羧基甲氧萘普酸酯酶(CENP)酶促水解外消旋甲酯(2)产生具有仅70% ee的一元酸顺式-(1S,2S)-(6a)和富集了具有95% ee的二甲酯(2R)-(2b)的未反应的原料。70%ee的一元酸顺式-(1S,2S)-(6a)被重新酯化为二酯,使用CENP进行的第二酶促水解提高一元酸顺式-(1S,2S)-(6a)的ee至90%。通过酯酶30000第二酶促水解富集的95% ee的二甲酯(2R)-(2b)提供了具有95%ee的一元酸顺式-(1R,2R)-(6a)。
据报道猪肝酯酶(PLE)所催化的二乙酯(±)-(3)的水解也产生具有低非对映异构选择性(de 60%)的一元酸(7a)。二乙酯(±)-(3)的非酶促水解表现出部分非对映异构偏好,产生作为主要产物的外消旋顺式-(±)-(7)。
方案2
诸如此类的实例强调找出对于例如乙烯基环丙烷(1)等药物中间体的实际对映选择性合成具有高非对映异构选择性和高对映选择性的酶的需要。
在第一方面中,本公开提供了一种用于制备式(II)的化合物的方法
(II);
其中
R1为烷基;和
R2选自烯基和烷基;
该方法包括:
将式(I)的化合物
(I),
与酶反应。
在第一方面的第一个实施方案中所述酶为水解酶。在第一方面的第二个实施方案中所述水解酶选自脂肪酶、酯酶、蛋白酶和酰胺酶。在第一方面的第三个实施方案中所述酶选自来自枯草芽孢杆菌(Bacillus subtilis)的酯酶、青霉素V酰胺水解酶和来自米曲霉(Aspergillus oryzae)的蛋白酶。在第一方面的第四个实施方案中所述酶是青霉素V酰胺水解酶。在第一方面的第五个实施方案中所述青霉素V酰胺水解酶来自尖孢镰刀菌(Fusarium oxysporum)。在第一方面的第六个实施方案中所述青霉素V酰胺水解酶从含有尖孢镰刀菌的青霉素V酰胺水解酶基因的重组生物体中获得。
在第一方面的第七个实施方案中R1为烷基,其中该烷基选自甲基、乙基、丙基和丁基。在第一方面的第八个实施方案中R2是C2烯基。
在第一方面的第九个实施方案中获得具有等于或超过90%非对映异构体过量的所述式(II)的化合物。在第一方面的第十个实施方案中获得具有95%和更高的非对映异构体过量的所述式(II)的化合物。在第一方面的第十一个实施方案中获得具有超过70%的对映异构体过量的所述式(II)的化合物。在第一方面的第十二个实施方案中获得具有90%和更高的对映异构体过量的所述式(II)的化合物。在第一方面的第十三个实施方案中获得具有95%和更高的对映异构体过量的所述式(II)的化合物。
本公开的其它实施方案可包含两个或更多个本文公开的实施方案和/或方面的合适组合。
然而本公开的其它实施方案和方面依据下面提供的描述会显而易见。
所述酶可原样或作为固定化的酶使用。另外,原样酶或固定化形式的酶可重复使用。
如本说明书中所使用的,以下术语具有所示含义:
本文所使用的术语“烯基”是指包含至少一个碳-碳双键的二到六个碳原子的直链或支链基团。
本文所使用的术语“烷基”是指由包含一到六个碳原子的直链或支链饱和烃衍生的基团。
本公开中的所有方法可作为连续的过程来实施。本文所使用的术语“连续的过程”表示在无中间体分离的情况下进行的步骤。
相关化合物的结构在方案3-5中展示。
本申请中使用的缩写(尤其包括下文说明性的方案和实施例中缩写),是本领域技术人员所熟知的。使用的部分缩写如下:TFA代表三氟醋酸;min代表分钟;h代表小时;DMSO代表二甲亚砜;MTBE代表甲基叔丁基醚;Et代表乙基;n-Pr代表正丙基;n-Bu代表正丁基;t-Bu代表叔丁基;和Me代表甲基。
实施例
方案3
方案4
方案5
化学药品购买自VWR和/或Aldrich。使NMR谱在CDCl3(除非标示出)中记录于BRUKER-300和/或JEOL-400 NMR分光光度计中。质子分配基于1H-1H COSY实验。LCMS数据用阳离子电喷射(ES+)或阴离子电喷射(ES-)方法记录于Shimadzu LCMS***中。旋光数据记录于Perkin-Elmer 241偏振器中。
反相HPLC非手性方法1和手性方法2和3以溶剂A (含0.05% TFA的水:甲醇80:20)和溶剂B (含0.05% TFA的乙腈:甲醇80:20)的不同梯度在环境温度下用210nm(除非另外标示)的UV检测进行。正相HPLC方法4用于手性分析。在用于更好的分离或更快的分析的研究中也使用了这些HPLC方法的一些修改法。方法-1用于所有化合物的非手性分析,在YMC-Pack Pro C18柱(3μm, 150 × 4.6 mm)中以1 mL/分钟的流速和在14分钟内从30%至100%的溶剂B的梯度并保持100%的溶剂B达另外的2分钟进行。二酯2、3、4和5的保留时间分别为6.1、8.7、11.4和13.5分钟;顺式-一元酸6、7、8和9的保留时间分别为4.2、5.3、6.7和8.1分钟;反式-一元酸10、11、12和13的保留时间分别为4.0、5.1、6.5和7.9分钟;二价酸14的保留时间为3.0分钟;反式-化合物17和它的顺式-异构体18的保留时间分别为8.7和12.5分钟;反式-化合物1的保留时间为5.9分钟。
方法-2用于反式-化合物17的手性分析,在Chiralcel OD-RH柱(150 × 4.6 mm)中以0.5 mL/分钟的流速和35%溶剂B的等度混合物实施25分钟。(1R,2S)-17a的保留时间为19.1分钟, (1S,2R)-17b的保留时间为20.6分钟。
方法-3用于反式-化合物1的手性分析,在Chiralpak AS-RH柱(150 × 4.6 mm)中以0.5 mL/分钟的流速用22%溶剂B等度组合物混合物实施20分钟。(1R,2S)-1的保留时间为9.1分钟,它的对映异构体(1S,2R)-1b的保留时间为11.6分钟。
方法-4用于顺式-一元酸6至9的手性分析,在Chiralpak AD-H柱(250 × 4.6 mm)中以1 mL/分钟的流速用在庚烷中的5%异丙醇的等度混合物实施15分钟。6b和6a的保留时间分别为8.0分钟和8.7分钟;7b和7a的保留时间分别为7.4分钟和8.2分钟;8b和8a的保留时间分别为6.9分钟和7.6分钟;9b和9a的保留时间分别为6.6分钟和7.0分钟。
外消旋二甲酯(2)的合成
向250mL烧瓶中加入(E)-1,4-二溴-2-丁烯(92.6316 mmol, 20.014 g)、碳酸钾(无水的,231.802 mmol, 32.036 g)、甲醇(无水的, 100 mL)和丙二酸二甲酯(101.8786mmol, 13.4598 g)。起初该反应是放热的。混合物在环境温度下搅拌20小时。溶剂在减压下除去。剩余物用200 mL的乙酸乙酯和200 mL的水处理。有机层进一步用水清洗(2×100mL),通过MgSO4干燥,过滤。去除滤液的溶剂产生了二甲酯(2) (14.7833 g,86.6%产率)。纯分析样品通过蒸馏(89℃ / 5 mmHg)获得。1H NMR (CDCl3) δ 5.43~5.36 (m, 1H),5.26(表观d, J = 16.7 Hz, 1H), 5.10 (表观d, J = 10.4 Hz, 1H), 3.703 (s, 3H), 3.700(s, 3H), 2.55 (表观q, J = 8.5 Hz, 1H), 1.68 (dd,J = 7.63, 4.88 Hz, 1H), 1.55(dd, J = 9.16, 4.89 Hz, 1H) ppm。13C NMR (CDCl3) δ 170.01,167.78, 133.05,118.65, 52.68, 52.53, 35.81, 31.43, 20.58 ppm。
外消旋二乙酯(3)的合成
向250 mL烧瓶中加入(E)-1,4-二溴-2-丁烯(92.63 mmol,20.01 g)、碳酸钾(无水的,231.44 mmol,31.99 g)、乙醇(100 mL)和丙二酸二乙酯(102.00 mmol, 16.34 g)。该混合物在环境温度下搅拌46小时。用于制备二甲酯的同样的后处理程序产生了二乙酯(3)(20.473 g, 104%产率)。纯分析样品通过蒸馏(97℃ / 5 mmHg)获得。1H NMR (CDCl3) δ5.47~5.40 (m, 1H),5.29 (表观d, J = 17.09 Hz,1H),5.13 (表观d, J = 10.1 Hz,1H), 4.26~4.12 (m, 4H), 2.56 (表观q, J = 8.24 Hz, 1H), 1.68 (dd, J = 7.33,4.89, 1H), 1.54 (dd, J = 9.16, 4.89 Hz, 1H), 1.28~1.23 (m, 6H) ppm。13C NMR(CDCl3) δ 169.69, 167.44, 133.27, 118.39, 61.62, 61.44, 36.04, 31.08, 20.35,14.23, 14.11 ppm。
外消旋二丙酯(4)的合成
向250 mL烧瓶中加入(E)-1,4-二溴-2-丁烯(92.598 mmol, 20.007 g)、碳酸钾(无水的,231.668 mmol, 32.018 g)、1-丙醇(100 mL)和丙二酸二丙酯(101.916 mmol,19.183 g)。该混合物在60 ℃搅拌24小时。用于制备二甲酯的同样的后处理程序产生了二丙酯(4) (23.069 g, 103.7%产率)。1H NMR (CDCl3) δ 5.47~5.40 (m, 1H), 5.28 (表观d, J = 17.09 Hz, 1H), 5.12 (表观d, J = 10.38 Hz, 1H), 4.15~4.03 (m, 4H),2.57 (表观q, J = 8.24 Hz, 1H), 1.70~1.62 (m, 5H), 1.54 (dd, J = 8.85, 4.88,1H), 0.95~0.92 (表观t, J = 7.33 Hz, 6H) ppm。13C NMR (CDCl3) δ 169.82, 167.57,133.35, 118.40, 67.26, 67.20, 36.16, 31.13, 22.04, 21.97, 20.47, 10.42, 10.35ppm。
外消旋二丁酯(5)的合成
向250 mL烧瓶中加入(E)-1,4-二溴-2-丁烯(92.784 mmol, 20.047 g)、碳酸钾(无水的, 231.430 mmol, 31.985 g)、1-丁醇(100 mL)和丙二酸二丁酯(101.869 mmol,22.032 g)。用于制备二甲酯的程序产生了二丁基酯(5) (23.933 g, 96.1%产率)。1H NMR(CDCl3) δ 5.42 (m, 1H), 5.27 (表观d, J = 16.78 Hz, 1H), 5.10 (表观d, J =10.37 Hz, 1H), 4.17~4.05 (m, 4H), 2.54 (表观q, J = 8.54 Hz, 1H), 1.66 (dd, J= 7.63, 4.88 Hz, 1H), 1.62~1.56 (m, 4H), 1.52 (dd, J = 8.85, 4.89 Hz, 1H),1.40~1.32 (m, 4H), 0.93~0.89 (m, 6H)。13C NMR (CDCl3) δ 169.80, 167.55,133.33, 118.34, 65.51, 65.37, 36.12, 34.96, 31.09, 30.69, 30.63, 20.44,19.10, 13.65, 13.63 ppm、
酶筛选
将包含酶的多孔板从冷室中取出。每个孔包含大约10 mg冻干的或固定的酶。向各个孔中加入100 mM磷酸盐缓冲液pH 7(1mL)。该板以600 rpm在Thermomixer R中于28℃下振荡5分钟。将1 μL (1.097 mg)外消旋二甲酯(±)-(2)在20 μL DMSO中的溶液加入各个孔中。通过在相同的振荡仪中以600 rpm在28℃下振荡24小时进行水解。在24小时后,向每个孔中添加乙腈(1 mL)。在室温下将该混合物置于300rpm的振荡仪中达10分钟以混匀,随后通过0.2μ滤器过滤并用反相HPLC (方法1)分析以确定水解程度。来自呈现出超过10%转化率的酶的水解的反应混合物通过手性HPLC分析以测定对映异构体组成。向来自酶促水解的反应混合物中加入0.1 mL的1 N HCl 以使混合物呈酸性(pH ~ 2.5)并用2 mL乙酸乙酯萃取。乙酸乙酯层被分离并用氮气流蒸发。剩余物溶解于庚烷–异丙醇(95:5, 1 mL)中并用手性HPLC(方法4)分析。
表1
酶促水解筛选的结果
*通过(6a)至已知化合物(1)的转化确认HPLC的峰分配。
**来自尖孢镰刀菌的Pen V酰胺酶是原先用于青霉素V至6-氨基青霉烷酸的酶促水解的固定化重组青霉素V酰胺水解酶,由Bristol-Myers Squibb内部制造(参见美国专利系列号5,516,679和Lowe, D.等. Biotechnol. Lett. 1986, 8, 151-156)。
用Pen V酰胺酶酶促水解二乙酯(±)-3以制备顺式-(1S,2S)-(7a)
该反应在pH STAT上的加套的2L烧瓶中进行以维持温度于30℃并通过自动添加1M NaOH水溶液保持pH 8.0。向烧瓶中装入60g Pen V酰胺酶和1.5 L的0.1 M磷酸盐缓冲液pH 8.0。在搅拌下,加入二乙酯(±)-(3) (30.5 g)。在48 h后,NaOH消耗速率指示水解完成。通过过滤混合物以除去酶终止反应。将固体用0.1 M磷酸盐缓冲液pH 8.0 (200 mL)和乙酸乙酯(3 × 200 mL)清洗。将滤液和清洗液合并使两相分离。水相进一步用乙酸乙酯(2× 600 mL)萃取。合并的有机相用300mL的5%碳酸氢钠,300mL的水清洗。在室温下去除溶剂产生16.7 g剩余的二乙酯(2R)-(3b),分离产率55%,AP 97, [α]D = + 23.98 (c=2.16,CHCl3)。NMR (CDCl3) 1H δ 5.46 (m, 1H), 5.30 (dd, 1H), 5.14 (dd, 1H), 4.19 (m,4H), 2.58 (q, 1H), 1.69 (m, 1H), 1.56 (m, 1H), 1.27 (两个三重峰, 6H) ppm。
该水相用4 M HCl酸化并用乙酸乙酯(3 × 600 mL)萃取。合并有机萃取物并用水清洗。在20-25℃下在旋转蒸发仪中去除溶剂产生10.3 g顺式-(1S,2S)-(7a)产物,分离产率39%,AP 98,de 99%和ee 90%,[α]D = + 5.52 (c=2.82, CHCl3)。NMR (CDCl3) 1H δ11.35 (宽峰, 1H), 5.68 (m, 1H), 5.43 (d, J = 16.9 Hz, 1H), 5.25 (d, J = 10.1Hz, 1H), 4.30 (m, 2H), 2.75 (q, J = 8.6 Hz, 1H), 1.95 (m, 2H), 1.32 (t, J =7.1 Hz, 3H) ppm。
将顺式-(1S,2S)-(7a)转化成反式-(1R,2S)-(17a)的改良Curtius反应
在-5至0℃下向顺式-(1S,2S)-(7a) (3.684 g,de 99%,ee 90%)在丙酮(50mL,通过分子筛干燥)中的溶液中加入三乙胺(3.35 mL),随后逐滴加入氯甲酸乙酯(2.49 mL)在10 mL无水丙酮中的溶液。在-5至0℃下30分钟后,将该混合物在室温下搅拌18小时。形成的白色沉淀通过过滤去除。将滤液冷却至-5℃并逐滴加入叠氮化钠(1.95 g)在10 mL水中的溶液。将混合物在-5至0℃下搅拌1小时。向混合物中加入100 mL冷水(5℃)。用MTBE (3 ×80 mL)萃取该混合物。MTBE相通过MgSO4干燥,过滤。在20-25℃下于旋转蒸发仪中去除溶剂产生4.118 g淡黄色叠氮化物(16a),总产率98%。
将叠氮化物(16a)在50 mL无水叔丁醇中的混合物回流18小时(100℃油浴)。在减压下将该混合物浓缩至干燥以产生4.259 g淡黄色产物反式-(1R,2S)-(17a),AP 78,de>99%,ee 90%,自(7a)计的总产率83%。
反式-(1R,2S)-(17a)至反式-(1R,2S)-(1)的水解
将前一章节中所获得的粗制物(17a)、10mL THF和40 mL 2 M LiOH水溶液的混合物在室温下搅拌5天。用100mL MTBE萃取该混合物。用20 mL水反萃取MTBE相。用KHSO4(10.9 g)和水(30 mL)的混合物酸化合并的水相,并用乙酸乙酯(2 × 100 mL)萃取。将合并的乙酸乙酯萃取物用盐水(2 × 50 mL),水(2 × 50 mL)清洗,通过MgSO4干燥,并过滤。室温下去除溶剂产生3.192 g粗制产物, AP 77。将该粗制产物进行快速层析(80 g硅胶),并用庚烷-乙酸乙酯-乙酸(50:50:1)洗脱,产生2.448 g(自(7a)计的总产率54%)白色固体反式-(1R,2S)-(1),AP 95,ee 90%,[α]D +22.34 (c 1.41, MeOH)。LCMS m/z 226 (M-H)(通过ES-方法)及250 (M+Na)(通过ES+方法)。(1)的1H、1H-1H COSY、13C及DEPT NMR谱在DMSO-d6中进行记录。质子分配基于1H-1H COSY,碳分配基于DEPT实验。1H δ 12.41 (宽峰,1H, CO2H), 7.52 (宽峰, 0.74H, 主要旋转异构体的NH), 7.18 (宽峰, 0.26H, 次要旋转异构体的NH), 5.67 (m, 1H, 4-CH), 5.21 (d, J = 15.8 Hz, 1H, 5-CH2-A), 5.02(d, J = 10.3 Hz, 1H, 5-CH2-B), 2.02 (m, 1H, 2-CH), 1.49 (m, 1H, 3-CH2-A), 1.35(s, 9H, Boc), 1.22 (m, 1H, 3-CH2-B) ppm。主要旋转异构体的13C δ 172.41 (C-6),155.51 (C-7), 134.95 (C-4,在DEPT中朝上), 116.78 (C-5,在DEPT中朝下), 77.95 (C-8), 39.92 (C-1,未显示于DEPT中), 32.45 (C-2,在DEPT中朝上), 28.18 (C-9、10和11,在DEPT中朝上), 22.52 (C-3,在DEPT中朝下) ppm.
用于在小瓶中酶促水解的一般程序
向各个小瓶(4 mL)中装入Pen V酰胺酶(10 mg或如标示)及1 mL缓冲液。将小瓶放置在多孔板的孔中并在Thermomixer振荡仪上振荡。10分钟后,加入10 μL或如标示的底物二酯(2, 3, 4或5)并继续振荡。24小时或标示的时间后,加入20 μL的4 M HCl和3 mL的乙腈。混合物经0.2 μm滤器过滤。使1mL滤液经历HPLC方法-1用于非手性分析。通过相对HPLC面积评估了转化率。使用氮气流局部浓缩了剩余滤液并用乙酸乙酯萃取。干燥萃取物并将剩余物溶解于异丙醇-庚烷(1:1),经0.2 μm滤器过滤,经历HPLC方法-4用于手性分析。
评估了共溶剂(5-10%体积)对Pen V酰胺酶催化的(±)-(2)水解的作用。直链烷烃例如己烷、庚烷、辛烷和十四烷提高了对映选择性,对酶活性有轻微影响。代表性数据在表2中展示:
在不同的pH和温度下,使用不同庚烷浓度实施了多个实验以评估Pen V酰胺酶催化的二甲酯(±)-(2)水解的效果。考虑到酶活性和对映选择性两者,最佳条件确定为:在28-32℃下,具有大约20%体积的庚烷的含水缓冲液,pH 6.5-7。
酶促水解二甲酯(±)-(2)以制备顺式-(1S,2S)-(6a)
该反应在pH STAT上加套的500 mL烧瓶中进行以维持温度于32℃并通过自动添加1 M NaOH水溶液保持pH 7.0。向烧瓶中装入30 g Pen V酰胺酶,240 mL 0.1 M磷酸盐缓冲液pH 7.0及60 mL庚烷。在搅拌下加入二甲酯(±)-(2) (6.47 g)。22小时后,样品分析显示48%转化率。NaOH消耗也指示了反应完成。整个反应混合物用1 M NaOH调节至pH 8.0并用乙酸乙酯(3 × 200 mL)萃取。合并的有机相用0.1 M磷酸盐缓冲液pH 8.0 (200 mL)和水(200mL)清洗。去除溶剂产生3.1 g剩余的二甲酯(2R)-(2b),分离产率48%,AP 98,[α]D +34.15 (c 1.95,CHCl3)。NMR (CDCl3) 1Hδ 5.38-5.49 (m, 1H),5.30 (dd, J = 17.0,1.8Hz, 1H),5.15 (dd, J = 10.0, 1.8 Hz, 1H),3.75 (s, 6H),2.60 (m, 1H),1.73 (dd, J= 7.5, 4.9 Hz, 1H),1.59 (dd, J = 9.0, 4.9 Hz, 1H) ppm。13C δ 169.59,167.37,132.74,118.29,52.33 (2C),35.42,31.04,20.20 ppm。
在萃取剩余未反应的二酯后,立即用6 N HCl酸化水相(pH 8.0)至pH 2。用乙酸乙酯(3 × 200 mL)萃取酸化的水相并去除溶剂产生所需的一元酸顺式-(1S,2S)-(6a),2.5g,分离产率42%,AP 97,de 99%和ee 95%,[α]D – 8.28 (c 1.63, CHCl3)。NMR (CDCl3) 1Hδ 10.5 (宽峰, 1H), 5.6 (m, 1H), 5.39 (d, J = 17.1 Hz, 1H), 5.24 (d, J = 10.0Hz, 1H), 3.81 (s, 3H),2.73 (m, 1H),2.0 (m, 2H) ppm。13C δ 171.99, 170.29,131.99, 119.56, 52.49, 35.53, 33.86, 21.86 ppm。
非酶促水解以确定(2R)-(2b)的ee
使从上述的酶促水解实验中得到的(2R)-(2b) (840 mg, 4.6 mmol)在5 mL MeOH中的溶液在冰浴中冷却。在搅拌下,将330 mg KOH (5.9 mmol)在10分钟内分三次加入。5小时后,浓缩反应混合物,与10mL水混合,用乙酸乙酯(3 × 10 mL)萃取。水相用1 M HCl酸化到pH 4.5,并用乙酸乙酯(2 × 10 mL)萃取。去除酸性有机萃取物的溶剂生成272 mg一元酸混合物。通过非手性HPLC方法-1确定总AP 98和de 85%。所得顺式-(1R,2R)-(6b)的ee通过手性HPLC方法-4确定为82%。

Claims (11)

1.用于制备式(II)的化合物的方法
(II);
其中
R1是烷基;和
R2选自烯基和烷基;
该方法包括:
将式(I)的化合物
(I),
与选自酯酶、青霉素V酰胺水解酶和蛋白酶的酶反应,其中所述酯酶是来自枯草芽孢杆菌的酯酶并且所述蛋白酶是来自米曲霉的蛋白酶。
2.权利要求1的方法,其中所述酶是青霉素V酰胺水解酶。
3.权利要求2的方法,其中所述青霉素V酰胺水解酶来自尖孢镰刀菌。
4.权利要求3的方法,其中所述青霉素V酰胺水解酶从包含尖孢镰刀菌的青霉素V酰胺水解酶基因的重组生物中获得。
5.权利要求1的方法,其中R1是烷基,其中该烷基选自甲基、乙基、丙基和丁基。
6.权利要求1的方法,其中R2是C2烯基。
7.权利要求1的方法,其中获得具有等于或超过90%的非对映异构体过量的所述式(II)的化合物。
8.权利要求1的方法,其中获得具有95%和更高的非对映异构体过量的所述式(II)的化合物。
9.权利要求1的方法,其中获得具有超过70%的对映异构体过量的所述式(II)的化合物。
10.权利要求1的方法,其中获得具有90%和更高的对映异构体过量的所述式(II)的化合物。
11.权利要求1的方法,其中获得具有95%和更高的对映异构体过量的所述式(II)的化合物。
CN201380010594.8A 2012-02-24 2013-02-19 用于拆分环丙基二酯的方法 Expired - Fee Related CN104114711B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261602811P 2012-02-24 2012-02-24
US61/602811 2012-02-24
PCT/US2013/026706 WO2013126337A1 (en) 2012-02-24 2013-02-19 Process for resolving cyclopropyl diesters

Publications (2)

Publication Number Publication Date
CN104114711A CN104114711A (zh) 2014-10-22
CN104114711B true CN104114711B (zh) 2017-05-03

Family

ID=47755071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380010594.8A Expired - Fee Related CN104114711B (zh) 2012-02-24 2013-02-19 用于拆分环丙基二酯的方法

Country Status (6)

Country Link
US (1) US8828691B2 (zh)
EP (1) EP2817412B1 (zh)
JP (1) JP6214567B2 (zh)
CN (1) CN104114711B (zh)
ES (1) ES2714312T3 (zh)
WO (1) WO2013126337A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693286B (zh) * 2017-02-01 2020-05-11 美商艾伯維有限公司 (±)-2-(二氟甲基)-1-(烷氧羰基)-環丙烷甲酸及(±)-2-(乙烯基)-1-(烷氧羰基)-環丙烷甲酸之酶催化製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516679A (en) * 1994-12-23 1996-05-14 Bristol-Myers Squibb Company Penicillin V amidohydrolase gene from Fusarium oxysporum
KR100650798B1 (ko) * 2004-07-19 2006-11-27 (주)제이코통상 광학활성 카복실산의 제조방법
KR100650797B1 (ko) * 2005-12-12 2006-11-27 (주)케미코월드 광학활성 사이클로프로판 카복사미드의 제조방법
KR100839442B1 (ko) * 2006-09-11 2008-06-19 건국대학교 산학협력단 로도코코스 에리쓰로폴리스 균주를 이용한 (에스)-디메틸 사이클로프로판 카르복실산의 제조방법
CN100593569C (zh) * 2007-11-28 2010-03-10 浙江工业大学 蜡状芽孢杆菌及其制备手性2,2-二甲基环丙甲酸/酰胺
US9061991B2 (en) * 2010-02-16 2015-06-23 Api Corporation Method for producing 1-amino-1-alkoxycarbonyl-2-vinylcyclopropane

Also Published As

Publication number Publication date
ES2714312T3 (es) 2019-05-28
JP2015507941A (ja) 2015-03-16
US20130224812A1 (en) 2013-08-29
CN104114711A (zh) 2014-10-22
US8828691B2 (en) 2014-09-09
JP6214567B2 (ja) 2017-10-18
WO2013126337A1 (en) 2013-08-29
EP2817412B1 (en) 2018-12-26
EP2817412A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
Koszelewski et al. Synthesis of 4-phenylpyrrolidin-2-one via dynamic kinetic resolution catalyzed by ω-transaminases
Fujimori et al. Toward a rational design of the assembly structure of polymetallic asymmetric catalysts: design, synthesis, and evaluation of new chiral ligands for catalytic asymmetric cyanation reactions
CN101137613B (zh) 通过脱水缩合制备辣椒素酯类物质的方法、辣椒素酯类物质的稳定方法和辣椒素酯类物质组合物
EP3386955B1 (en) Intermediates for the preparation of sacubitril and their preparation
EA010305B1 (ru) Стереоселективное биопревращение алифатических динитрилов в цианокарбоновые кислоты
US20100087525A1 (en) Stereoselective enzymatic synthesis of (s) or (r)-iso-butyl-glutaric ester
KR20040017278A (ko) 7-아미노 신 3,5-디히드록시 헵탄산 유도체의 제조 방법,그 중간체 및 상기 중간체의 제조 방법
NL2000374C2 (nl) Bereiding van gamma-aminozuren met een affiniteit voor het alfa-2-delta-eiwit.
CN104114711B (zh) 用于拆分环丙基二酯的方法
Guieysse et al. Lipase-catalyzed enantioselective transesterification toward esters of 2-bromo-tolylacetic acids
Nakamura et al. Lipase-catalyzed kinetic resolution of 3-butyn-2-ol
Arizpe et al. Enzymatic and chromatographic resolution procedures applied to the synthesis of the phosphoproline enantiomers
Sorgedrager et al. Lipase catalysed resolution of nitro aldol adducts
Yang et al. New monofunctionalized fluorescein derivatives for the efficient high‐throughput screening of lipases and esterases in aqueous media
Jacobsen et al. Lipase catalysed kinetic resolution of stiripentol
ES2227118T3 (es) Metodo para la separacion enzimatica de mezclas racemicas de derivados de aminometil-aril-ciclohexanol.
CN1097093C (zh) 拆分芳烷基羧酸酯的方法
Guieysse et al. Resolution of 2-bromo-o-tolyl-carboxylic acid by transesterification using lipases from Rhizomucor miehei and Pseudomonas cepacia
CN1993472B (zh) 在南极洲假丝酵母或伯克霍尔德氏菌的作用下对映选择性地打开3位取代的氧杂环丁-2-酮的方法
JP5149802B2 (ja) 光学活性コハク酸イミド化合物の製造法
Sharma et al. Enantio-reversal in Candida rugosa lipase-catalyzed esterification of 3-hydroxybutyric acid
KR102474793B1 (ko) 삼중 결합-함유 광학 활성 카르복실산, 카르복실레이트 염 및 카르복실산 유도체의 제조 방법
JP2005520552A (ja) ラセミのN−アシル化β−アミノカルボン酸からの光学的活性β−アミノカルボン酸の製造方法
Maguire et al. Asymmetric reduction of 1-methylsulfonylalkan-2-ones with baker’s yeast
JPH0649005A (ja) ビニルグリシン(2−アミノ−3−ブテン酸)の簡単な製造方法および誘導体の簡便な分割

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170503

Termination date: 20200219