CN103700430B - A kind of conductive film being distributed in order and its manufacture method - Google Patents

A kind of conductive film being distributed in order and its manufacture method Download PDF

Info

Publication number
CN103700430B
CN103700430B CN201310728460.1A CN201310728460A CN103700430B CN 103700430 B CN103700430 B CN 103700430B CN 201310728460 A CN201310728460 A CN 201310728460A CN 103700430 B CN103700430 B CN 103700430B
Authority
CN
China
Prior art keywords
distributed
order
conductive
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310728460.1A
Other languages
Chinese (zh)
Other versions
CN103700430A (en
Inventor
杨柏儒
韩宋佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201310728460.1A priority Critical patent/CN103700430B/en
Priority to CN201610322091.XA priority patent/CN105788708B/en
Publication of CN103700430A publication Critical patent/CN103700430A/en
Application granted granted Critical
Publication of CN103700430B publication Critical patent/CN103700430B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A kind of conductive film being distributed in order, including substrate and the conductive layer that is arranged on substrate;The conductive layer is distributed in order by conductive filler to be formed.Using this technique, the network structure being distributed in order is formed using only a small amount of linear conductance filler, it is possible to make high transmission rate, the transparent conductive film of low sheet resistance.The light transmittance of membrane of conducting layer can reach more than 95%, below its square resistance as little as 45 Ω/mouth, can realize excellent translucency and electric conductivity simultaneously.

Description

A kind of conductive film being distributed in order and its manufacture method
Technical field
The invention belongs to a kind of conductive film, specifically a kind of conductive film being distributed in order.
Background technology
While transparent conductive film is referred to superior electrical conductivity energy, there is higher light transmittance in visible light wave range Film.It is commonly applied to contact panel, the transparency electrode of solar film battery, flat-panel monitor can electroluminescence device etc..And with Various devices towards lightening, flexibleization to develop, flexible transparent conductive film is frivolous etc. excellent due to flexible Put and obtain the extensive concern of all circles.
Transparent conductive film is made at present conductive coating structure is typically done using metal-oxide film, be using most ITO is indium zinc metal oxide, shows to form one in transparent glass or plastic supporting base by the way that the method either sputtered is deposited The conductive indium-zinc oxide film of layer.But whole coating process needs to carry out under condition of high vacuum degree, and coating temperature and After annealing will be carried out at high temperature, very high to equipment requirement.And metal oxide is by extraneous stress effect or curved Qu Shi, it is easy to be damaged, limit its development in flexible device field.
The conductive material for being currently used for making transparent conductive film mainly has:Metal nanometer line, metal nanoparticle, conduction High molecular polymer, graphene, CNT etc..The transparent conductive film wherein made using linear conductance filler has excellent Electric conductivity and light transmittance, by repeatedly bending after be maintained to relatively low sheet resistance value.Therefore it is most latent Power substitutes ITO and is used to make transparent conductive film.
In traditional transparent conductive film, linear conductance filler forms network structure to realize electric conductivity by random distribution Can, therefore conductive layer needs and reaches a certain amount of linear conductance filler to ensure that it has relatively low sheet resistance.But line Property conductive filler content increase, film light transmittance can be caused to decline, mist degree improves, influence application value.Therefore one kind is needed New is made technique, and the network structure being distributed in order is formed using only a small amount of linear conductance filler, makes high transmission rate, low table The transparent conductive film of surface resistance.
The content of the invention
It is an object of the invention to overcome the deficiencies of the prior art and provide a kind of high transmission rate, the conduction of low sheet resistance Film.
In order to achieve the above object, the present invention uses following technical scheme:A kind of conductive film being distributed in order, including base Plate and the conductive layer being arranged on substrate;The conductive layer is distributed in order by conductive filler to be formed.Compared to prior art, this hair A kind of bright conductive film being distributed in order, its conductive layer are to be distributed to be formed in order by conductive filler, are divided in order so as to be formed The structure of cloth.Using this technique, the network structure being distributed in order is formed using only a small amount of linear conductance filler, it is possible to make Make high transmission rate, the transparent conductive film of low sheet resistance.The light transmittance of membrane of conducting layer can reach more than 95%, its square Below resistance value as little as 45 Ω/mouth, excellent translucency and electric conductivity can be realized simultaneously.
Further, the conductive filler is distributed as one-dimension oriented distribution in the same direction in order.
Further, the conductive filler is distributed as the two-dimentional crossed orientation distribution along 0 ° to 90 ° in order.
Further, the conductive filler is distributed as the distribution of second vertical crossed orientation in order.
Further, described conductive filler be metal nanometer line, it is CNT, metal nanoparticle, graphene, conductive poly- Compound or oxidized metal.
Another technical scheme of the present invention is as follows:A kind of conductive film being distributed in order, including substrate is with being arranged on base Conductive layer on plate, in addition to one be used for be orientated orientation film layer;The conductive layer is by conductive filler coated in shape on alignment film Into to form the structure being distributed in order.Orientation film layer has the function that to arrange conductive filler in optical anisotropic layer.
Further, the conductive filler is distributed as one-dimension oriented distribution in the same direction in order.
Further, the conductive filler is distributed as the two-dimentional crossed orientation distribution along 0 ° to 90 ° in order.
Further, the conductive layer is arranged on the top of the alignment film either bottom or be integral with alignment film.
It is another object of the present invention to provide a kind of preparation technology simple and fast, can produce highly conductive, high The manufacture method of light rate film.
In order to achieve the above object, the present invention uses following technical scheme:The coating by 1 time or repeatedly by conductive ink Method coated on substrate, conductive film is formed after dry solidification;The painting method is coated with for orientating type.
Further, every layer of conductive filler distribution differently- oriented directivity with it is preceding once parallel.
Further, every layer of conductive filler be distributed to direction with it is preceding once at an angle;The scope of the angle is at 0 ° to 90 ° Between.
Further, every layer of conductive filler distribution differently- oriented directivity with it is preceding once vertical.
Further, the mode for realizing orientation is mechanics orientation, light orientation orientation or chemistry are orientated.
Further, coating method is that hairbrush coating, roller rod coating, silk-screen printing, intaglio printing, letterpress or ink-jet are beaten Print.
Brief description of the drawings
Fig. 1 is conductive material distribution map of the prior art
Fig. 2 is the one-dimension oriented distribution map of conductive material in the same direction in the present invention
Fig. 3 is the second vertical crossed orientation distribution map of the conductive material in the present invention
Fig. 4 is two-dimentional crossed orientation distribution map of the conductive material along different directions in the present invention
Referring to drawings and the specific embodiments, the invention will be further described.
Embodiment
Embodiment 1
By concentration 10mg/ml Nano silver solution and concentration 1wt% the HPMC aqueous solution according to 1:6 mass ratio mixing, receives Rice silver wire average diameter 35nm, length 10um.The suspension of gained is mixed 10 minutes on eddy blending machine, so as to be divided Dissipate uniform suspension.The suspension is coated on glass substrate using No. 2 Mayer rods.Then glass substrate is turned rapidly Dry solidification 2 minutes on 90 DEG C of hot plates are moved to, Nano Silver transparent conductive film is made.
Test sample surface resistivity, light transmittance.After glass substrate transmission loss is deducted, membrane of conducting layer is 550 The light transmittance of nano wave length is 95.2%, and the square resistance that four probe method measures is 75 Ω/mouth.
Embodiment 2
By concentration 10mg/ml Nano silver solution and concentration 1wt% the HPMC aqueous solution according to 1:6 mass ratio mixing, receives Rice silver wire average diameter 35nm, length 10um.The suspension of gained is mixed 10 minutes on eddy blending machine, so as to be divided Dissipate uniform suspension.The suspension is coated on glass substrate using No. 1 Mayer rod, glass substrate is transferred quickly to Dry solidification 2 minutes on 90 DEG C of hot plates, then reuse Mayer rods and coat the suspension along coating of parallel first time direction Onto the conductive film after dry solidification, and dry solidification 2 minutes on 90 DEG C of hot plates are again transferred to, it is saturating that Nano Silver is made Bright conductive film.As shown in Fig. 2 it is the one-dimension oriented distribution map of conductive material in the same direction in the present invention.
Test sample surface resistivity, light transmittance.After glass substrate transmission loss is deducted, membrane of conducting layer is 550 The light transmittance of nano wave length is 95.53%, and the square resistance that four probe method measures is 78 Ω/mouth.
Embodiment 3
By concentration 10mg/ml Nano silver solution and concentration 1wt% the HPMC aqueous solution according to 1:6 mass ratio mixing, receives Rice silver wire average diameter 35nm, length 10um.The suspension of gained is mixed 10 minutes on eddy blending machine, so as to be divided Dissipate uniform suspension.The suspension is coated on glass substrate using No. 1 Mayer rod, glass substrate is transferred quickly to Dry solidification 2 minutes on 90 DEG C of hot plates, then reuse Mayer rods and coat the suspension along the vertical direction that coats for the first time Onto the conductive film after dry solidification, and dry solidification 2 minutes on 90 DEG C of hot plates are again transferred to, it is saturating that Nano Silver is made Bright conductive film.As shown in figure 3, it is the second vertical crossed orientation distribution map of the conductive material in the present invention.
Test sample surface resistivity, light transmittance.After glass substrate transmission loss is deducted, membrane of conducting layer is 550 The light transmittance of nano wave length is 96.37%, and the square resistance that four probe method measures is 70 Ω/mouth.
Embodiment 4
By concentration 10mg/ml Nano silver solution and concentration 1wt% the HPMC aqueous solution according to 1:6 mass ratio mixing, receives Rice silver wire average diameter 35nm, length 10um.The suspension of gained is mixed 10 minutes on eddy blending machine, so as to be divided Dissipate uniform suspension.The suspension is coated on glass substrate using No. 0 Mayer rod, glass substrate is transferred quickly to Dry solidification 2 minutes on 90 DEG C of hot plates, then reuse Mayer rods and coat the suspension along coating of parallel first time direction Onto the conductive film after dry solidification, and dry solidification 2 minutes on 90 DEG C of hot plates are again transferred to, repeat one again After step, Nano Silver transparent conductive film is made.Fig. 2 is the one-dimension oriented distribution of conductive material in the same direction in the present invention Figure.
Test sample surface resistivity, light transmittance.After glass substrate transmission loss is deducted, membrane of conducting layer is 550 The light transmittance of nano wave length is 94.54%, and the square resistance that four probe method measures is 90 Ω/mouth.
Embodiment 5
By concentration 10mg/ml Nano silver solution and concentration 1wt% the HPMC aqueous solution according to 1:6 mass ratio mixing, receives Rice silver wire average diameter 35nm, length 10um.The suspension of gained is mixed 10 minutes on eddy blending machine, so as to be divided Dissipate uniform suspension.The suspension is coated on glass substrate using No. 0 Mayer rod, glass substrate is transferred quickly to Dry solidification 2 minutes on 90 DEG C of hot plates, then reuse Mayer rods and coat the suspension along the vertical last direction that coats Onto the conductive film after dry solidification, and dry solidification 2 minutes on 90 DEG C of hot plates are again transferred to, repeat one again After step, Nano Silver transparent conductive film is made.Referring to Fig. 3, the second vertical that it is the conductive material in the present invention intersects Distribution of orientations figure.
Test sample surface resistivity, light transmittance.After glass substrate transmission loss is deducted, membrane of conducting layer is 550 The light transmittance of nano wave length is 95.07%, and the square resistance that four probe method measures is 45 Ω/mouth.
Embodiment 6
The high molecular polymer of orientation is dissolved in organic solvent, and certain density suspension is configured to nano-silver thread Liquid.The suspension is coated in substrate surface by way of water-laid film, prepares conductive layer.The orientating type polyphosphazene polymer used Compound is chain type high molecular polymer, on side chain with cumarin of the carbochain section of the certain length link with light sensitive characteristic or Other photosensitive functional groups.Some strength under photosensitive group sensitive wave length is obtained by optical filter and polarizer using high pressure hernia lamp UV polarised lights, and by the vertical directive substrate surface of the UV polarised lights, certain time length is irradiated, photosensitive group will be in UV light polarization directions On crosslink reaction, form orientation texture.
Embodiment 7
Alignment liquid is coated on substrate surface first, friction is carried out in a certain direction using hairbrush and alignment film, orientation is made Film surface can be brushed out the microcosmic order structure arranged in a certain direction because of the filoplume friction of the friction cloth on orientation roller bearing, Conductive filler on alignment film surface coated with nano conductive filler, alignment film can reach directional orientation because of intermolecular force Effect.
As the variant embodiment of the present invention, the orderly distribution of conductive material of the invention is not limited to parallel distribution or vertical Cross-distribution, can be the two-dimentional crossed orientation distribution of the unspecified angle along 0 ° to 90 °, as shown in Figure 4.
It the above is only the preferred embodiment of the present invention, it is noted that above-mentioned preferred embodiment is not construed as pair The limitation of the present invention, protection scope of the present invention should be defined by claim limited range.For the art For those of ordinary skill, without departing from the spirit and scope of the present invention, some improvements and modifications can also be made, these change Enter and retouch and also should be regarded as protection scope of the present invention.

Claims (3)

1. a kind of conductive film being distributed in order, including substrate and the conductive layer that is arranged on substrate, it is characterised in that:Also include One for being orientated by alignment liquid coated in the orientation film layer formed on substrate;The orientation film layer is provided with to alignment liquid along one Determine direction to rub the ordered structure to be formed;The conductive layer is coated in orientation film layer by conductive filler and formed, orderly to be formed The structure of distribution.
A kind of 2. conductive film being distributed in order as claimed in claim 1, it is characterised in that:The conductive filler is distributed in order For one-dimension oriented distribution in the same direction.
A kind of 3. conductive film being distributed in order as claimed in claim 1, it is characterised in that:The conductive filler is distributed in order For the two-dimentional crossed orientation distribution of the unspecified angle along 0 ° to 90 °.
CN201310728460.1A 2013-12-25 2013-12-25 A kind of conductive film being distributed in order and its manufacture method Active CN103700430B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310728460.1A CN103700430B (en) 2013-12-25 2013-12-25 A kind of conductive film being distributed in order and its manufacture method
CN201610322091.XA CN105788708B (en) 2013-12-25 2013-12-25 A kind of manufacture method for the conductive film being distributed in order

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310728460.1A CN103700430B (en) 2013-12-25 2013-12-25 A kind of conductive film being distributed in order and its manufacture method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610322091.XA Division CN105788708B (en) 2013-12-25 2013-12-25 A kind of manufacture method for the conductive film being distributed in order

Publications (2)

Publication Number Publication Date
CN103700430A CN103700430A (en) 2014-04-02
CN103700430B true CN103700430B (en) 2017-12-05

Family

ID=50361927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310728460.1A Active CN103700430B (en) 2013-12-25 2013-12-25 A kind of conductive film being distributed in order and its manufacture method

Country Status (1)

Country Link
CN (1) CN103700430B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103854723B (en) * 2014-02-20 2017-04-12 中山大学 Device with orderly-conductive film
WO2015124027A1 (en) * 2014-02-20 2015-08-27 中山大学 Orderly distributed conductive thin film, and device and nanometer conductor structure thereof
CN104051075A (en) * 2014-05-14 2014-09-17 中国科学院合肥物质科学研究院 Method for preparing transparent conductive film on plane provided with step
CN104575658A (en) * 2014-12-24 2015-04-29 中山大学 Magnetic field and application of magnetic nanowires in transparent conductive film as well as transparent conductive film and preparation method
CN105261423B (en) * 2015-10-30 2017-08-29 中山大学 A kind of volume to volume prepares the equipment and method of high-performance flexible nesa coating
CN105957967A (en) * 2016-06-14 2016-09-21 国家纳米科学中心 Preparation method of large-area flexible transparent conductive substrate
CN106057359B (en) * 2016-07-19 2018-08-10 中山大学 A kind of preparation method of embedded more orientation metal nano wire transparent conductive films
CN108845705B (en) * 2018-06-30 2021-05-07 广州国显科技有限公司 Conductive laminated structure, manufacturing method thereof and display device
CN109346211B (en) * 2018-08-29 2020-12-11 汉思高电子科技(义乌)有限公司 Composite structure transparent conductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202177751U (en) * 2011-08-19 2012-03-28 天马微电子股份有限公司 Liquid crystal light valve glasses and stereoscopic display system
CN102938262A (en) * 2012-11-20 2013-02-20 上海交通大学 Transparent conducting thin film and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625468B (en) * 2008-07-09 2011-03-23 鸿富锦精密工业(深圳)有限公司 Touch liquid crystal display preparation method
CN101492151A (en) * 2009-02-17 2009-07-29 华中科技大学 High-conductivity transparent metal single-wall nano-carbon tube film and method of producing the same
CN101901069B (en) * 2009-05-26 2012-07-25 群康科技(深圳)有限公司 Multipoint touch screen and driving method thereof
CN103011070B (en) * 2012-12-18 2014-04-16 中国科学技术大学 Orderly heterogeneous nano-wire flexible conductive film and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202177751U (en) * 2011-08-19 2012-03-28 天马微电子股份有限公司 Liquid crystal light valve glasses and stereoscopic display system
CN102938262A (en) * 2012-11-20 2013-02-20 上海交通大学 Transparent conducting thin film and preparation method thereof

Also Published As

Publication number Publication date
CN103700430A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN103700430B (en) A kind of conductive film being distributed in order and its manufacture method
Li et al. Recent progress in silver nanowire networks for flexible organic electronics
CN106782769B (en) Flexible and transparent conductive laminated film of low roughness low square resistance and preparation method thereof
Xiong et al. Highly conductive, air-stable silver nanowire@ iongel composite films toward flexible transparent electrodes
US9826636B2 (en) Transparent electrode and manufacturing method thereof
Zhang et al. Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays
Lian et al. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode
De et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios
CN104835555B (en) A kind of preparation method of pattern metal transparent conductive film
CN103531304B (en) A kind of quick preparation large area carbon nano tube flexible transparent conductive film and the method for improving its electric conductivity
Ko et al. Vacuum-assisted bilayer PEDOT: PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes
Huang et al. A transparent, conducting tape for flexible electronics
Wang et al. A facile method for preparing transparent, conductive, and paper-like silver nanowire films
Zhou et al. Anisotropic motion of electroactive papers coated with PEDOT/PSS
Bae et al. Transparent ultra-thin silver electrodes formed via a maskless evaporation process for applications in flexible organic light-emitting devices
Chung et al. The surface plasmonic welding of silver nanowires via intense pulsed light irradiation combined with NIR for flexible transparent conductive films
Gao et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes
CN109181498A (en) Use for electronic products environmental protection coating material
Yadav et al. Fabrication of ultrathin, free-standing, transparent and conductive graphene/multiwalled carbon nanotube film with superior optoelectronic properties
Kang et al. Silver nanowire networks embedded in a cure-controlled optical adhesive film for a transparent and highly conductive electrode
JP2011124029A (en) Transparent conductive film and its manufacturing method
CN109206965A (en) Conductive coating for electronic product
TW201832248A (en) Electroconductive film, and method for manufacturing electroconductive film
CN104465993A (en) Carbon-based composite transparent electrode and manufacturing method thereof
KR101500192B1 (en) Transparent conductive films including graphene layer and mathod for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant