CN103579351A - 一种具有超结埋层的横向扩散金属氧化物半导体器件 - Google Patents

一种具有超结埋层的横向扩散金属氧化物半导体器件 Download PDF

Info

Publication number
CN103579351A
CN103579351A CN201310598158.9A CN201310598158A CN103579351A CN 103579351 A CN103579351 A CN 103579351A CN 201310598158 A CN201310598158 A CN 201310598158A CN 103579351 A CN103579351 A CN 103579351A
Authority
CN
China
Prior art keywords
super
ldmos
drift region
metal oxide
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310598158.9A
Other languages
English (en)
Inventor
张波
伍伟
罗小蓉
李肇基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Institute of Electronic and Information Engineering of Dongguan UESTC
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310598158.9A priority Critical patent/CN103579351A/zh
Publication of CN103579351A publication Critical patent/CN103579351A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及半导体器件技术,具体的说是涉及一种具有超结埋层的横向扩散金属氧化物半导体器件。本发明的一种具有超结埋层的横向扩散金属氧化物半导体器件,其特征在于,在漂移区2中设有超结层,所述超结层由交替分布的N型高掺杂区13和P型高掺杂区12组成。本发明的有益效果为,降低了器件的导通电阻,抑制了衬底辅助耗尽效应,提高了器件的耐压,同时,还能兼容现有的CMOS工艺,易于与智能功率电路集成,降低了器件的制作难度和成本。本发明尤其适用于横向扩散金属氧化物半导体器件。

Description

一种具有超结埋层的横向扩散金属氧化物半导体器件
技术领域
本发明涉及半导体器件技术,具体的说是涉及一种具有超结埋层的横向扩散金属氧化物半导体(LDMOS)器件。
背景技术
功率半导体器件,又称电子电力器件,是电能功率变化过程中的核心器件,几乎用于所有的电子制造业,在民用和军用领域中具有不可替代的关键作用。同时,功率半导体器件的相关技术也是国家提出的节能减排的关键技术。因此,半导体功率器件有广泛的市场前景,其研发对节能降耗有十分重要的意义。
在半导体功率器件中,横向扩散金属氧化物半导体器件(LDMOS)具有开关速度快、易于驱动、驱动功率和开关功耗低的优点,成为了智能功率集成电路应用中的一类非常重要的半导体功率器件。LDMOS器件的主要结构特征是在沟道区与漏区之间存在掺杂类型与漏区一致的轻掺杂长漂移区,在器件耐压时,此漂移区承受反向电压。
随着LDMOS器件耐压的提高,漂移区长度不断增加。LDMOS器件的单位面积导通电阻随着器件的耐压以2.5次方的关系增大(见参考文献:陈星弼,“功率MOSFET与高压集成电路”,东南大学出版社,1989),即器件的耐压提高1倍,器件的单位面积导通电阻增大4.7倍。这种器件耐压和单位面积导通电阻的关系被称为“硅极限”。因此,LDMOS器件在高压应用时,导通电阻变得很大,这在很大程度上阻碍了LDMOS器件的发展。
超结的提出打破了MOS器件的“硅极限”,在一定的器件耐压下,极大地降低了MOS器件的导通电阻(见参考文献:X.B.Chen,P.A.Mawby,K.Board,and C.A.T.Salama,“Theory of a novel voltage sustaining layer for power devices,”Microelectron.J.,vol.29,pp.1005–1011,1998.)。超结结构由交替分布的N型掺杂区和P型掺杂区构成。超结技术应用于LDMOS器件,缓解了器件耐压与导通电阻之间的矛盾,有效地降低了LDMOS器件在高压应用时的导通电阻。但是,常规超结LDMOS器件的超结漂移区直接做在衬底上,受到纵向电场的影响,打破了超结器件的电荷平衡,器件的耐压急剧降低,这被称为“衬底辅助耗尽效应”(见参考文献:I.Y.Park and C.A.T.Salama,“Super Junction LDMOStransistors-implementing super junction LDMOS transistors to overcome substratedepletion effects”,IEEE Circuits and Devices Magazine,pp.10-15,Nov.-Dec.2006)。同时,常规超结LDMOS器件为了提高纵向耐压,超结漂移区较厚。这在制作工艺上需要多次外延多次注入,提高了器件的制作难度和成本。
本发明基于超结技术提出了一种具有超结埋层的LDMOS器件,不仅降低了器件的导通电阻,而且抑制了衬底辅助耗尽效应,提高了器件的耐压。同时,这种具有超结埋层的LDMOS器件还兼容现有的CMOS工艺,易于与智能功率电路集成,降低了器件的制作难度和成本。
发明内容
本发明所要解决的,就是针对上述LDMOS器件在高压应用时的导通电阻的问题,提出一种具有超结埋层的横向扩散金属氧化物半导体器件。
本发明解决上述技术问题所采用的技术方案是:一种具有超结埋层的横向扩散金属氧化物半导体器件,其元胞结构包括衬底1,位于衬底1上端面的漂移区2,所述漂移区2中设有体区3和漏区10,所述体区3中设有源区4和体区接触区5,所述体区3上端面设有栅氧化层7,所述源区4和体区接触区5上端面设有源电极6,所述栅氧化层7上端面设有多晶硅栅8;其特征在于,所述漂移区2中设有超结层,所述超结层由交替分布的N型高掺杂区13和P型高掺杂区12组成。
本发明总的技术方案,通过在LDMOS器件的漂移区中埋入超结层,从而在漂移区中形成电流的低阻通道,降低了LDMOS器件的导通电阻。
具体的,所述超结层的厚度为1~1.5μm。
本方案的优点在于,相对于常规超结LDMOS器件的厚超结漂移区,本方案的1~1.5μm的厚度很薄,从而在制作工艺上只需单次注入,不需要外延工艺,还可以兼容现有的CMOS工艺,降低了器件的制作难度和成本。
具体的,所述超结层为单层,设置在漂移区2的内部或上表面。
具体的,所述超结层为多层且沿垂直方向分布在漂移区2中。
本发明的有益效果为,降低了器件的导通电阻,抑制了衬底辅助耗尽效应,提高了器件的耐压,同时,还能兼容现有的CMOS工艺,易于与智能功率电路集成,降低了器件的制作难度和成本。
附图说明
图1是本发明的LDMOS器件的三维结构示意图;
图2是常规的LDMOS器件的三维结构示意图;
图3是常规的超结LDMOS器件的三维结构示意图;
图4是实施例1的SOI LDMOS器件的三维结构示意图;
图5是实施例2的LDMOS器件的三维结构示意图;
图6是实施例3的LDMOS器件的三维结构示意图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
如图1所示,本发明的一种具有超结埋层的横向扩散金属氧化物半导体器件,其元胞结构包括衬底1,位于衬底1上端面的漂移区2,所述漂移区2中设有体区3和漏区10,所述体区3中设有源区4和体区接触区5,所述体区3上端面设有栅氧化层7,所述源区4和体区接触区5上端面设有源电极6,所述栅氧化层7上端面设有多晶硅栅8;在所述漂移区2中设有超结层,所述超结层由纵向交替分布的N型高掺杂区13和P型高掺杂区12组成。
本发明的方案,漂移区2不仅与衬底1相互耗尽,还与超结层中相反掺杂类型的高掺杂区相互耗尽,从而漂移区的掺杂浓度极大提高,进一步降低了LDMOS器件的导通电阻。
如图2所示,常规的具有漂移区2的LDMOS器件不具备超结层;如图3所示,常规的超结LDMOS器件的超结方式为直接在衬底1上通过纵向交替分布的N型高掺杂区13和P型高掺杂区12组成超结层,不具备漂移区2,本发明相对于常规技术,将超结层设置在漂移区2中,超结层与衬底之间漂移区的存在屏蔽了衬底辅助耗尽效应,改善了器件的电荷平衡,提高了器件的耐压。
实施例:
本例中组成超结层的N型高掺杂区13和P型高掺杂区12的宽度相等,并且超结层中掺杂类型与漂移区相反的掺杂区的浓度高于另一掺杂区的浓度,可根据实际需要进行设定,本例采用的衬底为SOI衬底。
如图4所示,本例中在漂移区2中设置了一层超结层,其制备方法包括:
第一种方法:取衬底材料,通过离子注入、退火形成漂移区2超结层之下的部分,通过离子注入形成P型高掺杂区12,通过离子注入形成N型高掺杂区13,通过外延生长、离子注入和退火形成体区3和漂移区2超结层之上的部分,然后进行场氧生长,栅氧化层7生长,淀积多晶硅形成多晶硅栅8,通过氧化层刻蚀和离子注入形成源区4、体区接触区5和漏区10,淀积金属、刻蚀金属形成源电极、漏电极和栅电极,最后进行钝化处理、压焊点。
第二种方法:取衬底材料,通过离子注入、退火形成体区3和漂移区2,接着进行场氧生长,栅氧化层7生长,通过高能离子注入形成P型高掺杂区12,通过高能离子注入形成N型高掺杂区13,然后淀积多晶硅形成多晶硅栅8,通过氧化层刻蚀和离子注入形成源区4,体区接触区5和漏区10,淀积金属、刻蚀金属形成源电极、漏电极和栅电极,最后进行钝化处理、压焊点。
实施例2:
如图5所示,本例与实施例1不同之处在于超结层设置在漂移区2的上表面,本例的工作原理、物理电学性能和功能效果与实施例1是相同的,在此不再赘述。
实施例3:
如图6所示,本例与实施例1不同之处在于超结层为多层,且沿垂直方向平行分布在漂移区2中,本例的工作原理、物理电学性能和功能效果与实施例1是相同的,在此不再赘述。

Claims (4)

1.一种具有超结埋层的横向扩散金属氧化物半导体器件,其元胞结构包括衬底(1),位于衬底(1)上端面的漂移区(2),所述漂移区(2)中设有体区(3)和漏区(10),所述体区(3)中设有源区(4)和体区接触区(5),所述体区(3)上端面设有栅氧化层(7),所述源区(4)和体区接触区(5)上端面设有源电极(6),所述栅氧化层(7)上端面设有多晶硅栅(8);其特征在于,所述漂移区(2)中设有超结层,所述超结层由交替分布的N型高掺杂区(13)和P型高掺杂区(12)组成。
2.根据权利要求1所述的一种具有超结埋层的横向扩散金属氧化物半导体器件,其特征在于,所述超结层的厚度为1~1.5μm。
3.根据权利要求2所述的一种具有超结埋层的横向扩散金属氧化物半导体器件,其特征在于,所述超结层为单层,设置在漂移区(2)的内部或上表面。
4.根据权利要求2所述的一种具有超结埋层的横向扩散金属氧化物半导体器件,其特征在于,所述超结层为多层且沿垂直方向平行分布在漂移区(2)中。
CN201310598158.9A 2013-11-22 2013-11-22 一种具有超结埋层的横向扩散金属氧化物半导体器件 Pending CN103579351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310598158.9A CN103579351A (zh) 2013-11-22 2013-11-22 一种具有超结埋层的横向扩散金属氧化物半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310598158.9A CN103579351A (zh) 2013-11-22 2013-11-22 一种具有超结埋层的横向扩散金属氧化物半导体器件

Publications (1)

Publication Number Publication Date
CN103579351A true CN103579351A (zh) 2014-02-12

Family

ID=50050716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310598158.9A Pending CN103579351A (zh) 2013-11-22 2013-11-22 一种具有超结埋层的横向扩散金属氧化物半导体器件

Country Status (1)

Country Link
CN (1) CN103579351A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701381A (zh) * 2015-03-03 2015-06-10 南京邮电大学 一种p柱区阶梯掺杂的二维类sj/resurf ldmos器件及其制造方法
CN104916696A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体器件
US20170054018A1 (en) * 2014-05-04 2017-02-23 Csmc Technologies Fab1 Co., Ltd. Laterally diffused metal oxide semiconductor device and manufacturing method therefor
CN107359195A (zh) * 2017-07-31 2017-11-17 电子科技大学 一种高耐压横向超结器件
CN108063158A (zh) * 2017-12-06 2018-05-22 重庆邮电大学 一种具有槽型氧化层和横向超结的ldmos器件
CN108231902A (zh) * 2018-01-05 2018-06-29 桂林电子科技大学 具有串联槽栅结构的多叠层功率器件
CN108807525A (zh) * 2017-10-23 2018-11-13 苏州捷芯威半导体有限公司 半导体器件及其制作方法
CN111244157A (zh) * 2020-01-20 2020-06-05 电子科技大学 一种横向半导体器件及其制造方法
CN111969038A (zh) * 2020-08-06 2020-11-20 互升科技(深圳)有限公司 一种场效应管制备方法及场效应管
CN112133740A (zh) * 2020-08-06 2020-12-25 互升科技(深圳)有限公司 一种多层外延mos管器件及其制备方法
CN112530805A (zh) * 2019-09-19 2021-03-19 无锡华润上华科技有限公司 横向双扩散金属氧化物半导体器件及制作方法、电子装置
CN113270500A (zh) * 2021-05-17 2021-08-17 电子科技大学 一种功率半导体器件
WO2022142229A1 (zh) * 2020-12-30 2022-07-07 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114602A1 (en) * 2005-11-24 2007-05-24 Kabushiki Kaisha Toshiba Semiconductor device
CN102593007A (zh) * 2012-03-21 2012-07-18 中国科学院上海微***与信息技术研究所 一种内嵌多p岛n沟道超结器件及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114602A1 (en) * 2005-11-24 2007-05-24 Kabushiki Kaisha Toshiba Semiconductor device
CN102593007A (zh) * 2012-03-21 2012-07-18 中国科学院上海微***与信息技术研究所 一种内嵌多p岛n沟道超结器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王文廉: ""横向超结功率器件的REBULF理论与新技术"", 《万方学位论文数据库》 *
王文廉: ""横向超结功率器件的REBULF理论与新技术"", 《万方学位论文数据库》, 3 August 2011 (2011-08-03) *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916696A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体器件
KR101929639B1 (ko) * 2014-05-04 2018-12-14 씨에스엠씨 테크놀로지스 에프에이비1 코., 엘티디. 측면 확산된 금속 산화 반도체 디바이스 및 그 제조 방법
US9837532B2 (en) * 2014-05-04 2017-12-05 Csmc Technologies Fab1 Co., Ltd. Laterally diffused metal oxide semiconductor device and manufacturing method therefor
US20170054018A1 (en) * 2014-05-04 2017-02-23 Csmc Technologies Fab1 Co., Ltd. Laterally diffused metal oxide semiconductor device and manufacturing method therefor
CN104701381A (zh) * 2015-03-03 2015-06-10 南京邮电大学 一种p柱区阶梯掺杂的二维类sj/resurf ldmos器件及其制造方法
CN107359195A (zh) * 2017-07-31 2017-11-17 电子科技大学 一种高耐压横向超结器件
CN107359195B (zh) * 2017-07-31 2020-12-29 电子科技大学 一种高耐压横向超结器件
CN108807525A (zh) * 2017-10-23 2018-11-13 苏州捷芯威半导体有限公司 半导体器件及其制作方法
CN108063158A (zh) * 2017-12-06 2018-05-22 重庆邮电大学 一种具有槽型氧化层和横向超结的ldmos器件
CN108231902A (zh) * 2018-01-05 2018-06-29 桂林电子科技大学 具有串联槽栅结构的多叠层功率器件
CN112530805A (zh) * 2019-09-19 2021-03-19 无锡华润上华科技有限公司 横向双扩散金属氧化物半导体器件及制作方法、电子装置
CN112530805B (zh) * 2019-09-19 2022-04-05 无锡华润上华科技有限公司 横向双扩散金属氧化物半导体器件及制作方法、电子装置
CN111244157B (zh) * 2020-01-20 2021-12-03 电子科技大学 一种横向半导体器件及其制造方法
CN111244157A (zh) * 2020-01-20 2020-06-05 电子科技大学 一种横向半导体器件及其制造方法
CN112133740B (zh) * 2020-08-06 2024-05-24 互升科技(深圳)有限公司 一种多层外延mos管器件及其制备方法
CN112133740A (zh) * 2020-08-06 2020-12-25 互升科技(深圳)有限公司 一种多层外延mos管器件及其制备方法
CN111969038A (zh) * 2020-08-06 2020-11-20 互升科技(深圳)有限公司 一种场效应管制备方法及场效应管
WO2022142229A1 (zh) * 2020-12-30 2022-07-07 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN113270500A (zh) * 2021-05-17 2021-08-17 电子科技大学 一种功率半导体器件

Similar Documents

Publication Publication Date Title
CN103579351A (zh) 一种具有超结埋层的横向扩散金属氧化物半导体器件
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
CN104201206A (zh) 一种横向soi功率ldmos器件
CN103178093B (zh) 高压结型场效应晶体管的结构及制备方法
CN101950759A (zh) 一种Super Junction VDMOS器件
CN102201445B (zh) 一种psoi横向超结功率半导体器件
CN102723363B (zh) 一种vdmos器件及其制作方法
CN103579353A (zh) 一种具有p型辅助埋层的半超结vdmos
CN109119463A (zh) 一种横向沟槽型mosfet器件及其制备方法
CN102097479A (zh) 一种低压埋沟vdmos器件
CN103515443B (zh) 一种超结功率器件及其制造方法
CN103035525B (zh) 高压隔离n型ldmos器件的制造方法
CN106783620A (zh) 抗emi的超结vdmos器件结构及其制备方法
CN103745996A (zh) 带有部分绝缘埋层的横向功率器件及制作方法
CN101834202B (zh) 降低热载流子效应的n型横向绝缘栅双极型器件
CN102637744B (zh) Soi横向超结功率mosfet器件
CN110504313B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN101819993B (zh) 降低热载流子效应的p型横向绝缘栅双极型器件
CN102522338B (zh) 高压超结mosfet结构及p型漂移区形成方法
CN205752182U (zh) 一种半导体功率器件结构
CN114464533A (zh) 一种改善emi的超结结构及制造方法
CN103762237A (zh) 具有场板结构的横向功率器件
CN103531621A (zh) 一种带有侧边多晶硅电极沟槽非穿通型绝缘栅双极晶体管
CN102176469A (zh) 一种具有p埋层的SOI nLDMOS器件单元
CN202736927U (zh) 耗尽型功率半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: INSTITUTE OF ELECTRONIC AND INFORMATION ENGINEERIN

Effective date: 20140730

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140730

Address after: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Applicant after: University of Electronic Science and Technology of China

Applicant after: Institute of Electronic and Information Engineering In Dongguan, UESTC

Address before: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Applicant before: University of Electronic Science and Technology of China

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140212