CN103412297A - 非恒温环境中超声波短距高精度测量的参数校准方法 - Google Patents

非恒温环境中超声波短距高精度测量的参数校准方法 Download PDF

Info

Publication number
CN103412297A
CN103412297A CN2013103486125A CN201310348612A CN103412297A CN 103412297 A CN103412297 A CN 103412297A CN 2013103486125 A CN2013103486125 A CN 2013103486125A CN 201310348612 A CN201310348612 A CN 201310348612A CN 103412297 A CN103412297 A CN 103412297A
Authority
CN
China
Prior art keywords
temperature
constant
distance
flight time
ultrasound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103486125A
Other languages
English (en)
Other versions
CN103412297B (zh
Inventor
徐斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201310348612.5A priority Critical patent/CN103412297B/zh
Publication of CN103412297A publication Critical patent/CN103412297A/zh
Application granted granted Critical
Publication of CN103412297B publication Critical patent/CN103412297B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种非恒温环境中超声波短距高精度测量的参数校准方法在环境温度θ是变化的情况下,采用蒙特卡罗模拟方法校准其中的两参数。在多种环境温度下的重复性实验证明本发明技术的超声波测距精度与恒温情况下校准精度基本一致。因此,本发明技术可以有效应对非恒温情况下的超声波高精度测距参数校准。

Description

非恒温环境中超声波短距高精度测量的参数校准方法
技术领域
本发明涉及一种超声波短距测量的参数校准方法,具体涉及一种非恒温环境中超声波短距高精度测量的参数校准方法。
背景技术
超声波已被广泛应用于测距领域,利用超声波在20CM的短距离测量中能达到亚毫米误差的精度:如精细加工机床等领域,也可以有效改善倒车雷达,盲人手杖,机器人避障等的精度。但其测距精度一直没有得到有效提升,限制了其在短距离测距的应用。影响超声波测距精度的有两个主要原因:1)传输速度误差,超声波传输速度与环境温度有关,不同温度下,传输速度存在一定的偏差。2)超声波飞行时间测量有误差,超声波换能器存在起振延迟,在一定的环境噪音干扰下,初始的微小起振难以被有效检出,此外超声波换能器的发射和接收面与各自的观测用平面有一定距离,采用传统的温度校准方法存在较大的误差。
本申请人在传感技术学报2013年第5期中,提出了考虑起振延迟的超声波短距离高精度校准方法(即方法1)。
方法1假设发送端和接收端相对放置,则超声波飞行距离公式为:
Figure 2013103486125100002DEST_PATH_IMAGE001
                                  (1)
其中T为测量到的超声波飞行时间,Td是换能器起振延迟时间,
Figure 695916DEST_PATH_IMAGE002
表示的是在某一温度下的超声波传输速度(变量),
Figure DEST_PATH_IMAGE003
表示的是在绝对零度时超声波传输速度(常量),θ表示温度。
在校准过程中,对校准距离Ds和飞行时间T进行采样。某些加工工艺的超声波节点中压电片处于节点内部,测量发射端和接收端两端间距离外还需考虑发射端和接收端两个节点中压电片到器件外缘的距离之和Din
Figure 611788DEST_PATH_IMAGE004
                                              (2)
结合式(1)和式(2)可得, 
Figure DEST_PATH_IMAGE005
                                                             (3)
假设校准过程中环境温度保持恒定,采用同样的发射和接收节点,发射功率一致,则校准距离Ds与飞行时间T存在线性关系。
Figure 690603DEST_PATH_IMAGE006
             (4)
Figure DEST_PATH_IMAGE007
                      (5)
Figure DEST_PATH_IMAGE009
。                                               (6)
采用最小二乘法拟合得到参数a和b。设采样得到N对校准距离Ds和飞行时间T数据(Dsk,Tk),k=1,2,3,…,N。则
Figure 410544DEST_PATH_IMAGE010
                                                                (7)
其中
Figure DEST_PATH_IMAGE011
是式(6)中a和b参数的估计,由式(7)计算得出,进而根据式(5)得
Figure 298866DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
                                                (8)
由式(8)根据取余原则得:
Figure 181371DEST_PATH_IMAGE014
                                                                                            (9)
其中f为超声波的发射频率。至此,式(3)中的所有参数均得到校准。最终的测距公式为:
Figure DEST_PATH_IMAGE015
                                                              (10)
如图1所示,在恒温环境下的测量的拟合结果,方法1可以保证测距精度的前提下,有效地避免在不同环境温度下对设备进行多次校准。然而,方法1有一个明显的技术缺陷,即要求在整个校准过程中保证环境恒温。在环境温度不恒定情况下,所提出的基于最小二乘法的直线拟合校准方法将产生很大误差。
发明内容
为了降低参数校准的环境问题限制,本发明提出了一种非恒温环境中超声波短距高精度测量的参数校准方法,发送端和接收端相对放置,超声波飞行距离公式为:
Figure 720806DEST_PATH_IMAGE001
                                  (1)
其中T为测量到的超声波飞行时间,Td是换能器起振延迟时间,
Figure 601037DEST_PATH_IMAGE002
表示的是在某一温度下的超声波传输速度(变量),
Figure 38972DEST_PATH_IMAGE003
表示的是在绝对零度时超声波传输速度(常量),θ表示温度;
校正距离为:
Figure 459589DEST_PATH_IMAGE004
                                              (2)
其中发射端和接收端两个节点中压电片到器件外缘的距离之和为Din
结合式(1)和式(2)可得, 
Figure 620574DEST_PATH_IMAGE005
                                           (3)
由于温度θ不恒定,校准距离Ds与飞行时间T不再存在线性关系,
定义函数                           (11)
Figure DEST_PATH_IMAGE017
分别是采用蒙特卡罗模拟方法获得校正后的换能器起振延迟时间和发射端和接收端两个节点中压电片到器件外缘的距离之和;
采样得到N对校准距离Ds,温度θ和飞行时间T数据(Dsk,θk,Tk),k=1,2,3,…,N,则蒙特卡罗模拟的目标为:
Figure 596937DEST_PATH_IMAGE018
                                       (12)
约束条件为:
Figure DEST_PATH_IMAGE019
必须是整数倍频率的倒数,n/f(其中n是正整数,f是超声波发射频率)。
本发明的非恒温环境中超声波短距高精度测量的参数校准方法在环境温度θ是变化的情况下,采用蒙特卡罗模拟方法校准其中的
Figure 821245DEST_PATH_IMAGE020
两参数。在多种环境温度下的重复性实验证明本发明技术的超声波测距精度与恒温情况下校准精度基本一致。因此,本发明技术可以有效应对非恒温情况下的超声波高精度测距参数校准。
附图说明
图1是背景技术参数校准方法测量的拟合结果;
图2是采用本发明的参数校正方法在不同温度下的拟合结果。
具体实施方式
下面结合附图对本发明作进一步说明。
本发明技术在方法1的基础上做了改进,其中在式(3)中,由于温度θ不恒定,校准距离Ds与飞行时间T不再存在线性关系。
定义函数                           (11)
采用蒙特卡罗模拟方法获得
Figure 354044DEST_PATH_IMAGE017
两参数。设采样得到N对校准距离Ds,温度θ和飞行时间T数据(Dsk,θk,Tk),k=1,2,3,…,N。则蒙特卡罗模拟的目标为:
Figure 704253DEST_PATH_IMAGE018
                                       (12)
约束条件为:
Figure 732252DEST_PATH_IMAGE019
必须是整数倍频率的倒数,n/f(其中n是正整数,f是超声波发射频率)。
采用蒙特卡罗模拟方法获得
Figure 913835DEST_PATH_IMAGE017
两参数,进而距离公式校准为:
                                (13)
分别在不同环境温度下,采集了校准距离Ds,温度θ和飞行时间T数据(Dsk,θk,Tk),实验表明本发明技术的精度可以达到0.7mm。
实例分析:超声波频率f为24.5KHZ,采样频率为22.5792MHZ。分别在40℃,11℃,1℃三种温度下采集了校准距离Ds,温度θ和飞行时间T数据(Dsk,θk,Tk),应用蒙特卡罗模拟,获得的值分别为12*924,0.87CM。下表是以Ds=a+bT(T为采样脉冲数)形式给出的40℃,11℃,1℃时,a,b的值。
温度 b a
40℃ 0.0016 -17.943
11℃ 0.0015 -17.519
1℃ 0.0015 -17.49
其他温度下可以采用
Figure 195540DEST_PATH_IMAGE008
    公式分别获得相关参数。实验表明本发明技术的精度可以达到0.7mm。
如图2所示,采用本发明的参数校正方法在不同温度下的拟合结果,与原有在恒温情况下采用方法1基本一致。

Claims (1)

1.一种非恒温环境中超声波短距高精度测量的参数校准方法,发送端和接收端相对放置,超声波飞行距离公式为:
Figure 377640DEST_PATH_IMAGE001
                   (1)
其中T为测量到的超声波飞行时间,Td是换能器起振延迟时间,
Figure 738215DEST_PATH_IMAGE002
表示的是在某一温度下的超声波传输速度(变量),
Figure 63017DEST_PATH_IMAGE003
表示的是在绝对零度时超声波传输速度(常量),θ表示温度;
校正距离为:
Figure 432818DEST_PATH_IMAGE004
                         (2)
其中发射端和接收端两个节点中压电片到器件外缘的距离之和为Din
结合式(1)和式(2)可得, 
                               (3)
由于温度θ不恒定,校准距离Ds与飞行时间T不再存在线性关系,
定义函数
Figure 307419DEST_PATH_IMAGE006
                (11)
Figure 916255DEST_PATH_IMAGE007
分别是采用蒙特卡罗模拟方法获得校正后的换能器起振延迟时间和发射端和接收端两个节点中压电片到器件外缘的距离之和;
采样得到N对校准距离Ds,温度θ和飞行时间T数据(Dsk,θk,Tk),k=1,2,3,…,N,则蒙特卡罗模拟的目标为:
Figure 27431DEST_PATH_IMAGE008
                                       (12)
约束条件为:
Figure 38112DEST_PATH_IMAGE009
必须是整数倍频率的倒数,n/f,其中n是正整数,f是超声波发射频率。
CN201310348612.5A 2013-08-12 2013-08-12 非恒温环境中超声波短距高精度测量的参数校准方法 Expired - Fee Related CN103412297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310348612.5A CN103412297B (zh) 2013-08-12 2013-08-12 非恒温环境中超声波短距高精度测量的参数校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310348612.5A CN103412297B (zh) 2013-08-12 2013-08-12 非恒温环境中超声波短距高精度测量的参数校准方法

Publications (2)

Publication Number Publication Date
CN103412297A true CN103412297A (zh) 2013-11-27
CN103412297B CN103412297B (zh) 2016-01-20

Family

ID=49605324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310348612.5A Expired - Fee Related CN103412297B (zh) 2013-08-12 2013-08-12 非恒温环境中超声波短距高精度测量的参数校准方法

Country Status (1)

Country Link
CN (1) CN103412297B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153187A (zh) * 2016-03-02 2017-09-12 福特全球技术公司 超声波距离校正
CN112254835A (zh) * 2020-09-25 2021-01-22 宁波水表(集团)股份有限公司 一种基于超声水表的水流温度测量方法以及超声波水表
CN113552557A (zh) * 2020-04-15 2021-10-26 杭州萤石软件有限公司 飞行时间相机的测距校准方法、装置及设备

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
兰羽: "具有温度补偿功能的超声波测距***设计", 《电子测量技术》, vol. 36, no. 2, 28 February 2013 (2013-02-28), pages 85 - 87 *
刘兴俊等: "超声波声速测定的三种实验方法比较研究", 《实验科学与技术》, vol. 9, no. 2, 30 April 2011 (2011-04-30), pages 184 - 187 *
徐斌: "一种考虑起振延迟的低频超声波短距高精度测量校准方法", 《传感技术学报》, vol. 26, no. 5, 31 May 2013 (2013-05-31), pages 666 - 669 *
王开圣: "声速测量实验原理讨论", 《物理实验》, vol. 30, no. 3, 31 March 2010 (2010-03-31), pages 25 - 28 *
赵小强等: "超声波测距***中的温度补偿", 《控制与检测》, 31 December 2008 (2008-12-31), pages 62 - 64 *
颜清等: "基于蒙特卡罗最小二乘的实验数据拟合方法", 《计算机与应用化学》, vol. 28, no. 11, 28 November 2011 (2011-11-28), pages 1473 - 1476 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153187A (zh) * 2016-03-02 2017-09-12 福特全球技术公司 超声波距离校正
CN107153187B (zh) * 2016-03-02 2023-10-20 福特全球技术公司 超声波距离校正
CN113552557A (zh) * 2020-04-15 2021-10-26 杭州萤石软件有限公司 飞行时间相机的测距校准方法、装置及设备
CN113552557B (zh) * 2020-04-15 2024-03-29 杭州萤石软件有限公司 飞行时间相机的测距校准方法、装置及设备
CN112254835A (zh) * 2020-09-25 2021-01-22 宁波水表(集团)股份有限公司 一种基于超声水表的水流温度测量方法以及超声波水表

Also Published As

Publication number Publication date
CN103412297B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN106842128B (zh) 运动目标的声学跟踪方法及装置
CN102095430B (zh) 基于阶跃响应的传感器动态误差频域修正技术
CN103412297B (zh) 非恒温环境中超声波短距高精度测量的参数校准方法
CN102435980A (zh) 一种基于解析求解的声发射源或微震源定位方法
CN104297740B (zh) 基于相位分析的雷达目标多普勒谱估计方法
CN112986907B (zh) 一种时钟偏差和时钟漂移条件下的运动目标定位方法
Wu et al. A highly accurate ultrasonic ranging method based on onset extraction and phase shift detection
CN108761388B (zh) 基于uwb高精度测距定位***的天线延迟校准方法
CN115324564B (zh) 固井质量检测方法、装置、计算设备及存储介质
CN106707234B (zh) 一种联合时延差与角度测量的传感器网络目标定位方法
CN104914167A (zh) 基于序贯蒙特卡洛算法的声发射源定位方法
CN108845290B (zh) 一种超短基线阵抗相位模糊的方法
CN109282819B (zh) 基于分布式混合滤波的超宽带定位方法
CN105628297B (zh) 一种9mm压电激励振动筒压力传感器的拟合方法
CN110536410B (zh) 非视距环境下基于rss和tdoa测量的定位方法
CN112433068B (zh) 一种超声波风速仪校正方法及装置
CN112068099B (zh) 基于误差补偿的多辐射源快速定位测速方法和装置
CN115290079A (zh) 基于最小方差无偏有限脉冲响应的机器人定位方法及***
CN111398956A (zh) 多基高比星载sar三维定位rd方程优化配权方法
Grecheneva et al. Compensation of the accelerometer errors in solving the problem of kinematic control of dynamic objects
CN104166140A (zh) 一种实现逆合成孔径雷达成像的方法及装置
CN111046578B (zh) 一种石英振梁加速度计建立输出模型的方法
CN103617348B (zh) 大气环境电子束等离子体参数获取方法
JP5419721B2 (ja) 測定装置
CN107291661A (zh) 一种端点数据的一阶导数估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20170812