CN104064617A - 具有碲钼多层复合薄膜的碲化镉太阳电池 - Google Patents

具有碲钼多层复合薄膜的碲化镉太阳电池 Download PDF

Info

Publication number
CN104064617A
CN104064617A CN201410260474.XA CN201410260474A CN104064617A CN 104064617 A CN104064617 A CN 104064617A CN 201410260474 A CN201410260474 A CN 201410260474A CN 104064617 A CN104064617 A CN 104064617A
Authority
CN
China
Prior art keywords
tellurium
molybdenum
solar battery
cadmium telluride
compound film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410260474.XA
Other languages
English (en)
Other versions
CN104064617B (zh
Inventor
李卫
王洲玲
张静全
冯良桓
武莉莉
黎兵
曾广根
王文武
胡玉
唐容喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201410260474.XA priority Critical patent/CN104064617B/zh
Publication of CN104064617A publication Critical patent/CN104064617A/zh
Application granted granted Critical
Publication of CN104064617B publication Critical patent/CN104064617B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

具有碲钼多层复合薄膜的碲化镉太阳电池,属于新能源材料与器件领域。这种太阳电池采用一种碲钼多层复合薄膜作为碲化镉太阳电池的无铜过渡层。一方面,由于过渡层具有碲的析出相,因此在碲化镉退火后,无需采用湿法工艺获得富碲层。如果采用干法工艺,也无需单独沉积一碲层。另一方面,过渡层具有碲化钼的主相,作为p型半导体,与碲化镉价带不连续很小,可起到很好的过渡作用,实现碲化镉与金属电极间的欧姆接触。采用上述结构的太阳电池,避免了化学腐蚀,实现了低电阻接触,可有效提高太阳电池的性能和改善器件的长效稳定性。

Description

具有碲钼多层复合薄膜的碲化镉太阳电池
技术领域
本发明属于新能源材料与器件领域,特别涉及一种碲化镉薄膜太阳电池的制备方法。
背景技术
利用半导体技术,直接将太阳能转变为电能,实现太阳能光伏发电,将在缓解化石能源枯竭、减少温室气体排放上起着至关重要的作用。十多年来,世界上一些主要国家都在积极发展化合物薄膜太阳电池,如铜铟硒太阳电池、碲化镉太阳电池、新型染料敏化太阳电池。一方面,薄膜技术的采用有效降低了生产成本;另一方面,其光电转换效率的提升也降低了生产成本。这些化合物薄膜太阳电池,尤以碲化镉薄膜太阳电池的研发备受关注,近三年来,小面积碲化镉薄膜太阳电池的光电转换效率从17.3%提高到目前的20.4%。随着小面积电池技术往组件上转移,美国First Solar公司在2013年第四季度,组件的成本降为$0.56/W。在CdTe太阳电池组件的制备过程中,实现吸收层与金属电极之间的欧姆接触是获得稳定、高效电池的关键技术之一。由于CdTe的电子亲和势为4.3 eV,与大多数的金属都难以形成低电阻接触。因此,在工业化生产中,常采用化学腐蚀以去除CdTe表面杂质,获得富Te层,随后,沉积背接触层,以减少背接触势垒的影响,从而实现CdTe与金属背电极间的欧姆接触。富Te层对太阳电池性能有重要的影响,可以增加短波响应提升器件的短路电流,可以改善CdTe与金属电极间的接触性能,使接触电阻降低3-4个数量级(Sol Energy, 2009, 83:134-138; J Phys Chem Solids, 2010, 71:404-406),但化学腐蚀常带来如下问题: 毒性、反应性、侵蚀性。长远来看,会带来器件稳定性的消极影响。
发明内容
本发明的目的是为了消除电池制作工艺中化学腐蚀带来的缺陷,避免化学腐蚀对CdTe太阳电池性能产生不良影响,进一步改进CdTe太阳电池的结构,提高填充因子和开路电压,从而获得较高的光电转化效率和稳定性。
为了实现本发明的目的,本发明的技术方案是采用一种碲钼(Te-Mo)多层复合薄膜,添加在CdTe太阳电池的吸收层CdTe与金属电极之间,作为CdTe太阳电池的无铜过渡层,因此,太阳电池的结构变为:玻璃(G)/TCO(F)/n-CdS(W)/p-CdTe (A)/ 碲钼多层复合薄膜(B1)/金属电极 (B2)。
在上述方案中,碲钼多层复合薄膜由碲钼交叠组合在一起,堆垛顺序为碲/钼/碲/钼/…/碲/钼。
在上述方案中,碲钼多层复合薄膜经过后处理后,由碲化钼的主相和碲的析出相组成。
在上述方案中,后处理指的是惰性气体气氛,退火温度150℃~500℃,退火时间为10~60分钟。
采用上述方案制备的CdTe太阳电池,一方面,由于过渡层具有碲的析出相,因此在CdTe退火后,无需采用湿法工艺,比如化学腐蚀获得富碲层。如果采用干法工艺,比如等离子刻蚀,也无需单独沉积一碲层。另一方面,过渡层具有碲化钼的主相,作为p型半导体,与CdTe价带不连续很小(≤0.05 eV)(Semicond Sci Technol, 2000, 15: 514-522),可起到很好的过渡作用,实现CdTe与金属电极间的欧姆接触。采用上述方案,避免了化学腐蚀,实现了低电阻接触,可有效提高太阳电池的性能和改善器件的长效稳定性。
附图说明
图1为具有碲钼多层复合薄膜的碲化镉太阳电池结构图;
图2为四周期的碲钼多层复合薄膜堆垛顺序图;
图3为碲钼多层复合薄膜在后处理后的XRD图谱。
图1-3中的符号: G为玻璃,F为透明导电膜,W为CdS,A为CdTe,B1为碲钼多层复合薄膜,B2为金属电极,T为碲,M为钼。
具体实施方式
以下结合附图和实施例对本发明作进一步说明,但本发明的内容不仅限于实施例中涉及的内容。
本发明的结构(如图1所示)为:玻璃(G)/透明导电膜(F)/n-硫化镉(W)/p-碲化镉 (A)/ 碲钼多层复合薄膜(B1)/金属背电极 (B2),它以碲化镉太阳电池的基本结构为基础,在p型CdTe(A)与金属电极(B2)之间加入碲钼多层复合薄膜(B1)。作为过渡层材料,碲钼多层复合薄膜(B1)由碲化钼的主相和碲的析出相组成。图2为四周期的碲钼多层复合薄膜堆垛顺序图,即先沉积Te,再沉积Mo,为了防止Te氧化,最后一层为Mo。图3为碲钼多层复合薄膜经过后处理的XRD图谱,在衍射角2θ≈12.80附近为碲化钼(MoTe2)的(002)衍射峰,2θ≈25.70为MoTe2(004)衍射峰,2θ≈39.20为MoTe2(006)衍射峰,2θ≈52.90为MoTe2(008)衍射峰,同时,可观察到碲的析出相Te(011)、Te(021),即图3中标注了菱形图案的衍射峰。碲含量的多少与图2中碲亚层和钼亚层的厚度有关,也与后处理的退火温度与退火时间有关。由图2堆垛顺序结合图3的XRD结果可见,在衬底和碲钼多层复合薄膜(B1)可以实现碲相(T)析出,有效扩展短波响应,降低接触电阻,并避免器件中因化学腐蚀带来的毒性、反应性和侵蚀性,以及由此导致的器件不稳定性。而碲化钼作为p型半导体,与CdTe形成的界面价带偏离很小(≤0.05 eV),因此,与CdTe接触时不会阻挡空穴的输运,可起到很好的过渡作用,实现CdTe(A)与金属电极(B2)间的欧姆接触。因此,本发明中,碲钼多层复合薄膜(B1)的作用有两个,一是取代化学腐蚀而产生碲,增加短波响应,降低接触电阻,并消除器件中化学腐蚀带来的不良影响,提高电池的稳定性;二是生成碲化钼作为主要的过渡层材料,起到价带连续的作用,提高电池的光电转换效率。
本发明实施例中采用的样品为CdTe太阳电池结构中(图1)不包含过渡层(B1)和金属电极(B2)的部分:玻璃(G)/透明导电膜(F)/n-硫化镉(W)/p-碲化镉 (A)(即电池的基本结构:Glass/TCO/CdS/CdTe)。上述样品经过氯化镉退火处理,可以等离子刻蚀或不进行等离子体刻蚀背表面,随后沉积碲钼多层复合薄膜(B1),最后沉积金属背电极(B2)即可制备CdTe太阳电池。碲钼多层复合薄膜(B1)的厚度大于30 nm,小于1000 nm,其中 50~300 nm最佳,大于300 nm也有较好效果,碲和钼各亚层厚度之比为(1~5)。碲钼多层复合薄膜(B1)的后处理条件为惰性气体保护,退火温度150℃~500℃,退火时间10~60分钟。由于本发明是对CdTe电池基本结构作改进,因此,在下述实施例中,我们只对碲钼多层复合薄膜(B1)的制备、后处理过程作详述,其它过程不再叙述。
实施例一:
(1)制备碲钼多层复合薄膜
把样品放入真空室,真空度为10-4pa,样品温度为室温,采用电子束蒸发法,交替蒸镀碲和钼,其中碲的纯度为99.99%及以上,钼的纯度为99.99%及以上。沉积碲的厚度1~10 nm,碲和钼厚度比为3.4,碲钼多层复合薄膜总厚度为250 nm;
(2)后处理碲钼多层复合薄膜
把沉积了碲钼多层复合薄膜的样品取出,放入氮气气体保护的真空退火炉,进行后处理,温度为3000C~4000C,时间10~60分钟,然后自然冷却到室温,即获得具有碲化钼和碲的薄膜作为过渡层的样品。
实施例二:
(1)安装靶材和样品
将碲靶(纯度99.99%及以上)和钼靶(纯度99.99%及以上)分别固定在溅射装置对应的两个靶位置上,将样品固定在基片位置上,调整好靶与基片的距离6~9 cm;
(2)制备碲钼多层复合薄膜
在室温下交替顺序溅射碲和钼,获得碲钼多层复合薄膜,其中,本底真空~10-4 Pa,工作气体为氩气,工作气压0.1~3.5 Pa,碲靶溅射功率30~100 W,钼靶溅射功率30~300 W,碲的厚度1~10 nm,碲和钼厚度比为3,溅射总厚度100 nm;
(3)后处理碲钼多层复合薄膜
溅射完毕后,在溅射的气氛下,加热样品到3500C,在溅射室内保气压10~60分钟,然后自然冷却到室温,即获得具有碲钼多层复合薄膜作为过渡层的样品。

Claims (3)

1.具有碲钼多层复合薄膜的碲化镉太阳电池,其结构为:玻璃/透明导电膜/硫化镉/碲化镉 / 碲钼多层复合薄膜/金属电极,其特征是:碲钼多层复合薄膜添加在碲化镉与金属电极之间作为过渡层,实现碲化镉与金属电极之间的欧姆接触,提高太阳电池稳定性。
2.如权利要求1所述的具有碲钼多层复合薄膜的碲化镉太阳电池,其特征是:碲钼多层复合薄膜由碲钼交叠组合在一起,堆垛顺序为碲/钼/碲/钼/…/碲/钼,经过后处理后,由碲化钼的主相和碲的析出相组成。
3.如权利要求2所述的具有碲钼多层复合薄膜的碲化镉太阳电池,其特征是:后处理指的是惰性气体气氛,退火温度150℃~500℃,退火时间为10~60分钟。
CN201410260474.XA 2014-06-13 2014-06-13 具有碲钼多层复合薄膜的碲化镉太阳电池 Expired - Fee Related CN104064617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410260474.XA CN104064617B (zh) 2014-06-13 2014-06-13 具有碲钼多层复合薄膜的碲化镉太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410260474.XA CN104064617B (zh) 2014-06-13 2014-06-13 具有碲钼多层复合薄膜的碲化镉太阳电池

Publications (2)

Publication Number Publication Date
CN104064617A true CN104064617A (zh) 2014-09-24
CN104064617B CN104064617B (zh) 2017-01-11

Family

ID=51552243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410260474.XA Expired - Fee Related CN104064617B (zh) 2014-06-13 2014-06-13 具有碲钼多层复合薄膜的碲化镉太阳电池

Country Status (1)

Country Link
CN (1) CN104064617B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244110A (zh) * 2011-06-24 2011-11-16 四川大学 硒化钒薄膜作背接触层的CdTe太阳电池
CN102386244A (zh) * 2010-08-31 2012-03-21 比亚迪股份有限公司 一种CdTe电池过渡层及其制备方法及CdTe电池
CN102779860A (zh) * 2012-07-11 2012-11-14 中国科学技术大学 背接触层结构及其制备方法、包括其的CdTe薄膜太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386244A (zh) * 2010-08-31 2012-03-21 比亚迪股份有限公司 一种CdTe电池过渡层及其制备方法及CdTe电池
CN102244110A (zh) * 2011-06-24 2011-11-16 四川大学 硒化钒薄膜作背接触层的CdTe太阳电池
CN102779860A (zh) * 2012-07-11 2012-11-14 中国科学技术大学 背接触层结构及其制备方法、包括其的CdTe薄膜太阳能电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. OUADAH, J.C.BERNÈDE ET AL.: "MoTe2 Thin Films Synthesized by Solid State Reactions between Mo and Te Thin Films", 《PHYSICA STATUS SOLIDI A》, 16 February 2006 (2006-02-16), pages 455 - 466 *
T LöHER, Y TOMM ET AL.: "Structural dipoles at interfaces between polar Ⅱ-Ⅵ semiconductors CdS and CdTe and non-polar layered transition metal dichalcogenide semiconductors MoTe2 and WSe2", 《SEMICONDUCTOR SCIENCE AND TECHNOLOGY》, 6 March 2000 (2000-03-06), pages 514 - 522 *

Also Published As

Publication number Publication date
CN104064617B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN100541824C (zh) 一种机械叠层AlSb/CIS薄膜太阳电池
US7943415B1 (en) Methods of sputtering cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices
US20150136216A1 (en) Compound semiconductor solar cell
Jiang et al. Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology
KR20130044850A (ko) 태양전지 및 이의 제조방법
JP2014209586A (ja) 薄膜太陽電池及びその製造方法
TWI589011B (zh) 化合物太陽電池及其製造方法
TWI591839B (zh) CIGS Department of compound solar cells
US20110265868A1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and methods of their manufacture
JP2018163938A (ja) 太陽電池
Li et al. Investigation on the performance of Mo2N thin film as barrier layer against Fe in the flexible Cu (In, Ga) Se2 solar cells on stainless steel substrates
US20160013356A1 (en) Apparatus for manufacturing photovoltaic cell
JP2012256881A (ja) 太陽電池モジュールの製造方法
US8188562B2 (en) Multi-layer N-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
JP2016082003A (ja) 薄膜太陽電池の製造方法
Peng et al. Flexible CZTS solar cells on flexible Corning® Willow® Glass substrates
CN104064617B (zh) 具有碲钼多层复合薄膜的碲化镉太阳电池
CN102931248B (zh) CdSe/CIS叠层薄膜太阳电池
CN104124290A (zh) 一种含Te-Ti-Cu预置层的碲化镉太阳电池
JP2016082006A (ja) 太陽電池の製造方法
JP7503777B1 (ja) 太陽電池の製造方法及び太陽電池
KR101160487B1 (ko) 후막형 cigs 태양전지 및 그 제조방법
CN107924959A (zh) 包括含硫族化物的光伏光吸收剂的光伏装置和相关制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20190613

CF01 Termination of patent right due to non-payment of annual fee