CN103608930A - 多晶硅射极太阳电池用的图案化掺杂 - Google Patents

多晶硅射极太阳电池用的图案化掺杂 Download PDF

Info

Publication number
CN103608930A
CN103608930A CN201280028995.1A CN201280028995A CN103608930A CN 103608930 A CN103608930 A CN 103608930A CN 201280028995 A CN201280028995 A CN 201280028995A CN 103608930 A CN103608930 A CN 103608930A
Authority
CN
China
Prior art keywords
implanted
district
conductivity
polysilicon layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280028995.1A
Other languages
English (en)
Inventor
约翰·W·葛拉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Semiconductor Equipment Associates Inc
Original Assignee
Varian Semiconductor Equipment Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment Associates Inc filed Critical Varian Semiconductor Equipment Associates Inc
Publication of CN103608930A publication Critical patent/CN103608930A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明揭示了一种制造多晶硅太阳能电池的改善的方法。为了形成具有p型区和n型区的多晶硅层,所述层在存在一种类型的掺杂物的情况下生长。在形成已掺杂的多晶硅层之后,选择性地将具有相反掺杂物导电性的离子植入所述多晶硅层的部分中。此选择性植入可使用荫罩幕来执行。

Description

多晶硅射极太阳电池用的图案化掺杂
背景技术
离子植入(ion implantation)是一种用于将改变导电性的杂质引入工件中的标准技术。在离子源中离子化所要的杂质材料,使离子加速以形成指定能量的离子束,且将离子束引导到工件的表面上。离子束中的高能离子穿透到工件材料的主体中,并嵌入工件材料的晶格(crystalline lattice)中,从而形成具有所要导电性的区。
太阳能电池是使用硅工件的装置的一个实例。任何针对高性能太阳能电池的制造或生产成本的降低,或任何针对高性能太阳能电池的效率的改善,都会在世界范围内对太阳能电池的实施产生积极的影响。此举将使得这种无污染能源技术能得到更广泛地使用。
制造太阳能电池所使用的过程通常与制造其他半导体装置所使用的过程相同,常常使用硅作为基板材料。半导体太阳能电池是具有内置电场的简易装置,所述内置电场对通过半导体材料中的光子吸收产生的电荷载流子进行分离。此电场通常通过p-n接面(二极管)的形成产生,所述p-n接面由半导体材料的不同掺杂产生。用极性相反的杂质对半导体基板的一部分(例如,表面区)进行掺杂形成p-n接面,其可用作将光转换成电的光伏装置。
图1所示为典型的太阳能电池100的横截面,其中p-n接面120远离被照射的表面。如箭头所表示,光子10穿过顶部(或被照射的)表面进入所述太阳能电池100。这些光子经过抗反射涂层104,所述抗反射涂层104经设计以最大化穿透基板100的光子的数量并最小化反射远离基板的光子的数量。抗反射涂层104(anti-reflective coating;ARC)可由SiNx层组成。ARC104下方可以是钝化层103,所述钝化层103可由二氧化硅组成。当然,可使用其他介电质。太阳能电池100的背面上是铝发射极区106和铝层107。在一项实例中,这种设计可称作A1背发射极电池(Al back emitter cell)。
在内部,形成的太阳能电池100具有p-n接面120。虽然此接面图示为实质上平行于太阳能电池100的底部表面,但是存在其他实施方案,在其他实施方案中所述接面可不平行于所述表面。在一些实施例中,使用n型基板101构造太阳能电池100。光子10穿过n+掺杂区进入太阳能电池100,所述n+掺杂区也被称作前表面场(front surface field;FSF)102。具有足够能量(在半导体的带隙之上)的光子能够将在半导体材料的价带(valence band)之内的电子提升至导带(conduction band)。与这种自由电子相关联的是价带中的相应带正电荷的电洞(hole)。为了产生可驱动外部载荷的光电流,这些电子-电洞(e-h)对需要得到分离。这是通过在p-n接面102处的内置电场来完成。因此,在p-n接面102的耗尽区中产生的任何e-h对得到分离,扩散至装置的耗尽区的任何其他少数载流子也得到分离。由于大多数入射光子10在太阳能电池100的近表面区中被吸收,因此在发射极中产生的少数载流子需要扩散至耗尽区并被横扫至另一侧。
一些光子10经过前表面场102并进入p型发射极106。随后,这些光子10可激发在p型发射极106之内的电子,所述电子是自由的,因而移动至前表面场102中。关联的电洞遗留在发射极106中。由于此p-n接面120的存在造成电荷分离,因此由光子10产生的额外载流子(电子和电洞)随后可用于驱动外部载荷以形成回路。
通过从外部将接通前表面场102的基极连接至接通外部载荷的发射极106,有可能传导电流并因此提供电力。为达到此目的,触点105(通常是金属的,且在一些实施例中是银质的)配置在前表面场102的外表面上。
图2显示了太阳能电池200的第二实施例。在此项实施例中,p-n接面不是在基板201内产生。相反,基板201(通常是n型硅基板)通过薄穿隧氧化层202与背表面隔离。所述穿隧氧化层足够薄以允许电子穿隧通过穿隧氧化层202,例如,在1纳米与4纳米之间。此穿隧氧化层202可以是二氧化硅或是另一适合的介电质材料。在穿隧氧化层的相对侧上是多晶硅层203。此层具有彼此相邻定位的n型区204a和p型区204b。在这些区会合的地方,形成p-n接面210。随后,将触点25施加于n型区204a和p型区204b。在一些实施例中,第二穿隧氧化层206存在于基板201的前表面上。在此实施例中,n型多晶硅层207可施加于第二穿隧氧化层206。
太阳能电池的此实施例具有若干优势。首先,其效率可大于图1的传统太阳能电池。这可归因于基板内载流子的复合减少。
然而,这些多晶硅太阳能电池的生产耗时且成本高,需要许多过程步骤。因此,需要制造多晶硅太阳能电池的改进方法。
发明内容
本发明揭示了制造多晶硅太阳能电池的改善的方法。为了形成具有p型区和n型区的多晶硅层,所述层在存在一种类型的掺杂物的情况下生长。在形成已掺杂的多晶硅层之后,选择性地将具有相反掺杂物导电性的离子植入多晶硅层的部分中。此选择性植入可使用荫罩幕来执行。
附图说明
为了更好地理解本发明,将参考附图,这些附图以引用的方式并入本文中,且其中:
图1是现有技术太阳能电池的第一实施例的横截面侧视图。
图2是现有技术太阳能电池的第二实施例的横截面侧视图。
图3A至图3E显示了制造过程步骤的顺序的一项实施例。
图4A至图4E显示了制造过程步骤的顺序的第二实施例。
图5A至图5B显示了制造过程步骤的顺序的第三实施例。
具体实施方式
太阳能电池的实施例在本文中结合离子植入机进行描述。可使用束线离子植入机、电浆掺杂离子植入机或淹没式离子植入机(flood ion implanter)。另外,可使用其他植入***。例如,也可使用不具备质量分析的离子植入机或通过修改电浆鞘来使离子聚焦的电浆工具。本文中所揭示的实施例也可使用经聚焦以仅植入太阳能电池的特定部分的离子束,或栅网聚焦电浆***。然而,也可使用气相扩散、炉扩散(furnace diffusion)、雷射掺杂、其他电浆处理工具或为所属领域的技术人员所已知的其他方法。另外,虽然描述了植入,但也可执行掺杂层的沉积。同样,虽然列出了特定n型和p型掺杂物,但可使用其他n型或p型掺杂物来代替,且本文中的实施例并不仅限于列出的掺杂物。因此,本发明不限于下文所描述的具体实施例。
如上文所述,多晶硅太阳能电池可提供常规太阳能电池不可能提供的效率优势。然而,这些多晶硅太阳能电池的当前制造过程昂贵且耗时,从而影响多晶硅太阳能电池的采用。与这些多晶硅太阳能电池的制作相关联的一个主要问题是具有n型区和p型区的多晶硅层的形成。
图3A至图3E所示为形成多晶硅太阳能电池300的制造步骤的顺序。图3A所示为基板301。此基板301可以是任何适合的基板,例如,n型硅基板。基板301具有前表面302和背表面303。所述前表面302曝露在阳光下,而电触点将形成于所述背表面303上。
图3B所示为在基板301的背表面303上形成的穿隧氧化层304。所述穿隧氧化层的厚度可在约1nm与4nm之间。在一些实施例中,将热氧化用于生长穿隧氧化层。此过程可在温度高于800℃的炉中执行,从而引起氧(分子氧或水蒸气)与所述基板的背表面反应,从而形成二氧化硅。因此,湿法和干法氧化均可使用。
图3C所示为多晶硅层305,其与穿隧氧化物304相邻。在一项实施例中,所述多晶硅层305在低压下(例如,低于1托)且在575℃至650℃的温度范围内通过使用硅烷(SiH4)进行沉积。此过程也称作低压化学气相沉积(10wpressure chemical vapor deposition,LPCVD)。在其他实施例中,大气压化学气相沉积(atmospheric pressure chemical vapor deposition,APCVD)、电浆增强CVD(plasma enhanced CVD,PECVD)或另一适合的过程可用于生长多晶硅层305。此多晶硅层305可在引入除硅烷之外的含有掺杂物的气体时生长。在一项实施例中,在沉积过程期间引入乙硼烷(B2H6)。此举在多晶硅层生长时将p型掺杂物添加至多晶硅层,从而形成遍布多晶硅层305的p型区。在一项实例中,多晶硅层中的硼的浓度在1e17/cm3与1e20/cm3之间。在另一项实施例中,在沉积过程期间引入磷化氢(PH3)或砷化氢(AsH3),因而产生遍布多晶硅层305的n型区。在一项实例中,多晶硅层中的磷(或砷)的浓度在1e17/cm3与1e20/cm3之间。虽然在一项实施例中此多晶硅层305生长至50nm与500nm之间的厚度,但是可使用其他厚度。
图3D所示为多晶硅太阳能电池300的制造过程中的下一个步骤。在基板301的背表面与离子束330之间引入罩幕(例如,荫罩幕320)。此荫罩幕320用于阻止离子植入多晶硅层305的部分中。离子的种类所具有导电性类型与在沉积过程期间引入的掺杂物的导电性类型相反。换句话说,如果在沉积期间使用硼基气体(boron-based gas),则在此步骤期间将植入n型掺杂物(例如,第五族元素,例如,磷)的离子。同样,如果在沉积期间引入砷化氢或磷化氢,则在此步骤期间将植入p型掺杂物(例如,第三族元素,例如,硼)的离子。
植入的具有相反导电性的掺杂物的量足以对被植入区进行反掺杂(counterdope)。换句话说,如果用p型掺杂物沉积多晶硅层305,则引入某一量的n型掺杂物而将被植入区改变成n型区。此外,具有相反导电性类型的掺杂物的量足以使净自由载流子(net free carrier)的浓度在1e17/cm3与1e20/cm3之间。
植入参数的选择应使得绝大多数(例如,>90%)植入的种类驻留在多晶硅层中,且不穿透到穿隧氧化物或基板中。优选低于10kV的植入能量,且尤其优选<5kV的植入能量。
在一项实施例中,如图3C中所示,假设在沉积期间使用p型掺杂物对多晶硅层进行掺杂。因此,在图3D中,植入n型掺杂物(例如,磷)的离子。这些步骤的结果是,在多晶硅层305的被荫罩幕320覆盖的那些区中形成了p型区335,且在多晶硅层305的在图3D中被植入的那些区中形成了n型区336。
在另一项实施例中,如图3C中所示,假设在沉积期间使用n型掺杂物对多晶硅层进行掺杂。因此,在图3D中,植入p型掺杂物(例如,硼)的离子。这些步骤的结果是,在多晶硅层305的被荫罩幕320覆盖的那些区中形成了n型区335,且在多晶硅层305的在图3D中被植入的那些区中形成了p型区336。
图4A至图4E所示为形成多晶硅太阳能电池400的制造步骤的顺序。图4A所示为基板401。此基板401可以是任何适合的基板,例如,n型硅基板。基板401具有前表面402和背表面403。所述前表面402曝露在阳光下,而电触点将形成于所述背表面303上。
图4B所示为在基板401的背表面403上形成的穿隧氧化层404。所述穿隧氧化层的厚度可在约1nm与4nm之间。在一些实施例中,将热氧化用于生长穿隧氧化层。此过程可在温度高于800℃的炉中执行,从而引起氧(分子氧或水蒸气)与所述基板的背表面反应,从而形成二氧化硅。因此,湿法和干法氧化均可使用。
图4C所示为多晶硅层405,其与穿隧氧化物404相邻。在一项实施例中,所述多晶硅层305在低压下(例如,低于1托)且在575℃至650℃的温度范围内通过使用硅烷(SiH4)进行沉积。此过程也称作低压化学气相沉积(LPCVD)。在其他实施例中,大气压化学气相沉积(APCVD)、电浆增强CVD(PECVD)或另一适合的过程可用于生长多晶硅层405。在沉积期间可在不引入掺杂物气体的情况下生长多晶硅层405,众所周知,这是为了改善沉积的均匀性。
图4D所示为多晶硅太阳能电池400的制造过程中的下一个步骤。将第一掺杂物425的离子植入多晶硅层405中,从而形成具有所述第一掺杂物的导电性的多晶硅层405。例如,如果植入磷或另一第五族元素,则多晶硅层405将变成n型。相反,如果植入硼或另一第三族元素,则多晶硅层405将变成p型。植入的掺杂物的浓度在1e17/cm3与1e20/cm3之间。这是毯覆式(blanket)植入,其中多晶硅层405的整个表面受到植入。
图4E所示为多晶硅太阳能电池400的制造过程中的下一个步骤。在基板401的背表面与离子束430之间引入罩幕(例如,荫罩幕420)。此荫罩幕420用于阻止离子植入多晶硅层405的部分中。离子的种类所具有导电性类型与在图4D的植入过程期间植入的掺杂物的导电性类型相反。换句话说,如果之前植入第三族元素的离子,则在此步骤期间将植入n型掺杂物(例如,第五族元素,例如,磷)的离子。同样,如果之前植入第五族元素的离子,则在此步骤期间将植入p型掺杂物(例如,第三族元素,例如,硼)的离子。
应注意,图4D和图4E中所示的步骤可以相反的次序完成。换句话说,可首先执行图案化植入,随后执行毯覆式植入。
植入的具有相反导电性的掺杂物的量足以对被植入区进行反掺杂。换句话说,如果用p型掺杂物沉积多晶硅层305,则引入某一量的n型掺杂物而将被植入区改变成n型区。
此外,具有相反导电性类型的掺杂物的量足以使净自由载流子的浓度在1e17/cm3与1e20/cm3之间。
植入参数的选择应使得绝大多数(例如,>90%)植入的种类驻留在多晶硅层中,且不穿透到穿隧氧化物或基板中。优选低于10kV的植入能量,且尤其优选<5kV的植入能量。
在植入离子之后,对太阳能电池进行热处理以扩散掺杂物并消除由植入引起的损伤。由于使用多晶硅,因此可在更低温度下、在持续时间更短的热过程中完成扩散。例如,针对几秒钟至几分钟的持续时间,可使用500℃至600℃的热循环。在另一项实施例中,可使用快速热退火(rapid thermal anneal,RTP)。
人们认识到,如图3E中所示,当重掺杂p型和n型区彼此接触时,由于穿隧或其他机制,存在寄生分流(parasitic shunting)的风险。这在具有大量缺陷的多晶硅材料中尤其重要。因此,在一些实施例中,执行物理地分离p型区335与n型区336的处理步骤以避免寄生分流路径。例如,可使用雷射在n型与p型区之间形成沟槽。或者可使用湿法化学蚀刻形成沟槽。
在另一项实施例中,如图4A至图4C中所示制备基板。在这些步骤之后,随后用第一种类的离子510植入基板(使用如图5A中所示的图案化植入)。此图案化植入使用第一罩幕515来植入具有第一导电性类型的种类。在一项实施例中,第一种类是磷或另一第五族元素。在另一项实施例中,第一种类是硼或另一第三族元素。此植入形成被植入区520。
如步骤5B中所示,随后执行使用第二罩幕530(其对准于所述第一罩幕515)的第二图案化植入。使用第二种类的离子540的植入形成被植入区550。在所述第一种类是第五族元素的情况下,所述第二种类可以是硼或另一第三族元素。同样,在第一种类是第三族元素的情况下,第二种类可以是磷或另一第五族元素。
这两种罩幕设计成不重叠且保证了邻近的被植入区520、550之间的间隙560。如上文所述,n型区与p型区之间的间隙的存在减少因穿隧引起的寄生分流。
本发明的范围不应受本文所描述的具体实施例限制。实际上,所属领域的一般技术人员根据以上描述和附图将了解(除本文所描述的那些实施例和修改外)本发明的其他各种实施例和对本发明的修改。因此,此类其他实施例和修改既定属于本发明的范围内。此外,尽管本文已出于特定目的而在特定实施方案情况下以特定环境描述了本发明,但所属领域一般技术人员将认识到,本发明的效用不限于此,并且本发明可有利地在许多环境中实施用于许多目的。因此,应鉴于如本文所描述的本发明的整个广度和精神来解释随附的申请专利范围。

Claims (9)

1.一种生产太阳能电池的方法,使用具有第一表面和第二表面的基板,所述生产太阳能电池的方法包含:
在所述基板的所述第二表面上形成穿隧氧化层;
在所述穿隧氧化层上形成内部含有第一掺杂物的多晶硅层,所述多晶硅层具有第一导电性类型;
在所述多晶硅层与离子束之间引入罩幕,从而为所述多晶硅层的区域阻挡所述离子束;
将第二掺杂物的离子植入所述多晶硅层的所述区域中,所述第二掺杂物具有与所述第一导电性相反的第二导电性,所述第二掺杂物的离子的量足以使被植入的所述区域的导电性改变成所述第二导电性,从而形成具有所述第一导电性的第一被植入区以及具有与所述第一被植入区的导电性相反的导电性的第二被植入区。
2.根据权利要求1所述的生产太阳能电池的方法,其中通过包含硅烷的气体和掺杂物气体的沉积来形成所述多晶硅层,所述掺杂物气体选自由乙硼烷、磷化氢和砷化氢组成的群组。
3.根据权利要求2所述的生产太阳能电池的方法,其中所述掺杂物气体包含乙硼烷,且所述第二掺杂物包含第五族元素。
4.根据权利要求2所述的生产太阳能电池的方法,其中所述掺杂物气体包含磷化氢或砷化氢,且所述第二掺杂物包含第三族元素。
5.根据权利要求1所述的生产太阳能电池的方法,进一步包含在植入之后对所述基板进行热处理,其中所述热处理是在500℃与600℃之间的温度下执行。
6.根据权利要求1所述的生产太阳能电池的方法,进一步包含在所述第一被植入区与所述第二被植入区之间形成沟槽,从而阻止所述第一被植入区和所述第二被植入区中的每一个发生接触。
7.一种生产太阳能电池的方法,使用具有第一表面和第二表面的基板,所述生产太阳能电池的方法包含:
在所述基板的所述第二表面上形成穿隧氧化层;
在所述穿隧氧化层上形成多晶硅层;
将具有第一导电性的第一掺杂物的离子植入所述多晶硅层中;
在所述多晶硅层与离子束之间引入罩幕,从而为所述多晶硅层的区域阻挡所述离子束;
将第二掺杂物的离子植入所述多晶硅层的所述区域中,所述第二掺杂物具有与所述第一导电性相反的第二导电性,所述第二掺杂物的离子的量足以使所述被植入的所述区域的导电性改变成所述第二导电性,从而形成具有所述第一导电性的第一被植入区以及具有与所述第一被植入区的导电性相反的导电性的第二被植入区。
8.根据权利要求7所述的生产太阳能电池的方法,其中进一步包含在所述第一被植入区与所述第二被植入区之间形成沟槽,从而阻止所述第一被植入区和所述第二被植入区中的每一个发生接触。
9.一种生产太阳能电池的方法,使用具有第一表面和第二表面的基板,所述生产太阳能电池的方法包含:
在所述基板的所述第二表面上形成穿隧氧化层;
在所述穿隧氧化层上形成多晶硅层;
在所述多晶硅层与离子束之间引入第一罩幕,从而为所述多晶硅层的区域阻挡所述离子束;
将具有第一导电性的第一掺杂物的离子植入所述多晶硅层中,从而形成第一被植入区;
在所述多晶硅层与所述离子束之间引入第二罩幕,从而为所述多晶硅层的区域阻挡所述离子束;
植入第二掺杂物的离子,所述第二掺杂物具有与所述第一导电性相反的第二导电性,从而形成具有与所述第一被植入区的导电性相反的导电性的第二被植入区,其中所述第二罩幕对准于所述第一罩幕,以使所述第一被植入区与所述第二被植入区不发生接触。
CN201280028995.1A 2011-06-15 2012-06-15 多晶硅射极太阳电池用的图案化掺杂 Pending CN103608930A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/160,721 2011-06-15
US13/160,721 US8658458B2 (en) 2011-06-15 2011-06-15 Patterned doping for polysilicon emitter solar cells
PCT/US2012/042736 WO2012174421A2 (en) 2011-06-15 2012-06-15 Patterned doping for polysilicon emitter solar cells

Publications (1)

Publication Number Publication Date
CN103608930A true CN103608930A (zh) 2014-02-26

Family

ID=46395733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280028995.1A Pending CN103608930A (zh) 2011-06-15 2012-06-15 多晶硅射极太阳电池用的图案化掺杂

Country Status (6)

Country Link
US (1) US8658458B2 (zh)
JP (2) JP2014519723A (zh)
KR (2) KR20150023071A (zh)
CN (1) CN103608930A (zh)
TW (1) TWI474494B (zh)
WO (1) WO2012174421A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981182A (zh) * 2014-03-27 2016-09-28 太阳能公司 具有无沟道发射极区域的太阳能电池
CN106463550A (zh) * 2014-05-30 2017-02-22 太阳能公司 太阳能电池中的相对掺杂物浓度水平
CN107002277A (zh) * 2014-09-24 2017-08-01 太阳能公司 采用简化沉积工艺制造的太阳能电池
CN109935658A (zh) * 2017-12-18 2019-06-25 株式会社爱发科 太阳能电池的制造方法
CN111052408A (zh) * 2017-09-15 2020-04-21 原子能和替代能源委员会 用于制造同质结光伏电池的方法
CN114709294A (zh) * 2022-05-31 2022-07-05 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110027463A1 (en) * 2009-06-16 2011-02-03 Varian Semiconductor Equipment Associates, Inc. Workpiece handling system
US9640676B2 (en) * 2012-06-29 2017-05-02 Sunpower Corporation Methods and structures for improving the structural integrity of solar cells
US9530923B2 (en) * 2012-12-21 2016-12-27 Sunpower Corporation Ion implantation of dopants for forming spatially located diffusion regions of solar cells
CN105190903B (zh) * 2013-03-15 2017-07-14 太阳能公司 太阳能电池降低的接触电阻及延长的寿命
KR101613843B1 (ko) * 2013-04-23 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR102045001B1 (ko) * 2013-06-05 2019-12-02 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101622089B1 (ko) * 2013-07-05 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR102082880B1 (ko) * 2013-07-22 2020-02-28 엘지전자 주식회사 태양 전지의 제조 방법
DE102013219565A1 (de) * 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaische Solarzelle und Verfahren zum Herstellen einer photovoltaischen Solarzelle
US9577134B2 (en) * 2013-12-09 2017-02-21 Sunpower Corporation Solar cell emitter region fabrication using self-aligned implant and cap
US9401450B2 (en) * 2013-12-09 2016-07-26 Sunpower Corporation Solar cell emitter region fabrication using ion implantation
KR101614190B1 (ko) * 2013-12-24 2016-04-20 엘지전자 주식회사 태양전지 및 이의 제조 방법
KR102140068B1 (ko) * 2014-01-13 2020-07-31 엘지전자 주식회사 태양 전지의 제조 방법
KR101620431B1 (ko) * 2014-01-29 2016-05-12 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US9337369B2 (en) 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
US11811360B2 (en) 2014-03-28 2023-11-07 Maxeon Solar Pte. Ltd. High voltage solar modules
KR101613846B1 (ko) 2014-06-10 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US20150380581A1 (en) * 2014-06-27 2015-12-31 Michael C. Johnson Passivation of light-receiving surfaces of solar cells with crystalline silicon
US9263625B2 (en) * 2014-06-30 2016-02-16 Sunpower Corporation Solar cell emitter region fabrication using ion implantation
KR101661807B1 (ko) * 2014-07-28 2016-09-30 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101622091B1 (ko) * 2014-08-20 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
DE102014218948A1 (de) 2014-09-19 2016-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle mit einer amorphen Siliziumschicht und Verfahren zum Herstellen solch einer photovoltaischen Solarzelle
KR102286289B1 (ko) * 2014-11-26 2021-08-04 엘지전자 주식회사 태양 전지
KR102298671B1 (ko) * 2014-11-26 2021-09-03 엘지전자 주식회사 태양 전지 및 이의 제조 방법
DE102015107842B3 (de) 2015-05-19 2016-10-27 Institut Für Solarenergieforschung Gmbh Verfahren zum Herstellen einer Solarzelle mit oxidierten Zwischenbereichen zwischen Poly-Silizium-Kontakten
KR102373649B1 (ko) * 2015-05-28 2022-03-11 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101751727B1 (ko) * 2015-06-10 2017-07-11 엘지전자 주식회사 태양 전지의 제조 방법
CN106252458B (zh) * 2015-06-10 2017-12-12 Lg电子株式会社 制造太阳能电池的方法
US10367115B2 (en) 2016-01-29 2019-07-30 Lg Electronics Inc. Method of manufacturing solar cell
CN107026218B (zh) * 2016-01-29 2019-05-10 Lg电子株式会社 制造太阳能电池的方法
NL2016382B1 (en) * 2016-03-07 2017-09-19 Stichting Energieonderzoek Centrum Nederland Method for manufacturing a solar cell with doped polysilicon surface areas
JP2018046177A (ja) * 2016-09-15 2018-03-22 株式会社アルバック 太陽電池の製造方法
KR102660829B1 (ko) 2016-10-20 2024-04-25 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
US20190348548A1 (en) 2018-05-09 2019-11-14 International Business Machines Corporation Solar cell with reduced surface recombination
CN113140656B (zh) * 2021-04-26 2023-04-04 晶澳(扬州)太阳能科技有限公司 一种太阳能电池和硅薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121279A1 (en) * 2006-11-27 2008-05-29 Sunpower Corporation Solar cell having silicon nano-particle emitter
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
WO2009126803A2 (en) * 2008-04-09 2009-10-15 Applied Materials, Inc. Simplified back contact for polysilicon emitter solar cells
CN102007601A (zh) * 2008-03-05 2011-04-06 瓦里安半导体设备公司 太阳能电池用的逆掺杂
CN102047390A (zh) * 2008-03-05 2011-05-04 瓦里安半导体设备公司 太阳能电池中合并植入的使用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290274A (ja) * 1991-03-19 1992-10-14 Sharp Corp 光電変換装置
JP2001189483A (ja) 1999-10-18 2001-07-10 Sharp Corp バイパス機能付太陽電池セルおよびバイパス機能付き多接合積層型太陽電池セルおよびそれらの製造方法
US7851698B2 (en) 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
CN102396068A (zh) * 2009-03-20 2012-03-28 因特瓦克公司 高级高效晶体太阳能电池制备方法
US20110027463A1 (en) * 2009-06-16 2011-02-03 Varian Semiconductor Equipment Associates, Inc. Workpiece handling system
US8173527B2 (en) * 2009-10-19 2012-05-08 Varian Semiconductor Equipment Associates, Inc. Stepped masking for patterned implantation
US8324015B2 (en) * 2009-12-01 2012-12-04 Sunpower Corporation Solar cell contact formation using laser ablation
JP2011086961A (ja) * 2011-01-26 2011-04-28 Sharp Corp 光電変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
US20080121279A1 (en) * 2006-11-27 2008-05-29 Sunpower Corporation Solar cell having silicon nano-particle emitter
CN102007601A (zh) * 2008-03-05 2011-04-06 瓦里安半导体设备公司 太阳能电池用的逆掺杂
CN102047390A (zh) * 2008-03-05 2011-05-04 瓦里安半导体设备公司 太阳能电池中合并植入的使用
WO2009126803A2 (en) * 2008-04-09 2009-10-15 Applied Materials, Inc. Simplified back contact for polysilicon emitter solar cells

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981182B (zh) * 2014-03-27 2019-04-19 太阳能公司 具有无沟道发射极区域的太阳能电池
CN105981182A (zh) * 2014-03-27 2016-09-28 太阳能公司 具有无沟道发射极区域的太阳能电池
CN110246910A (zh) * 2014-03-27 2019-09-17 太阳能公司 具有无沟道发射极区域的太阳能电池
CN108987499B (zh) * 2014-05-30 2022-04-08 太阳能公司 太阳能电池中的相对掺杂物浓度水平
CN108987499A (zh) * 2014-05-30 2018-12-11 太阳能公司 太阳能电池中的相对掺杂物浓度水平
CN106463550B (zh) * 2014-05-30 2018-10-19 太阳能公司 太阳能电池中的相对掺杂物浓度水平
CN106463550A (zh) * 2014-05-30 2017-02-22 太阳能公司 太阳能电池中的相对掺杂物浓度水平
CN107002277A (zh) * 2014-09-24 2017-08-01 太阳能公司 采用简化沉积工艺制造的太阳能电池
CN111052408A (zh) * 2017-09-15 2020-04-21 原子能和替代能源委员会 用于制造同质结光伏电池的方法
CN111052408B (zh) * 2017-09-15 2023-07-18 原子能和替代能源委员会 用于制造同质结光伏电池的方法
CN109935658A (zh) * 2017-12-18 2019-06-25 株式会社爱发科 太阳能电池的制造方法
CN114709294A (zh) * 2022-05-31 2022-07-05 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件
CN114709294B (zh) * 2022-05-31 2022-11-29 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Also Published As

Publication number Publication date
TWI474494B (zh) 2015-02-21
TW201251083A (en) 2012-12-16
KR20150023071A (ko) 2015-03-04
US20120322199A1 (en) 2012-12-20
KR20140040216A (ko) 2014-04-02
JP2015111716A (ja) 2015-06-18
WO2012174421A2 (en) 2012-12-20
WO2012174421A3 (en) 2013-02-07
US8658458B2 (en) 2014-02-25
JP2014519723A (ja) 2014-08-14

Similar Documents

Publication Publication Date Title
CN103608930A (zh) 多晶硅射极太阳电池用的图案化掺杂
US20140329352A1 (en) Photovoltaic Cell and Fabrication Method Thereof
JP2009164544A (ja) 太陽電池のパッシベーション層構造およびその製造方法
CN102959738A (zh) 制造太阳能电池的发射极区域的方法
JP2013513966A (ja) 裏面電界型のヘテロ接合太陽電池及びその製造方法
US20200098945A1 (en) Process for producing a photovoltaic solar cell having a heterojunction and a diffused-in emitter region
KR102148427B1 (ko) 광전소자 및 그 제조방법
US20120015474A1 (en) Method for fabricating silicon heterojunction solar cells
KR102547804B1 (ko) 양면 수광형 실리콘 태양전지 및 그 제조 방법
KR20110069493A (ko) 태양전지의 선택적 에미터 형성방법
KR101543767B1 (ko) 태양전지의 선택적 에미터 형성방법, 및 태양전지와 그 제조방법
JP2014220351A (ja) 多接合太陽電池
KR101238988B1 (ko) 후면전극형 태양전지 및 그 제조방법
WO2015130672A1 (en) Silicon solar cells with epitaxial emitters
CN114695583B (zh) 太阳电池及生产方法、光伏组件
CN110491541B (zh) 一种h-3碳化硅同位素电池及其制造方法
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
WO2012067509A1 (en) Method for producing a semiconductor device and a semiconductor device
KR101162879B1 (ko) 상대적으로 낮은 표면 농도를 갖는 에미터 태양전지
KR20190125101A (ko) 태양전지 셀 및 태양전지 셀의 제조방법
KR101101438B1 (ko) 전후면전계 태양전지 및 그 제조방법
JP4185246B2 (ja) 積層型太陽電池及びその製造方法
KR101129422B1 (ko) 태양전지 제조방법 및 그로 인해 제조된 태양전지
KR101391073B1 (ko) 양면수광형 태양전지 및 그 제조방법
CN110556193B (zh) 一种Pm-147碳化硅缓变N区同位素电池及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140226