CN103907232B - 燃料电池的输出控制装置 - Google Patents

燃料电池的输出控制装置 Download PDF

Info

Publication number
CN103907232B
CN103907232B CN201180074621.9A CN201180074621A CN103907232B CN 103907232 B CN103907232 B CN 103907232B CN 201180074621 A CN201180074621 A CN 201180074621A CN 103907232 B CN103907232 B CN 103907232B
Authority
CN
China
Prior art keywords
fuel cell
control
output
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180074621.9A
Other languages
English (en)
Other versions
CN103907232A (zh
Inventor
金子智彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN103907232A publication Critical patent/CN103907232A/zh
Application granted granted Critical
Publication of CN103907232B publication Critical patent/CN103907232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

同时实现燃料电池的劣化或耐久性下降的抑制和燃料电池的输出控制的最优化这两者。一种燃料电池的输出控制装置,能够在以使与负载连接的燃料电池的输出电力成为目标电力的方式进行控制的电力控制模式与以使该燃料电池的输出电压成为目标电压的方式进行控制的电压控制模式之间进行控制模式的切换,其中,在所述燃料电池的输出电压低于规定的低电压阈值时,实施所述电压控制模式下的控制。

Description

燃料电池的输出控制装置
技术领域
本发明涉及一种燃料电池的输出控制装置。
背景技术
作为在燃料电池车辆中使用的电源***,已知有例如下述专利文献1公开的技术。在该电源***中,通过将燃料电池的实际的输出电力测定值从FC测定电力输入单元向偏差运算单元输出,指令电流运算单元将FC要求电力指令值除以燃料电池的输出电压等,而导出对于燃料电池的要求电流指令值。
另外,在下述专利文献2公开的电源***中,具备相对于负载并联连接的燃料电池及蓄电池、配置在燃料电池与负载之间的第一转换器、配置在蓄电池与负载之间的第二转换器,通过第一或第二转换器来控制燃料电池或蓄电池的输出电流。
在先技术文献
专利文献
专利文献1:日本特开2010-124615号公报
专利文献2:日本特开2010-045889号公报
发明内容
发明要解决的课题
在燃料电池***中,从包含燃料电池、蓄电池、辅机的燃料电池***整体的高效的能量管理的实现、对于要求发电量的急变动(例如,在燃料电池车辆中要求急加速时)的响应性的提高、及蓄电池的保护等角度出发,希望直接控制燃料电池的输出电力。然而,从那样的角度出发,在基于要求电力与输出电力的偏差而对燃料电池的发电状态实施反馈控制(电力控制模式下的控制)时,有时燃料电池会下降至不优选的输出电压值,有时由于这原因而导致燃料电池的劣化或耐久性下降。
例如固体高分子型燃料电池具有通过由多孔材料构成的一对电极将用于选择性地输送氢离子的高分子电解质膜的两侧面夹持而成的膜-电极组件,一对电极分别具有:以载持例如铂系的金属催化剂(以下,称为电极催化剂)的碳粉末为主成分的催化剂层;兼具透气性及电子导电性的气体扩散层。
在这种燃料电池的运转中,当其输出电压比规定的电压阈值低时,会导致电极催化剂的劣化或耐久性下降。因此,从防止上述电极催化剂的劣化及耐久性下降的角度出发,需要以使输出电压成为所述规定的电压阈值以上的方式控制燃料电池的发电状态。
然而,在实施电力控制模式下的控制时,虽然说该燃料电池的输出电压比所述规定的电压阈值低,但是仅能向减少要求电力与输出电力的偏差的方向进行反馈控制,因此无法避免电极催化剂的劣化及耐久性下降的问题。为了防止上述电极催化剂的劣化及耐久性下降,在基于要求电压与输出电压的偏差对燃料电池的发电状态实施反馈控制时,难以实现高效的能量管理、响应性提高,也可能会导致蓄电池的劣化及耐久性下降。
本发明为了消除上述的问题点而作出,其目的在于同时实现燃料电池的劣化或耐久性下降的抑制和燃料电池的输出控制的最优化这两者。
用于解决课题的手段
为了解决上述的课题,本发明采用了如下的结构:一种燃料电池的输出控制装置,能够在以使与负载连接的燃料电池的输出电力成为目标电力的方式进行控制的电力控制模式与以使该燃料电池的输出电压成为目标电压的方式进行控制的电压控制模式之间进行控制模式的切换,其中,在所述燃料电池的输出电压低于规定的低电压阈值时,实施所述电压控制模式下的控制。
根据该结构,例如在燃料电池的通常运转时,实施该燃料电池的输出电力成为目标电力那样的控制,因此能实现高效的能量管理或响应性的提高。而且,在上述结构适用于具备相对于负载而与燃料电池并联配置的蓄电池的燃料电池***的情况下,能抑制蓄电池的过放电及过充电,能实现蓄电池的保护。
并且,在电力控制模式下的控制实施中燃料电池内的输出电压低于规定的低电压阈值时,从到目前为止的电力主体的控制切换成使该燃料电池的输出电压与目标电压一致的电压主体的控制,因此能够避免由输出电压下降引起的燃料电池的电极催化剂的劣化或耐久性下降。
需要说明的是,“规定的低电压阈值”是不会导致燃料电池内的电极催化剂的劣化或耐久性下降的电压值,根据电极催化剂的规格等而适当设定。
在上述结构中,可以构成为,在将所述燃料电池的目标电压设定为所述低电压阈值或所述低电压阈值加上规定的预备值所得到的值的基础上,实施所述电压控制模式下的控制。
根据此结构,进行用于将燃料电池的输出电压提升为低电压阈值以上的控制。尤其是在将燃料电池的目标电压设定为低电压阈值加上规定的预备值所得到的值时,能够从燃料电池的输出电压低于低电压阈值的状态迅速地脱离。
然而,燃料电池的输出电压如上述那样不可以过低,但过高也会导致燃料电池(更具体而言,可列举燃料电池内的高分子电解质膜等)的劣化或耐久性下降。
因此,为了避免在上述高电压时产生的问题,由以上的结构构成的输出控制装置可以构成为,在所述燃料电池的输出电压超过规定的高电压阈值时,实施所述电压控制模式下的控制。
在此结构中,可以构成为,在将所述燃料电池的目标电压设定为所述高电压阈值或所述高电压阈值减去规定的预备值所得到的值的基础上,实施所述电压控制模式下的控制。
根据此结构,进行用于将燃料电池的输出电力降低为高电压阈值以下的控制。尤其是在将燃料电池的目标电压设定为高电压阈值减去规定的预备值所得到的值时,能够从燃料电池的输出电压超过高电压阈值的状态迅速地脱离。
在以上的结构中,可以构成为,具备占空比运算部,该占空比运算部运算给予升压转换器的占空比指令值,该升压转换器使所述燃料电池的输出电压升压而向负载侧输出,在所述电力控制模式下的控制实施中,所述占空比运算部输出使用所述燃料电池的输出电力及目标电力而算出的第一占空比指令值,在所述电压控制模式下的控制实施中,所述占空比运算部输出使用所述燃料电池的输出电压及目标电压而算出的第二占空比指令值。
在该结构中,可以构成为,所述占空比运算部具备控制模式切换部,该控制模式切换部在实施所述电力控制模式下的控制时选择所述第一占空比指令值作为输出的占空比指令值,在实施所述电压控制模式下的控制时选择所述第二占空比指令值作为输出的占空比指令值。
需要说明的是,在上述结构中,将燃料电池的输出电压低于规定的低电压阈值的情况或燃料电池的输出电压超过高电压阈值的情况规定作为控制模式切换的条件,但也可以着眼于在燃料电池的输出电压与输出电流及输出电力之间一定的相关关系成立的情况,以与“规定的低电压阈值”对应的规定的高电流阈值或规定的低电力阈值、与“规定的高电压阈值”对应的规定的低电流阈值或规定的高电力阈值为基准,实施控制模式的切换。
即,可以取代“燃料电池的输出电压低于规定的低电压阈值的情况”,(1)设为所述燃料电池的输出电流超过规定的高电流阈值的情况,(2)设为所述燃料电池的输出电力低于规定的低电力阈值的情况。而且,可以取代“燃料电池的输出电压超过规定的高电压阈值的情况”,(3)设为所述燃料电池的输出电流低于规定的低电流阈值的情况,(4)设为所述燃料电池的输出电力超过规定的高电力阈值的情况。
发明效果
根据本发明,能够同时实现燃料电池的劣化或耐久性下降的抑制和燃料电池的输出控制的最优化这两者。
附图说明
图1是简要表示本发明的燃料电池的输出控制装置的一实施方式的结构图。
图2是表示图1的占空比运算部的一实施方式的框图。
图3是表示燃料电池的IV特性及IP特性的一例的图。
图4是表示图2的占空比运算部的一变形例的框图。
具体实施方式
以下,参照附图,说明具备本发明的燃料电池的输出控制装置的燃料电池***的实施方式。在本实施方式中,还说明使用该燃料电池***作为燃料电池车辆(FCHV;FuelCell Hybrid Vehicle:燃料电池混合动力车辆)的车载发电***的情况。
首先,参照图1,说明燃料电池***的结构。
如图1所示,燃料电池***1具备通过作为反应气体的氧化气体与燃料气体的电化学反应而产生电力的燃料电池2,该燃料电池2的发电状态由控制部11控制。
燃料电池2例如是高分子电解质型燃料电池,成为将多个单电池层叠的堆叠结构。单电池构成为,具有:通过由多孔材料构成的一对电极将用于选择性地输送氢离子的高分子电解质膜的两侧面夹持而成的膜-电极组件(以下,称为MEA);从两侧夹住该MEA的一对隔板。
另外,一对电极分别具有:以载持例如铂系的金属催化剂(以下,称为电极催化剂)的碳粉末为主成分的催化剂层;兼具透气性及电子导电性的气体扩散层。并且,在该燃料电池2安装有用于检测其输出端子电压的电压传感器Sv和用于检测输出电流的电流传感器Si。
此外,在燃料电池2上连接有第一升压转换器5。该第一升压转换器5是直流的电压转换器,具有调整从燃料电池2输入的直流电压而向逆变器4侧输出的功能。而且,在第一升压转换器5上经由逆变器4而连接有驱动电动机(负载)6,并且经由第二升压转换器8而连接有作为二次电池的蓄电池9及各种辅机10。
第二升压转换器8是直流的电压转换器,具有调整从蓄电池9输入的直流电压而向逆变器4侧输出的功能和调整从燃料电池2或驱动电动机6输入的直流电压而向蓄电池9输出的功能。通过这样的第二升压转换器8的功能,来实现蓄电池9的充放电。
蓄电池9将单体蓄电池层叠而以一定的高电压作为端子电压,能够用燃料电池2的输出电力中减去了由包含驱动电动机6的负载整体消耗的电力等所得到的剩余电力进行充电,或者对驱动电动机6辅助性地供给电力。蓄电池9当在其剩余容量即SOC(State OfCharge:充电状态)为极高的区域或极低的区域中继续使用时,劣化或耐久性下降可能会进展。
因此,在本实施方式的燃料电池***1中,将以燃料电池2的输出电力为主体来控制燃料电池2的发电状态作为原则,在后述的规定条件下,以燃料电池2的输出电压为主体来控制燃料电池2的发电状态。
驱动电动机6例如是三相交流电动机,构成搭载燃料电池***1的燃料电池车辆的主动力源。连接有驱动电动机6的逆变器4将直流电流转换成三相交流而向驱动电动机6供给。
控制部11是基于设置在燃料电池车辆上的加速操作构件(油门等)的操作量等而控制***内的各种设备的动作的上位的控制装置。在该控制部11与第一升压转换器5之间,设有用于运算给予第一升压转换器的占空比指令值的占空比运算部20。即,本发明的燃料电池的输出控制装置在本实施方式中,构成为具备第一升压转换器5、控制部11、占空比运算部20。
接下来,参照图2,详细说明图1所示的占空比运算部20的一实施方式。在本实施方式的占空比运算部20中,与燃料电池2的电力控制模式下的控制关联的第一控制器21和与燃料电池2的电压控制模式下的控制关联的第二控制器22相互并联地连接。
第一控制器21构成反馈控制电路,例如从作为上位的控制装置的控制部11输出的电力指令值P_ref作为正分量,而且,根据所述电流传感器Si及电压传感器Sv的各输出值而算出的电力当前值P_mes作为负分量,分别输入。即,向第一控制器21输入电力指令值P_ref与电力当前值P_mes的差分值即电力差分值ΔP,换言之,相对于向燃料电池2的要求电力量的发电不足量。并且,第一控制器21基于该电力差分值ΔP而输出对于第一升压转换器5的第一占空比指令值。
第二控制器22构成反馈控制电路,例如从控制部11输出的电压指令值V_ref作为正分量,而且,根据所述电压传感器Sv的输出值而算出的电压当前值V_mes作为负分量,分别输入。即,向第二控制器22输入电压指令值V_ref与电压当前值V_mes的差分值即电压差分值ΔV,基于该电压差分值ΔV而输出对于第一升压转换器5的第二占空比指令值。
在第一控制器21和第二控制器22的后段(下游)设有开关(控制模式切换部)23。该开关23用于选择给予第一升压转换器5的最终的占空比指令值,在优选通过电力控制模式来控制燃料电池2的发电状态时(例如,通常运转时或要求急加速时),选择从第一控制器21输出的第一占空比指令值,在优选通过电压控制模式来控制燃料电池2的发电状态时(例如,在燃料电池2的输出电压低于规定的低电压阈值时或超过规定的高电压阈值时),以选择从第二控制器22输出的第二占空比指令值的方式,基于例如来自控制部11的切换指令而控制切换动作。
在该实施方式中,不仅能够接受电力指令值P_ref和电压指令值V_ref这两者的输入,而且能够进行基于其中任一方的指令值的燃料电池2的输出控制。因此,例如在通常运转时或要求急加速时,能够选择并执行将燃料电池2的输出电力控制成目标值的能量管理或蓄电池保护主体的控制模式,另一方面,例如在由于需要抑制燃料电池2的劣化或耐久性下降而需要将燃料电池2的输出电压控制为规定的低电压阈值以上及规定的高电压阈值以下时,能够选择并执行将燃料电池2的输出电压直接控制成目标值的用于抑制燃料电池2的劣化或/及耐久性下降的控制模式。
图3是表示燃料电池2的电流电压特性(IV特性)的IV曲线及表示电流电力特性(IP特性)的IP曲线的一例。在本实施方式中,在该图3中,例如在能够基于该燃料电池2的规格等、甚至基于IV特性或IP特性而预先确定的规定的低电压阈值Vth1以上且规定的高电压阈值Vth2以下的范围内,对燃料电池2的输出电压进行输出控制。
另外,对于燃料电池2的输出电流,例如在能够基于该燃料电池2的规格等、甚至基于IV特性或IP特性而预先确定的规定的低电流阈值Ith1以上且规定的高电流阈值Ith2以下的范围内进行输出控制。
而且,对于燃料电池2的输出电力,例如在能够通过所述低电压阈值Vth1与所述低电流阈值Ith1之积而求出的规定的低电力阈值Pth1以上且能够通过所述高电压阈值Vth2与所述高电流阈值Ith2之积而求出的规定的高电力阈值Pth2以下的范围内进行输出控制。
上述低电压阈值Vth1、高电压阈值Vth2、低电流阈值Ith1、及高电流阈值Ith2例如在IV曲线上的动作点中,设定为输出电流或输出电压急剧下降或上升的点,换言之,输出电流或输出电压的变化率相对大的点,再换言之,相对于IV曲线的切线的斜度为接近于垂直的规定的角度以上的点。
在本实施方式中,在燃料电池2的输出电压成为低电压阈值Vth1以下时,即使在选择了电力控制模式的情况下,也将控制模式从电力控制模式切换成电压控制模式。这种情况下,在将燃料电池2的目标电压设定为低电压阈值Vth1或该低电压阈值Vth1加上规定的预备值所得到的值的基础上,实施电压控制模式下的控制。
由此,直接控制燃料电池2的输出电压,因此能够迅速且更可靠地避免过度的燃料电池2的输出电压下降。即,能够从燃料电池2的输出电压低于低电压阈值Vth1的状态迅速地脱离。
另外,在选择了电力控制模式的情况下燃料电池2的输出电流成为高电流阈值Ith2以上时或燃料电池2的输出电力成为低电力阈值Pth1以下时,都将控制模式从电力控制模式切换成电压控制模式。即,在燃料电池2的输出电压与输出电流及输出电力之间,一定的相关关系成立,因此在这些情况下,燃料电池2的输出电压处于从所述规定的范围向低电压侧偏离的倾向。
由此,在上述情况下,都直接控制燃料电池2的输出电压,由此能够迅速且更可靠地回避过度的燃料电池2的输出电压下降,从而能够从燃料电池2的输出电压低于低电压阈值Vth1的状态迅速地脱离。
以上,说明了防止通过电力控制模式来控制燃料电池2的发电状态时的燃料电池2的输出电压的过度下降的情况,以下说明防止通过电力控制模式来控制燃料电池2的发电状态时的燃料电池2的输出电压的过度上升的情况。
在本实施方式中,在燃料电池2的输出电压成为高电压阈值Vth2以上时,即使在选择了电力控制模式的情况下,也将控制模式从电力控制模式切换成电压控制模式。这种情况下,在将燃料电池2的目标电压设定为高电压阈值Vth2或者该高电压阈值Vth2减去规定的预备值所得到的值的基础上,实施电压控制模式下的控制。
由此,直接控制燃料电池2的输出电压,因此能够迅速且更可靠地避免过度的燃料电池2的输出电压上升。即,能够从燃料电池2的输出电压超过高电压阈值Vth2的状态迅速地脱离。
另外,在选择了电力控制模式的情况下燃料电池2的输出电流成为低电流阈值Ith1以下时或燃料电池2的输出电力成为高电力阈值Pth2以上时,都将控制模式从电力控制模式切换成电压控制模式。
即,从上述的相关关系可知,在上述的情况下,燃料电池2的输出电压也处于从所述规定的范围向高电压侧偏离的倾向,因此通过直接控制燃料电池2的输出电压,能够迅速且更可靠地避免过度的燃料电池2的输出电压上升,从而能够从燃料电池2的输出电压超过高电压阈值Vth2的状态迅速地脱离。
接下来,参照图4,说明上述实施方式中的占空比运算部20(图2)的变形例。需要说明的是,在以下的说明中,对于与占空比运算部20相同的结构要素,标注与图2相同的标号并省略或简化其说明。
如图4所示,在本变形例的占空比运算部30中,与燃料电池2的电力控制模式下的控制关联的第一控制器21和与燃料电池2的电压控制模式下的控制关联的第二控制器22相互并联地连接。在第一控制器21和第二控制器22的后段(下游)设有开关(控制切换部)23。到此为止的结构与占空比运算部20相同。
在本变形例中,将通过开关23选择的第一占空比指令值或第二占空比指令值加上基于电流指令值I_ref及电流当前值I_mes产生的反馈指令值及前馈指令值,由此算出最终给予第一升压转换器5的占空比指令值。
即,通过开关23选择的第一占空比指令值或第二占空比指令值作为正分量,而且,例如从控制部11输出的电流指令值I_ref作为正分量,向构成前馈控制电路的第三控制器31分别输入。
另外,通过开关23选择的第一占空比指令值或第二占空比指令值作为正分量,而且,例如从控制部11输出的电流指令值I_ref作为正分量,此外,根据所述电流传感器Si的输出值而算出的电流当前值I_mes作为负分量,向构成反馈控制电路的第四控制器32分别输入。
并且,来自上述第三控制器31的输出值与来自第四控制器32的输出值的相加值成为最终给予第一升压转换器5的占空比指令值。即,根据该变形例,能够进行电力指令值P_ref、电压指令值V_ref、电流指令值I_ref的全部的输入,从而能够进行更细微的控制。
在上述的实施方式中,说明了将本发明的燃料电池的输出控制装置搭载于燃料电池车辆的情况,但是在燃料电池车辆以外的各种移动体(机器人、船舶、航空器等)中也能够适用本发明的燃料电池的输出控制装置。而且,本发明的燃料电池的输出控制装置也可以适用于作为建筑物(住宅、大楼等)用的发电设备而使用的固定用发电***。
标号说明
1…燃料电池***,2…燃料电池,5…第一升压转换器,6…驱动电动机(负载),9…蓄电池,10…辅机,11…控制部,20、30…占空比运算部,21…第一控制器,22…第二控制器,23…开关(控制模式切换部),31…第三控制器,32…第四控制器。

Claims (6)

1.一种燃料电池的输出控制装置,能够在以使与负载连接的燃料电池的输出电力成为目标电力的方式进行控制的电力控制模式与以使该燃料电池的输出电压成为目标电压的方式进行控制的电压控制模式之间进行控制模式的切换,其中,
所述燃料电池的输出控制装置具备升压转换器、控制部及占空比运算部,
所述控制部基于加速操作构件的操作量而向占空比运算部输出与目标电力有关的指令值,
所述占空比运算部运算给予所述升压转换器的占空比指令值,该升压转换器使所述燃料电池的输出电压升压而向负载侧输出,
所述占空比运算部具有控制模式切换部,所述控制模式切换部进行所述控制模式的切换,
在所述燃料电池的输出电压低于规定的低电压阈值时,即使在选择了电力控制模式的情况下,所述控制模式切换部也将控制模式从电力控制模式切换成电压控制模式。
2.根据权利要求1所述的燃料电池的输出控制装置,其中,
在将所述燃料电池的目标电压设定为所述低电压阈值或所述低电压阈值加上规定的预备值所得到的值的基础上,实施所述电压控制模式下的控制。
3.根据权利要求1所述的燃料电池的输出控制装置,其中,
在所述燃料电池的输出电压超过规定的高电压阈值时,实施所述电压控制模式下的控制。
4.根据权利要求3所述的燃料电池的输出控制装置,其中,
在将所述燃料电池的目标电压设定为所述高电压阈值或所述高电压阈值减去规定的预备值所得到的值的基础上,实施所述电压控制模式下的控制。
5.根据权利要求1~4中任一项所述的燃料电池的输出控制装置,其中,
在所述电力控制模式下的控制实施中,所述占空比运算部输出使用所述燃料电池的输出电力及目标电力而算出的第一占空比指令值,在所述电压控制模式下的控制实施中,所述占空比运算部输出使用所述燃料电池的输出电压及目标电压而算出的第二占空比指令值。
6.根据权利要求5所述的燃料电池的输出控制装置,其中,
所述占空比运算部具备控制模式切换部,该控制模式切换部在实施所述电力控制模式下的控制时选择所述第一占空比指令值作为给予所述升压转换器的占空比指令值,在实施所述电压控制模式下的控制时选择所述第二占空比指令值作为给予所述升压转换器的占空比指令值。
CN201180074621.9A 2011-11-01 2011-11-01 燃料电池的输出控制装置 Active CN103907232B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075208 WO2013065132A1 (ja) 2011-11-01 2011-11-01 燃料電池の出力制御装置

Publications (2)

Publication Number Publication Date
CN103907232A CN103907232A (zh) 2014-07-02
CN103907232B true CN103907232B (zh) 2016-08-17

Family

ID=48191526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180074621.9A Active CN103907232B (zh) 2011-11-01 2011-11-01 燃料电池的输出控制装置

Country Status (5)

Country Link
US (1) US9985305B2 (zh)
JP (1) JP5786952B2 (zh)
CN (1) CN103907232B (zh)
DE (1) DE112011105797B4 (zh)
WO (1) WO2013065132A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021295A (ja) * 2014-07-14 2016-02-04 本田技研工業株式会社 電源システム及び車両
JP6225957B2 (ja) * 2015-07-23 2017-11-08 トヨタ自動車株式会社 燃料電池システム
JP6565436B2 (ja) * 2015-07-30 2019-08-28 株式会社Soken 燃料電池システム
JP6310511B2 (ja) * 2016-07-19 2018-04-11 本田技研工業株式会社 燃料電池車両の運転方法
JP6642463B2 (ja) * 2017-01-19 2020-02-05 トヨタ自動車株式会社 燃料電池システム
US10483886B2 (en) * 2017-09-14 2019-11-19 Hamilton Sundstrand Corportion Modular electric power generating system with multistage axial flux generator
CN113511111B (zh) * 2021-09-01 2024-04-16 潍柴动力股份有限公司 燃料电池***控制方法、装置、设备及可读存储介质
CN117996126B (zh) * 2024-04-07 2024-07-05 上海氢晨新能源科技有限公司 燃料电池工作参数控制方法、电子设备和用电设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904036A (zh) * 2007-12-19 2010-12-01 丰田自动车株式会社 燃料电池***

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219920A (ja) 1984-04-17 1985-11-02 株式会社東芝 燃料電池発電システムの制御装置
JP2005123110A (ja) * 2003-10-20 2005-05-12 Fujitsu Ltd 燃料電池給電システムおよびその出力制御方法
JP4947481B2 (ja) 2005-06-21 2012-06-06 トヨタ自動車株式会社 燃料電池システム
JP2007265840A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 燃料電池システム
JP4978082B2 (ja) * 2006-03-31 2012-07-18 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP5067707B2 (ja) * 2007-05-31 2012-11-07 トヨタ自動車株式会社 燃料電池システム
JP4656539B2 (ja) * 2007-11-21 2011-03-23 トヨタ自動車株式会社 燃料電池システム
JP4591721B2 (ja) 2007-11-21 2010-12-01 トヨタ自動車株式会社 燃料電池システム
JP4459266B2 (ja) * 2007-11-30 2010-04-28 株式会社東芝 燃料電池装置、および燃料電池装置の制御方法
JP2009152131A (ja) * 2007-12-21 2009-07-09 Toyota Motor Corp 燃料電池システム
JP4424419B2 (ja) * 2007-12-27 2010-03-03 トヨタ自動車株式会社 燃料電池システム
JP5143665B2 (ja) 2008-08-11 2013-02-13 本田技研工業株式会社 電力システム及び燃料電池車両
JP4506889B2 (ja) * 2008-10-23 2010-07-21 トヨタ自動車株式会社 交流電動機の制御装置および制御方法
CN102204000B (zh) * 2008-11-04 2015-03-18 日产自动车株式会社 燃料电池的发电控制装置以及发电控制方法
JP5207055B2 (ja) 2008-11-20 2013-06-12 トヨタ自動車株式会社 コンバータ制御装置
WO2012063300A1 (ja) * 2010-11-08 2012-05-18 トヨタ自動車株式会社 燃料電池の出力制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904036A (zh) * 2007-12-19 2010-12-01 丰田自动车株式会社 燃料电池***

Also Published As

Publication number Publication date
WO2013065132A1 (ja) 2013-05-10
JPWO2013065132A1 (ja) 2015-04-02
JP5786952B2 (ja) 2015-09-30
US20140248548A1 (en) 2014-09-04
CN103907232A (zh) 2014-07-02
DE112011105797T5 (de) 2014-07-10
US9985305B2 (en) 2018-05-29
DE112011105797B4 (de) 2022-07-14

Similar Documents

Publication Publication Date Title
CN103907232B (zh) 燃料电池的输出控制装置
CN104025354B (zh) 燃料电池***
US8802310B2 (en) Fuel cell system
Azib et al. Saturation management of a controlled fuel-cell/ultracapacitor hybrid vehicle
JP4506980B2 (ja) ハイブリッド燃料電池システム及びその電圧変換制御方法
JP4849349B2 (ja) 燃料電池システムおよび移動体
CN101868881B (zh) 燃料电池***
CN101569044B (zh) 燃料电池***
JP4397739B2 (ja) 燃料電池車両の電圧状態設定方法
CN105609831B (zh) 燃料电池***及燃料电池***的运转控制方法
CN101828288B (zh) 燃料电池***
CN101868880A (zh) 燃料电池***
CN103518281B (zh) 燃料电池***
KR101151750B1 (ko) 연료전지시스템
US8889276B2 (en) Method for managing the operation of a hybrid system
JP5737521B2 (ja) 電源システム
WO2012063300A1 (ja) 燃料電池の出力制御装置
Pany et al. Power management of fuel cell and battery fed DC motor drive for electric vehicle application
US20220311076A1 (en) Electrical power control system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant