CN103533896B - 具有被动热耗散的矩阵超声波探针 - Google Patents

具有被动热耗散的矩阵超声波探针 Download PDF

Info

Publication number
CN103533896B
CN103533896B CN201280023686.5A CN201280023686A CN103533896B CN 103533896 B CN103533896 B CN 103533896B CN 201280023686 A CN201280023686 A CN 201280023686A CN 103533896 B CN103533896 B CN 103533896B
Authority
CN
China
Prior art keywords
heat
ultrasound transducer
radiator
transducer array
framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280023686.5A
Other languages
English (en)
Other versions
CN103533896A (zh
Inventor
R·E·戴维森
S·R·弗里曼
B·J·萨沃德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN103533896A publication Critical patent/CN103533896A/zh
Application granted granted Critical
Publication of CN103533896B publication Critical patent/CN103533896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/5208Constructional features with integration of processing functions inside probe or scanhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52096Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging related to power management, e.g. saving power or prolonging life of electronic components

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种矩阵阵列超声波探针远离所述探针的远端地被动地耗散由矩阵阵列换能器及波束成形器ASIC所形成的热。所述换能器堆中形成的热联接到探针手柄内部的金属框架。金属散热器热联接到所述探针框架以远离所述框架地传送热。所述散热器围绕所述探针手柄的所述内部且具有热联接到所述探针壳体的内表面的外表面。热由此自所述散热器均匀地联接到所述壳体中而不在所述壳体中形成热点,所述热点可使超声波检验师的手不舒服。

Description

具有被动热耗散的矩阵超声波探针
发明领域
本发明涉及医疗诊断***,且尤其涉及具有被动热耗散的矩阵阵列换能器探针。
背景技术
用于二维(2D)成像的常规一维(1D)阵列换能器探针由位于***主框架中的传输驱动电路致动。探针电缆***到***主框架中,且探针表面处的阵列的换能器元件被主框架***中的驱动电路驱动以进行传输。虽然由换能器元件的压电致动产生的热必须通过探针耗散,但由***主框架中的高压驱动电路产生的热可由该***相对容易地耗散。然而,固态3D成像探针具有数以千计的换能器元件的二维矩阵,且具有数千同轴驱动信号导体的电缆是不切实际的。因此,波束成形器ASIC(微波束成形器)被用于具有用于探针自身中的换能器元件的集成驱动电路及接收电路的探针中。波束成形器ASIC控制并执行传输和接收波束成形的至少一部分以便电缆中仅需要相对少的信号路径导体,从而使得能够将实际细的电缆用于3D成像探针。
在探针中具有传输波束成形ASIC和驱动电路的情形下,由此电路产生的热现在必须自探针而非***主框架耗散。由于波束成形ASIC直接附接于换能器阵列后面,因此,换能器堆和ASIC的热现在处于探针之前部处,恰好在接触患者的透镜的后面。在过去,已采取各种方法自超声波探针的前部耗散热。美国专利5,213,103(Martin等人)中示出的一种方法是使用自探针的前部处的换能器延伸到在后部处的电缆编织层的热沉。热通过热沉自换能器导走且到达电缆编织层中,热透过电缆和探针壳体自所述电缆编织层耗散。Martin等人仅输送来自不具有驱动电路的压电换能器的热,这是由于Martin等人探针的驱动电路可能在***主框架中。一种更为主动积极的冷却方法是使用如美国专利5,560,362(Sliwa、Jr.等人)中所描述的主动冷却或者美国专利公开案第US2008/0188755号(Hart)中所描述的热电冷却器。借助于冷却剂的主动冷却需要必要的空间和装置来使冷却剂循环以及冷却剂泄露的危害,且该两种方法皆使探针内部的部件复杂性和间距复杂化。需要一种比Martin等人的技术更加有效且没有主动冷却方法的复杂性的被动冷却技术。进一步期望此类被动冷却技术以避免探针中热点的形成,所述热点可将热集中于探针壳的一个特定点或数个特定点且因此集中到探针用户的手中。
发明内容
根据本发明的原理,描述一种使用被动热耗散来耗散由矩阵阵列换能器和ASIC产生的热的矩阵阵列超声波探针。由这些元件产生的热传导到散热器,所述散热器透过探针壳体下方的表面区域散布热。通过散热器的热散布防止热点在探针壳体的手柄部分的一个特定点或者几个特定点处的形成。所散布的热然后透过探针壳体和探针电缆耗散。
附图说明
在图中:
图1图示了根据本发明的原理构建的矩阵阵列超声波探针的第一横截面视图。
图2图示了根据本发明的原理构建的矩阵阵列探针的第二横截面视图,其正交于图1。
图3是图1和2的矩阵阵列探针的四分之一部分的横截面视图。
图4图示了安装于导热探针框架上的矩阵阵列换能器堆、ASIC和衬块。
图5是用于矩阵阵列探针的散热器的一半的透视图。
图6图示了在探针壳体的一半经移除的情况下组装的先前附图的矩阵阵列探针。
图7图示了围绕散热器的一半模塑的探针壳体。
图8是图1到6的矩阵阵列探针的主要部件部分的分解组件图。
具体实施方式
首先参考图1,以横截面示出根据本发明的原理构建的矩阵阵列超声波探针10。探针10具有形成探针的手柄部分的外壳22,所述手柄部分由超声波检验师在使用所述探针时握住。探针的远端由换镜转盘壳体24包封。在覆盖远端的透镜36的后面的是由ASIC支持的矩阵阵列换能器,两者均在12处予以指示。ASIC的集成电路通过换能器元件控制传输且执行由所述阵列传输和接收的信号的传输和接收波束成形。如果期望将换能器阵列的元件联接到ASIC的电路,则可采用***物。举例来说,国际专利公开案WO2009/083896(Weekamp等人)中描述一种此类***物。在矩阵阵列换能器和ASIC后面的是石墨衬块14,石墨衬块14使来自矩阵阵列的背部的声混响衰减且远离探针的远端地传导在矩阵阵列和ASIC中所形成的热。可在共同未决的2011年3月17日提出申请的美国专利申请案第61/453,690号中找到石墨衬块的其它细节。铝或镁探针框架16与石墨衬块的背部导热接触以进一步远离探针的远端地传导热。框架16也安装探针的电部件,所述电部件自身安装于两个印刷电路板上且占据由18指示的探针的内部的空间。在探针的背部处且自探针的近端延伸的是探针电缆28。电缆28通过夹具26夹持到框架的后部。
围绕探针的手柄部分中的框架16的是散热器20。所述散热器与框架16的两侧导热接触,如图2中所示。此热接触被导热垫片(例如由导热带或导热膏(腻子(putty))形成的导热垫片)促进,在所述导热垫片处,散热器20在30处接触框架16的侧部。散热器20抵靠着框架16以及在32处通过螺钉实现的热联接部保持到位。图3是图1和2的探针的四分之一横截面视图,其示出在框架16的顶部上的印刷电路板34和围绕在探针的手柄部分中的框架16和印刷电路板的散热器20。
图4是框架16的一个实施例的透视图,其中石墨衬块14和矩阵阵列换能器以及ASIC12安装于框架的顶部上且与框架导热接触。在此实施例中,在框架16的侧部上存在凸缘38,散热器附接到所述凸缘以便有效地将热自框架传导到散热器。
图5图示了散热器20的一个实施方案。在此实施方案中,所述散热器形成为在对角定位的边缘处安装在一起的两个蚌壳式半部。图5的视图中所图示的半部在背部和顶部上围绕壳体22的手柄部分的内部,且其配对的半部围绕手柄内部的前部和底部。在此视图中可见的是两个孔,螺钉穿过所述两个孔***以将散热器紧固到框架16的一侧。
图7图示了其中壳体22围绕金属散热器而模塑的散热器的另一实施方案。在此实施方案中,手柄部分22和换镜转盘24模塑为单个壳体22’,单个壳体22’围绕散热器20’形成以便散热器20’不仅围绕手柄内部的体积,而且还向前延伸以围绕壳体的远端中的换能器堆。散热器20’将因此与石墨衬块直接导热接触,所述石墨衬块远离矩阵阵列和ASIC12地携载热。探针的远端中的热将因此被携载到探针的后部且由探针框架16和散热器20’两者耗散。
图6是本发明的组装好的探针10的平面图,其中换镜转盘和壳体22的半部被移除。此视图示出了完全包封壳体22的手柄部分内部的框架16及印刷电路板的散热器20。散热器20在其整个区域上方传导热,从而避免热点在壳体内部的特定点处形成。这些热点的形成可由使用探针的超声波检验师的手感觉到且虽然其不足以造成危险,但其可使得探针的使用不舒服。本发明的益处是热在壳体内部的整个散热器散布且单个的热点将不形成。由散热器传导的热自散热器20的外表面传导到壳体22的内表面,所述热从所述内表面透过壳体耗散且耗散到空气中。为促进将热自散热器20传送到壳体22中,导热腻子层可伸展于散热器与壳体之间,从而将热在壳体的整个内表面区域上携载到壳体中,且进一步防止热点在壳体中形成。
图8是示出了包含上文所述的部件中的许多部件的本发明的探针10的组件的分解视图。包含矩阵阵列换能器和波束成形器ASIC12以及石墨衬块14(此附图中未示出)的换能器堆紧固到探针框架16的顶部,如先前附图中所示出。印刷电路板18a和18b紧固到框架16的相对侧。来自电缆28的导线连接到印刷电路板上的连接器,且夹具26a和26b围绕电缆28的应力释放部和编织层而夹持,且所述夹具也夹持到自框架16的近端延伸的两个轨道17a和17b。框架16的近端到电缆编织层的此联接促进将热自框架传送到电缆编织层中且远离探针。导热垫片或导热腻子覆盖框架16的凸缘38的表面,且散热器的两个半部20a和20b借助于螺钉紧固到框架16的凸缘侧。换镜转盘24和透镜36放置于在换能器堆上方的组件的远端上。组装的散热器的外表面(或壳体半部的内表面)涂覆有导热腻子且壳体围绕散热器和导热腻子而放在适当位置且与散热器和导热腻子接触,其中壳体和换镜转盘的接缝被密封以防止流体进入。组装的探针现在准备用于最终测试并递送给用户。

Claims (13)

1.一种超声换能器阵列探针,包括:
换能器堆,所述换能器堆具有联接到用于换能器阵列的专用集成电路(ASIC)的换能器元件阵列;
导热框架,所述导热框架热联接到所述换能器堆;
壳体,所述壳体形成探针手柄且包封所述框架的至少一部分;和
导热散热器,所述导热散热器热联接到所述框架且呈现外表面区域,该外表面区域与所述壳体的内表面区域对准且热联接到所述内表面区域,并且其中主要热传导路径自所述散热器到所述热联接的壳体中且然后到围绕所述壳体的空气中以防止热点在所述壳体中的形成,
其特征在于,所述换能器堆进一步包括位于所述ASIC与所述框架之间的导热衬块。
2.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述换能器元件阵列进一步包括换能器元件的二维矩阵阵列。
3.根据权利要求2所述的超声换能器阵列探针,其特征在于,所述ASIC进一步包括波束成形器ASIC,所述波束成形器ASIC使来自所述矩阵阵列的传输波束及由所述矩阵阵列的元件接收的回波信号至少部分地波束成形。
4.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述超声换能器阵列探针进一步包括提供所述框架与所述散热器之间的热联接的导热垫片或导热腻子。
5.根据权利要求4所述的超声换能器阵列探针,其特征在于,所述框架具有侧部凸缘,且其中所述散热器以与所述框架的所述侧部凸缘导热接触的方式紧固。
6.根据权利要求5所述的超声换能器阵列探针,其特征在于,所述散热器用螺钉或螺栓固定到所述框架的所述侧部凸缘。
7.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述超声换能器阵列探针进一步包括提供所述散热器与所述壳体之间的热联接的导热垫片或导热腻子。
8.根据权利要求1所述的超声换能器阵列探针,其特征在于,其中所述散热器直接热联接到所述衬块。
9.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述超声换能器阵列探针进一步包括紧固至所述框架的印刷电路板。
10.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述超声换能器阵列探针进一步包括具有金属编织层的探针电缆,
其中所述框架进一步热联接到所述电缆的所述金属编织层。
11.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述散热器由铝或镁制成。
12.根据权利要求11所述的超声换能器阵列探针,其特征在于,所述框架由铝或镁制成。
13.根据权利要求1所述的超声换能器阵列探针,其特征在于,所述壳体的至少一部分被围绕所述散热器的至少一部分模塑而成以形成单件式单元。
CN201280023686.5A 2011-05-17 2012-05-11 具有被动热耗散的矩阵超声波探针 Active CN103533896B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161486796P 2011-05-17 2011-05-17
US61/486,796 2011-05-17
PCT/IB2012/052364 WO2012156886A1 (en) 2011-05-17 2012-05-11 Matrix ultrasound probe with passive heat dissipation

Publications (2)

Publication Number Publication Date
CN103533896A CN103533896A (zh) 2014-01-22
CN103533896B true CN103533896B (zh) 2016-01-06

Family

ID=46210327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280023686.5A Active CN103533896B (zh) 2011-05-17 2012-05-11 具有被动热耗散的矩阵超声波探针

Country Status (6)

Country Link
US (1) US9730677B2 (zh)
EP (1) EP2709530B1 (zh)
JP (1) JP2014516686A (zh)
CN (1) CN103533896B (zh)
RU (1) RU2604705C2 (zh)
WO (1) WO2012156886A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620867C2 (ru) 2012-03-20 2017-05-30 Конинклейке Филипс Н.В. Ультразвуковой матричный зонд с рассеивающим тепло кабелем и теплообменом через опорный блок
JP6106258B2 (ja) 2012-03-20 2017-03-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超音波トランスデューサプローブアセンブリ
KR20150025383A (ko) * 2013-08-29 2015-03-10 삼성메디슨 주식회사 초음파 진단장치용 프로브
US11540813B2 (en) * 2014-06-10 2023-01-03 Fujifilm Sonosite, Inc. Handheld ultrasound imaging systems and methods for cooling transducers and electronics in the probe housing via air circulation through the housing
USD756818S1 (en) 2014-07-10 2016-05-24 Fujifilm Corporation Probe for photoacoustic measurement device
JP6130333B2 (ja) * 2014-07-11 2017-05-17 株式会社日立製作所 超音波プローブ
EP2992829B1 (en) 2014-09-02 2018-06-20 Esaote S.p.A. Ultrasound probe with optimized thermal management
US10405829B2 (en) 2014-12-01 2019-09-10 Clarius Mobile Health Corp. Ultrasound machine having scalable receive beamformer architecture comprising multiple beamformers with common coefficient generator and related methods
KR20160075091A (ko) * 2014-12-19 2016-06-29 삼성전자주식회사 초음파 프로브
WO2016113638A1 (en) * 2015-01-13 2016-07-21 Koninklijke Philips N.V. Interposer electrical interconnect coupling methods, apparatuses, and systems
JP6882983B2 (ja) * 2015-02-06 2021-06-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超音波トランスデューサの熱管理のためのシステム、方法、及び装置
CN104965105B (zh) * 2015-07-06 2018-03-23 中国科学院半导体研究所 集成超声换能器的afm探针阵列
US10918361B2 (en) * 2015-09-03 2021-02-16 Fujifilm Sonosite, Inc. Systems and methods of dissipating heat from a handheld medical imaging device
EP3351182B1 (en) * 2015-09-18 2020-01-08 FUJIFILM Corporation Probe for optoacoustic measurement, and probe unit and optoacoustic measurement device provided with same
CN105147323A (zh) * 2015-10-14 2015-12-16 苏州斯科特医学影像科技有限公司 医用无线wifi传输b超设备
JP6122090B1 (ja) * 2015-11-26 2017-04-26 株式会社日立製作所 超音波プローブ
WO2018019974A1 (en) * 2016-07-29 2018-02-01 Koninklijke Philips N.V. Ultrasound probe with thermal and drop impact management
JP6780981B2 (ja) 2016-08-10 2020-11-04 キヤノンメディカルシステムズ株式会社 超音波プローブ
WO2018041636A1 (en) 2016-09-02 2018-03-08 Koninklijke Philips N.V. Ultrasound probe with multiline digital microbeamformer
JP7041125B6 (ja) 2016-09-02 2022-05-30 コーニンクレッカ フィリップス エヌ ヴェ 低周波低電圧デジタルマイクロビーム形成器を含む超音波プローブ
US11627940B2 (en) 2016-09-02 2023-04-18 Koninklijke Philips N.V. Ultrasound probe with digital microbeamformer using fir filters with no multipliers
US11317893B2 (en) 2016-09-02 2022-05-03 Koninklijke Philips N.V. 2D array ultrasound probe with 3 watt digital microbeamformer
WO2018041635A1 (en) 2016-09-02 2018-03-08 Koninklijke Philips N.V. Ultrasound probe with digital microbeamformer having integrated circuits fabricated with different manufacturing processes
US11771403B2 (en) 2016-09-02 2023-10-03 Koninklijke Philips N.V. Ultrasound probe with thirty-two channel digital microbeamformer
US10779801B2 (en) 2016-09-21 2020-09-22 Clarius Mobile Health Corp. Ultrasound apparatus with improved heat dissipation and methods for providing same
JP6548234B2 (ja) * 2017-11-30 2019-07-24 ゼネラル・エレクトリック・カンパニイ 超音波プローブ及び超音波画像表示装置
KR102607018B1 (ko) 2018-01-31 2023-11-29 삼성메디슨 주식회사 초음파 프로브
EP3773227B1 (en) * 2018-03-30 2024-01-31 Koninklijke Philips N.V. Thermally-conductive material layer and internal structure for ultrasound imaging probe
CN110145697B (zh) * 2018-05-18 2020-12-18 浙江山蒲照明电器有限公司 一种led灯
US11497468B2 (en) * 2018-12-21 2022-11-15 Fujifilm Sonosite, Inc. Ultrasound probe
USD896973S1 (en) * 2019-04-30 2020-09-22 Koninklijke Philips N.V. Ultrasound probe
EP3811872B1 (en) 2019-10-23 2023-07-26 Esaote S.p.A. Ultrasound probe with improved thermal management
EP4062168A4 (en) * 2019-11-22 2023-11-15 Exo Imaging Inc. ULTRASONIC TRANSDUCER WITH ACOUSTIC ABSORBER STRUCTURE
EP4125611A1 (en) * 2020-03-30 2023-02-08 Koninklijke Philips N.V. Heat-dissipating arrangements for medical devices and associated devices, systems, and methods
US20230190240A1 (en) * 2021-12-22 2023-06-22 GE Precision Healthcare LLC Passive cooling for medical imaging probes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213103A (en) * 1992-01-31 1993-05-25 Acoustic Imaging Technologies Corp. Apparatus for and method of cooling ultrasonic medical transducers by conductive heat transfer
US5560362A (en) * 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5961465A (en) * 1998-02-10 1999-10-05 Hewlett-Packard Company Ultrasound signal processing electronics with active cooling
CN1897877A (zh) * 2004-09-24 2007-01-17 株式会社东芝 一种超声探头
CN101166472A (zh) * 2005-04-25 2008-04-23 皇家飞利浦电子股份有限公司 具有改进的热管理的超声波换能器组件
CN101926655A (zh) * 2009-06-24 2010-12-29 株式会社东芝 超声波探头及超声波诊断装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106201B2 (ja) * 1989-02-01 1995-11-15 アロカ株式会社 超音波探触子
US5545942A (en) * 1994-11-21 1996-08-13 General Electric Company Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
WO1997001768A2 (en) 1995-06-29 1997-01-16 Teratech Corporation Portable ultrasound imaging system
US5721463A (en) 1995-12-29 1998-02-24 General Electric Company Method and apparatus for transferring heat from transducer array of ultrasonic probe
JP2004008372A (ja) * 2002-06-05 2004-01-15 Ge Medical Systems Global Technology Co Llc 超音波プローブおよび超音波診断装置
US7314447B2 (en) * 2002-06-27 2008-01-01 Siemens Medical Solutions Usa, Inc. System and method for actively cooling transducer assembly electronics
JP4332706B2 (ja) 2003-05-06 2009-09-16 株式会社日立メディコ 超音波探触子
EP1477467B1 (en) * 2003-05-16 2012-05-23 Hitachi Metals, Ltd. Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
JP4624659B2 (ja) * 2003-09-30 2011-02-02 パナソニック株式会社 超音波探触子
EP1778091A2 (en) * 2004-06-10 2007-05-02 Imarx Therapeutics, Inc. Ultrasound device and method using same
JP4602013B2 (ja) 2004-07-13 2010-12-22 株式会社東芝 超音波プローブ
JP4693386B2 (ja) * 2004-10-05 2011-06-01 株式会社東芝 超音波プローブ
JP4632800B2 (ja) * 2005-01-28 2011-02-16 株式会社東芝 超音波プローブ
DE602005011644D1 (de) * 2004-10-27 2009-01-22 Toshiba Kk Ultraschallsonde und Ultraschalldiagnosegerät
JP5065593B2 (ja) * 2005-11-30 2012-11-07 株式会社東芝 超音波探触子および超音波画像装置
US8262591B2 (en) 2006-09-07 2012-09-11 Nivasonix, Llc External ultrasound lipoplasty
US20080194963A1 (en) * 2007-02-08 2008-08-14 Randall Kevin S Probes for ultrasound imaging systems
EP2164396A2 (en) * 2007-06-01 2010-03-24 Koninklijke Philips Electronics N.V. Light weight wireless ultrasound probe
JP5451596B2 (ja) * 2007-06-01 2014-03-26 コーニンクレッカ フィリップス エヌ ヴェ 無線超音波プローブユーザインタフェース
WO2009083896A2 (en) 2007-12-27 2009-07-09 Koninklijke Philips Electronics, N.V. Ultrasound transducer assembly with improved thermal behavior
JP5491778B2 (ja) * 2009-06-24 2014-05-14 株式会社東芝 超音波診断装置
EP2366430B1 (en) * 2010-03-19 2016-01-06 Enraf Nonius B.V. Ultrasound application device
EP3770148A4 (en) 2018-03-23 2022-01-05 Beijing Tide Pharmaceutical Co., Ltd. RECEPTOR INHIBITOR, PHARMACEUTICAL COMPOSITION INCLUDING IT AND ITS USE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213103A (en) * 1992-01-31 1993-05-25 Acoustic Imaging Technologies Corp. Apparatus for and method of cooling ultrasonic medical transducers by conductive heat transfer
US5560362A (en) * 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5961465A (en) * 1998-02-10 1999-10-05 Hewlett-Packard Company Ultrasound signal processing electronics with active cooling
CN1897877A (zh) * 2004-09-24 2007-01-17 株式会社东芝 一种超声探头
CN101166472A (zh) * 2005-04-25 2008-04-23 皇家飞利浦电子股份有限公司 具有改进的热管理的超声波换能器组件
CN101926655A (zh) * 2009-06-24 2010-12-29 株式会社东芝 超声波探头及超声波诊断装置

Also Published As

Publication number Publication date
WO2012156886A1 (en) 2012-11-22
RU2013155904A (ru) 2015-06-27
RU2604705C2 (ru) 2016-12-10
US20140058270A1 (en) 2014-02-27
EP2709530B1 (en) 2020-08-05
JP2014516686A (ja) 2014-07-17
CN103533896A (zh) 2014-01-22
EP2709530A1 (en) 2014-03-26
US9730677B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
CN103533896B (zh) 具有被动热耗散的矩阵超声波探针
US10178986B2 (en) Ultrasonic matrix array probe with thermally dissipating cable and backing block heat exchange
US9072487B2 (en) Ultrasound probe thermal drain
US20180028159A1 (en) Rearward acoustic diffusion for ultrasound-on-a-chip transducer array
US9867596B2 (en) Ultrasonic probe
US20190282207A1 (en) High intensity focused ultrasound (hifu) device and system
US20110114303A1 (en) Ultrasonic probe having heat sink
WO2014080312A1 (en) Frameless ultrasound probes with heat dissipation
EP2828846B1 (en) Ultrasonic matrix array probe with thermally dissipating cable
JPH0622955A (ja) 医療用超音波装置および医療用超音波装置から熱を移送し放す方法
WO2015029637A1 (ja) 超音波診断装置
US20180125462A1 (en) Probe for ultrasonic diagnostic apparatus
JP2014057136A (ja) 超音波探触子
US20180263604A1 (en) Systems, methods, and apparatuses for thermal management of ultrasound transducers
EP4041463A1 (en) Systems and methods for cooling ultrasound transducers and ultrasound transducer arrays
CN104780846A (zh) 超声波探针
JP2024511771A (ja) 超音波プローブの熱放散
KR20160101144A (ko) 초음파 트랜스듀서의 방열구조
JP2005027737A (ja) 超音波探触子
CN117136032A (zh) 超声探头中的散热
JP2008148841A (ja) 超音波診断装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant