CN103369339A - 成像方法和设备 - Google Patents

成像方法和设备 Download PDF

Info

Publication number
CN103369339A
CN103369339A CN2013102770251A CN201310277025A CN103369339A CN 103369339 A CN103369339 A CN 103369339A CN 2013102770251 A CN2013102770251 A CN 2013102770251A CN 201310277025 A CN201310277025 A CN 201310277025A CN 103369339 A CN103369339 A CN 103369339A
Authority
CN
China
Prior art keywords
pixel
imageing sensor
light component
light
floating diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102770251A
Other languages
English (en)
Other versions
CN103369339B (zh
Inventor
金成珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN103369339A publication Critical patent/CN103369339A/zh
Application granted granted Critical
Publication of CN103369339B publication Critical patent/CN103369339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • H04N25/136Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements using complementary colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/705Pixels for depth measurement, e.g. RGBZ
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

本发明公开了一种成像方法和设备。所述设备可包括可具有多个像素的图像传感器,其中,所述多个像素中的至少一个像素包括光检测器元件和滤波器,所述滤波器使选择的可视光分量带通通过到光检测器元件并使选择的非可视光分量带通通过到光检测器元件。可通过图像传感器使用相同的像素来获得颜色值和深度值。

Description

成像方法和设备
本申请是申请日为2009年7月17日、申请号为200910140364.9发明名称为“成像方法和设备”的发明专利申请的分案申请。
技术领域
一个或多个实施例涉及成像方法和设备。
背景技术
当前,具有图像传感器的诸如数字相机、移动通信终端等便携式装置被开发并被销售。这些图像传感器由被称为像素或图素(photosite)的一系列小的光电二极管构成。通常,像素不直接从接收的光提取具体的颜色,而是将宽光谱带的光子转换为电子或电荷。因此,图像传感器的像素可能仅需要从宽光谱带的光接收获取或识别颜色所必需的带内的光。图像传感器的每个像素可通过滤色器等对入射光首先进行滤波来仅将与特定的颜色相应的光子转换为电子或电荷。
为了使用所述图像传感器来获取三维(3D)图像,需要获取颜色以及关于相应的对象与图像传感器之间的距离的信息。通常,在相关领域中,关于对象与图像传感器之间的距离的重构图像被表示为深度图像。作为示例,可使用在可视光区域外的红外光来获取深度图像。
在这方面,通常,存在两种用于获取对象的颜色图像和深度(或距离)图像的方法。第一种方法使用分束器将光在特定波长带中反射或屈折向并使剩余的光折射,例如,使多个波长带的光折射为表示不同波长带的分开/分离的光束。如图16示出,分束器分离颜色图像所需的入射可视光和深度图像所需的入射红外光。在此,该分束器方法需要两个以上的传感器以检测分离的光,从而获得明显不同的颜色和深度信息。第7,224,384号美国专利示出这样的3D感测***的示例。所述分束器方法需要使用分束器以及通常两个以上的传感器,但其会产生大小和成本问题。在此,用于获取图像的这种***的大小和成本对于现有相机应用来说可能过大或过高。另外,在这种配置中,由于传感器的特性和所需位置均不同,颜色图像和深度图像的图像匹配可能不容易。
用于获取颜色图像和深度图像的第二方法包括仅使用单个传感器。图17A是示出在传统颜色传感器中按分散的方式布置感测红外光的像素的颜色传感器概念示图。在该示例中,感测红外光的像素可沿感测R、G和B波长的可视光的像素的侧面同样地布置。图17B是阐述第7,262,402号美国专利的示图,并示出了具有测量可视光(例如,R、G和B波长的可视光)的强度的小尺寸像素101和测量从对象反射的发射红外光的返回时间以估计对象的深度的大尺寸像素100的n×m传感器阵列。基于反射的光来测量深度的这种技术被称为飞行时间(time-of-flight,TOF)。
图17C是阐述PCT/IL01/01159号国际WIPO专利申请的示图,并示出了感测红外光的大尺寸像素21和分别感测红色、绿色和蓝色的其它像素22、23和24的使用。在此,由于用于红外光的传感器位于用于可视光的像素之间,所以颜色图像的空间分辨率和深度图像的空间分辨率降低。另外,在这种布置中,可能存在这种问题,即,需要专用电路以估计红外光的TOF并且所述传感器应该大于颜色像素以补偿关于红外光的低敏感度。在图17(b)的示例传感器中,在相应的像素中的特定检测器还被限制为单光子雪崩二极管(Single Photon Avalanche Diode,SPAD)。
因此,需要克服这些现有缺陷。
发明内容
一个或多个实施例的一方面提供了一种用于使用单个像素获得由颜色表示的颜色图像和由距离表示的深度图像的方法和设备。
在一个或多个实施例的一方面中,与传统的使用深度图像检测的图像检测相比,不用减小分辨率而通过单个像素获得颜色图像和深度图像。
在一个或多个实施例的一方面中,与具有用于深度图像检测的分离的像素的图像传感器相比,可使用在检测电路中多个像素共享的像素结构来减小图像传感器的大小。
在一个或多个实施例的一方面中,不需要用于深度图像检测的大尺寸的像素就可增加深度图像的信噪比(Signal to Noise Ratio:SNR)。
根据一个或多个实施例的一方面,提供了一种图像传感器,所述图像传感器包括:多个像素,其中,从所述多个像素中的至少一个相同的像素获得颜色值和深度值。
为了实现上述和/或其它方面,一个或多个实施例包括一种图像传感器,所述图像传感器包括多个像素,所述多个像素中的至少一个像素被配置为分别输出颜色值的指示和深度值的指示。
为了实现上述和/或其它方面,一个或多个实施例包括一种成像装置,所述成像装置包括:光源;以及包括多个像素的图像传感器,所述多个像素中的至少一个像素被配置为分别输出颜色值的指示和深度值的指示。
为了实现上述和/或其它方面,一个或多个实施例包括一种图像传感器,所述图像传感器包括多个像素,其中,所述多个像素中的每个像素包括各自的光检测器元件和滤波器,各个滤波器被配置为使选择的入射可视光分量带通通过至各个光检测器元件并使选择的入射非可视光分量带通通过至各个光检测器元件。
为了实现上述和/或其它方面,一个或多个实施例包括一种成像装置,所述成像装置包括:光源,产生非可视光分量;以及多个像素,其中,所述多个像素中的每个像素包括各自光检测器元件和滤波器,各个滤波器被配置为使选择的入射可视光分量带通通过至各个光检测器元件并使选择的入射非可视光带通通过至各个光检测器元件,所述选择的入射非可视光分量与产生的非可视光分量具有确定的关系。
为了实现上述和/或其它方面,一个或多个实施例包括一种图像传感器,所述图像传感器包括:至少一个像素,其中,所述至少一个像素包括:第一传输器,将光检测器元件与FD节点连接;驱动单元,基于FD节点的电压和行控制信号控制位线的电压;以及第二传输器,将光检测器元件与接收线连接。
为了实现上述和/或其它方面,一个或多个实施例包括一种成像方法,所述成像方法包括:在第一时间段期间使用像素感测第一光分量;以及在第二时间段期间使用所述像素感测第二光分量,第一光分量具有与第二光分量不同的光特性。
为了实现上述和/或其它方面,一个或多个实施例包括一种成像方法,所述成像方法包括:在第一时间段期间使用多个共址的像素感测第一光分量;基于感测第一光分量的结束发射第二光分量,第一光分量具有与第二光分量不同的光特性;在第二时间段期间使用所述多个共址像素至少感测发射的第二光分量从对象的反射;以及从感测的反射光产生对象的深度图像。
为了实现上述和/或其它方面,一个或多个实施例包括一种图像传感器方法,所述方法包括:将至少一个像素配置为图像传感器,包括:将所述至少一个像素配置为具有光检测器元件和带通滤波器;将所述至少一个像素配置为具有连接光检测器元件与FD节点的第一传输器;将至少一个像素配置为具有位线信号线、行信号线和驱动单元,其中,驱动单元被配置为基于FD节点的电压和行信号线上的行控制信号来控制位线信号线上的位线信号的电压;以及将所述至少一个像素配置为具有第二传输器和接收线,光检测器元件配置为连接到接收线。
在下面的描述中将部分地阐明本发明另外的方面、特点和/或优点,并且,部分地,通过详细的描述会变得更加清楚,或者通过实施本发明可以被了解。
附图说明
通过下面结合附图对实施例进行的描述,本发明的这些和/或其他方面、特点和优点将会变得清楚和更易于理解,其中:
图1示出根据一个或多个实施例的图像传感器的操作;
图2示出根据一个或多个实施例的图像传感器的等效电路的部分;
图3示出根据一个或多个实施例的与图2的等效电路相应的半导体装置的示例的部分截面;
图4是示出根据一个或多个实施例的包括光源和图像图像传感器的成像装置的控制方法的流程图;
图5是示出根据一个或多个实施例的图像传感器(例如,图2的图像传感器)的示例操作的时序图;
图6示出根据一个或多个实施例的图5的操作的时序;
图7是示出根据一个或多个实施例的图像传感器(例如,图2的图像传感器)的另一示例操作的时序图;
图8示出根据一个或多个实施例的图像传感器的等效电路的一部分;
图9示出根据一个或多个实施例的可在图像传感器的滤波器中使用的示例;
图10示出根据一个或多个实施例的可在图像传感器中使用的滤波器的另一示例;
图11共同地示出根据一个或多个实施例的可在图像传感器中使用的滤波器的特点;
图12共同地示出根据一个或多个实施例的可在图像传感器中使用的滤波器的特点;
图13示出根据一个或多个实施例的图像传感器;
图14示出根据一个或多个实施例的图13的图像传感器截面的示例;
图15示出根据一个或多个实施例的图13的图像传感器的平面图的示例;
图16示出使用具有用于可视光和深度检测的分离的传感器的分束器获得颜色图像和深度图像的方法;
图17A示出用于感测红外光的像素在传统颜色传感器上沿用于感测可视光的侧面像素分散的传感器;
图17B示出小尺寸的像素测量可视光的强度以及大尺寸的像素测量发射的红外光的返回时间以估计对象的深度的传感器;
图17C示出大尺寸的像素感测红外光以及剩余像素分别感测光的红色、绿色和蓝色带宽的传感器。
具体实施方式
现在对实施例进行详细的描述,其示例表示在附图中,其中,相同的标号始终表示相同部件。在这方面,本发明的实施例可以以很多不同形式实现,并不应该被解释为限于在此阐述的实施例。因此,下面通过参照附图仅对实施例进行描述以解释本发明的各方面。
图13示出根据一个或多个实施例的图像传感器1300。
参照图13,图像传感器1300可包括诸如像素1310的多个像素,在图14和图15中还将示出所述像素1310。
多个像素可构成阵列。例如,如果一行包括240个像素并且一列包括320个像素,图像传感器1300可被认为具有320×240分辨率。在这种情况下,这种320×240分辨率图像传感器还可被认为是像素阵列。在实施例中,根据寻址技术,例如,可通过行地址和列地址的组合访问图像传感器1300的每个像素。在示例寻址技术中,可使用单个位线连接包括在单列中的像素。
图14示出根据一个或多个实施例的示出示例滤波器1410和光检测器元件1420的图13的像素1310的截面示例。像素可以是具有单个光检测器元件(例如,单个光电二极管)的元件。
在此,如将在下面更详细的解释,滤波器1410使选择的可视光分量通过而到达光检测器元件1420。在这种情况下,滤波器1410可根据滤波器的类型使可视光分量的特定频带通过。例如,滤波器1410可根据设计的带宽滤波使与红色光相应的频带、与绿色光相应的频带或与蓝色光相应的频带通过。
在RGB环境中,例如,图像传感器1300可具有包括红色滤波器的红色像素、包括绿色滤波器的绿色像素和包括蓝色滤波器的蓝色像素。红色像素、绿色像素和蓝色像素可共同地用于定义图像的颜色像素。在实施例中,这种相关像素可相互相邻。
另外,滤波器1410可以另外使非可视光分量带通通过而到达光检测器元件1420。在一个示例中,滤波器1410可使与非可视光中的红外光相应的频带通过而到达光检测器元件1420。因此,除使可视光通过之外,每个像素还可被设计为使非可视光或至少两个不同的选择的光带通过。
光检测器元件1420可响应于通过滤波器1410的光产生电荷。光检测器元件1420的示例可包括光电二极管。
图15示出图13的像素1310的平面图示例。
参照图15,像素1310可包括光检测器元件1510和***电路1520。光检测器元件1510可占用一半以上的像素1310的面积。例如,***电路1520可将光检测器元件1510产生的光检测器电流或光检测器电荷传输到位线。
图1示出根据一个或多个实施例的诸如图13的图像传感器1300的图像传感器的示例操作。
参照图1,示出图像传感器的16个像素。图像传感器的这种示出应该被理解为多个光感测像素的共址,其中,基于每个像素获得的像素值可最终与图像的相应布置的像素相关联。仅作为示例,在光传感器内表示不同颜色的多个像素的像素值信息可与所述图像的单个像素相关联;如在下面讨论,这种布置可分别从至少三个光感测像素收集红色、绿色和蓝色信息,并且颜色信息可被结合以表示图像的单个像素的红色、绿色和蓝色特性。本发明的实施例还不限于单个图像传感器,可包括使用每个具有一个或多个共址光感测像素的多个图像传感器。
“R”表示的像素被用于获得关于红色的像素值,“G”表示的像素被用于获得关于绿色的像素值,以及“B”表示的像素被用于获得关于蓝色的像素值。在此,“D”表示的每个像素是所述R、G或B像素的集合或组,并被用于获取各个深度值。图像传感器不应限于需要通过像素的这种不同颜色或带宽,而是所有像素可具有产生图像所期望的相同颜色或带宽或者或多或少的颜色或带宽,例如,简单地说,从所述像素收集的信息可被用于除产生图像之外的其它目的。另外,不是所有通过像素的不同颜色或带宽需要在单个图像产生中被激活,例如,在一个或多个R像素随后可被共同地使用以获得深度值的情况下,可能只激活R像素。在此,可同样地使用选择性的实施例并且本发明的实施例不应限于在此描述的实施例或示例。
第一颜色帧110表示当图像传感器获得关于红色、绿色或蓝色的像素图像时的状态。在这种情况下,仅作为示例,单个“R”像素、单个“B”像素和两个“G”像素可形成单个合成颜色像素。由于人的眼睛通常对绿色更敏感,所以通常使用两个“G”像素。这被称为Bayer模式。
第一深度帧120表示当图像传感器获得深度图像时的状态。在这种情况下,仅作为示例,可再次使用形成单个颜色像素的相同的相邻四个像素,但是在这种情况下,所述四个像素被用于形成单个深度像素。可被用于形成图像的单个颜色像素的示例四个像素可形成单个像素组,简要地说,术语“组”不应理解为将像素的组总是限于相邻的像素,组成像素组的像素可不需要相互相邻。由于光电二极管的红外光灵敏度通常低于相同光电二极管的可视光灵敏度,所以总的来说,图像传感器可从示例单个像素组获得单个深度图像。因此,即使光电二极管的红外灵敏度显著地低于可视光灵敏度,图像传感器还可获得深度图像,而不需要使用如传统所需的大尺寸的光电二极管。因此,如图1所示,传统地仅可用于产生各个颜色像素值的相同像素还可(例如,在不同的帧中)用于产生深度像素值。在图1中示出的示例中,四个所述像素被共同地称为像素组,在第一帧中,所述像素组的每个像素被用于产生对各个可视光带的颜色像素值,并且所述像素组的每个像素还可被用于共同地产生深度像素值。
虽然图1的像素阵列示出基于红色、绿色和蓝色的Bayer模式,但实施例不应限于此并可使用各种滤波模式。例如,基于青色(Cyan color)、洋红色(Magenta color)和黄色(Yellow color)的CMY颜色模式可被同样地使用,注意,可同样地使用选择性的示例。
另外,虽然图1示出像素阵列使用例如从光源发射之后由对象反射的红外光来获得深度图像的操作,但是实施例应不限于此,例如,根据另一示例性实施例的图像传感器可使用基于其颜色模式的组合来选择的特定频带的光来获得深度图像。另外,虽然实施例涉及用于检测颜色和深度的图像传感器的像素,但是实施例应不限于此,对于图像产生和/或深度测量之外的不同目的,可同样地使用以例如通过不同帧来检测光的两个不同频带的二重特性来选择像素的传感器。
参照图1,第二颜色帧130表示当图像传感器获得关于红色、绿色和蓝色的像素图像时的另一示例状态,第二深度帧140表示当图像传感器获得深度图像时的状态。在此,虽然示出选择性的状态,但是实施例应不限于此,对不同的目的可同样地实现其它时序技术。
在实施例中,每个像素可包括光检测器元件和滤波器。在所述实施例中,像素R可包括使红光和红外光通过的滤波器,像素G可包括使绿光和红外光通过的滤波器,像素B可包括使蓝光和红外光通过的滤波器。
在与第一颜色帧110相应的时间期间,每个像素可执行关于红色、绿色或蓝色的像素图像的获得,并可随后在与第一深度帧120相应的时间期间执行深度图像的获得。在第一颜色帧110期间,由于每个像素可使红外光以及各红色、绿色或蓝色通过,所以分别通过每个像素的光产生的感测的信息可包括来自红外光的噪声。在此,涉及作为噪声的入射的红外光与第一颜色帧用于收集颜色信息的目的相关。例如,当来自红外光的噪声小时,可直接基于感测信息获得颜色信息。反之,例如,当确定需要消除来自红外光的噪声时,可产生通过适当处理消除了来自红外光的噪声的感测信息,并可基于产生的感测信息获得颜色信息。可自动地执行该处理。仅作为定义在颜色图像检测帧中的红外光的“噪声”的示例,在各个相邻的颜色帧与深度帧之间的像素与像素组的比较可有助于在来自可视光与非可视光的光强度之间进行识别,以确定在颜色图像检测帧期间可入射的红外光的量。以相同的方式,消除关于感测信息的噪声的操作可被称为后置处理。在实施例中,消除在颜色图像检测期间出现的红外光的噪声的后置处理还可在与第一颜色帧110相同的时间被执行。
在图1的示例实施例中,在与第一深度帧120相应的时间期间每个像素帧执行深度图像的获得。由于每个像素可使在从成像装置发射之后由对象反射的红外光以及独立于上述路径的红外光、红色、绿色或蓝色光通过,所以由分别通过每个像素的光反射产生感测信息可包括来自各红光滤波、绿光滤波或蓝光滤波的相应的噪声。在实施例中,图像传感器可在与第一深度帧120相应的时间期间关于感测信息删除来自红光、绿光或蓝光的噪声。例如,图像传感器可使用在与第一颜色帧110相应的时间期间获得的感测信息,即,没有通过后置处理处理的感测信息,从在与第一深度帧120相应的时间期间获得的感测信息,获得来自在从成像装置发射之后由对象反射的红外光的感测信息,从而图像传感器可基于感测的信息获得深度信息。
还可以将平均值作为感测信息使用,通过对与第一颜色帧110和第二颜色帧120相应的时间期间获得的感测信息求平均来计算所述平均值。
因此,图像传感器可使用相同的像素执行颜色模式操作和深度模式操作。由于图像传感器可不需要用于获得深度图像的另外的像素或电路,所以与传统图像传感器比较,可减少图像传感器的面积并增加像素分辨率。另外,图像传感器可从多个像素获取单个深度图像,从而增加深度图像的对红外光的灵敏度和SNR。在这种情况下,仅为了便于描述,假设与获得颜色信息的颜色帧相应的时间段是第一时间段,与深度帧相应的时间段是第二时间段。图像传感器可使用在第一时间段和第二时间段期间获得的颜色信息和深度信息来产生一个3D图像。在产生一个3D图像帧之后,图像传感器还可重复第一时间段和第二时间段以获得另一3D图像帧。再次,仅为了便于描述而引入第一时间段和第二时间段,并且所述第一时间段和第二时间段不应解释为对实施例的限制。
根据实施例,多个像素可共享检测电路的一部分,从而与传统图像传感器比较,减小图像传感器的面积。
图2示出根据一个或多个实施例的图像传感器的等效电路的示例部分。
参照图2,示出与四个像素相应的等效电路。
示出的RST信号是用于执行重置操作的示例信号,ROW信号是用于表示阵列的行被选择的示例信号。示出的TR1、TR2、TR3和TR4信号是用于控制各个像素210、220、230和240的传输操作的另外示例信号。
示出的COL节点是与阵列的列相应的示例位线,示出的AN_BL节点在深度图像产生期间可与TR1、TR2、TR3和TR4互补地被控制。
像素210可被配置为具有光电二极管D1、第一传输晶体管N11、第二传输晶体管N12;像素220可被配置为具有光电二极管D2、第一传输晶体管N21、第二传输晶体管N22;像素230可被配置为具有光电二极管D3、第一传输晶体管N31、第二传输晶体管N32;像素240可被配置为具有光电二极管D4、第一传输晶体管N41、第二传输晶体管N42。在此,实施例包括图像传感器的等效电路的所述部分的配置或产品或作为整体的图像传感器,例如,在半导体装置或用于半导体制造环境中提供元件以产生示例像素210、220、230或240,本领域普通技术人员应该理解最终的配置和部件以及用于制造半导体装置的处理实现在本公开中阐述的各方面。因此,图2还可被理解为在下面更详细示出的图3中讨论的所述半导体装置的示图。
在实施例中,四个像素210、220、230和240还可被配置为共享重置晶体管N51、源极跟随器N61和选择晶体管N62。
像素210的第一传输晶体管N11可被配置为基于TR1信号将光电二极管产生的电荷传输到浮置扩散(Floating Diffusion,FD)节点。在这种情况下,第一传输晶体管N11可被配置为例如基于TR1信号选择性地连接光电二极管D1与FD节点,或将光电二极管D1与FD节点断开。例如,第一传输晶体管N11可***作为电子快门。
因此,像素210的光电二极管可感测光。光电二极管D1可以与特定的滤波器结合以选择性地感测特定波长带的光。其后,光电二极管D1例如基于感测的光可产生电子空穴对(Electron Hole Pair:EHP)。
第一传输晶体管N11的栅极端可被配置为与TR1信号连接,第一传输晶体管N11的漏极端可被配置为与光电二极管D1连接,另外,第一传输晶体管N11的源极端可被配置为与FD节点连接。
根据实施例,光电二极管D1可以是常用光电二极管(n+/psub结构)或PINEED光电二极管(p+/n/psub结构)。当操作时,PINNED光电二极管可保持PINNING电压并减小暗电流。
因此,像素220的光电二极管D2可被配置为基于感测的光产生EHP,像素220的第一传输晶体管N21潜在地配置为基于TR2信号将光电二极管D2产生的电荷传输到FD节点。在这种情况下,第一传输晶体管N21可基于TR2信号选择性地将光电二极管D2与FD节点连接,或将光电二极管D2与FD节点断开。
像素220的第一传输晶体管N21的栅极端可被配置为与TR2信号连接,第一传输晶体管N21的漏极端可被配置为与光电二极管D2连接,另外,第一传输晶体管N21的源极端可被配置为与FD节点连接。
同样地,像素230的光电二极管D3可被配置为基于感测的光产生EHP。像素230的第一传输晶体管N31可被配置为基于TR3信号将光电二极管D3产生的电荷传输到FD节点。在这种情况下,第一传输晶体管N31可基于TR3信号选择性地将光电二极管D3与FD节点连接,或将光电二极管D3与FD节点断开。
像素230的第一传输晶体管N31的栅极端可被配置为与TR3信号连接,第一传输晶体管N31的漏极端可被配置为与光电二极管D3连接,另外,第一传输晶体管N31的源极端可被配置为与FD节点连接。
像素240的光电二极管D4可被配置为基于感测的光产生EHP。像素240的第一传输晶体管N41可被配置为基于TR4信号将光电二极管D4产生的电荷传输到FD节点。在这种情况下,第一传输晶体管N41可再次基于TR4信号选择性地将光电二极管D4与FD节点连接,或将光电二极管D4与FD节点断开。
像素240的第一传输晶体管N41的栅极端可被配置为与TR4信号连接,第一传输晶体管N41的漏极端可被配置为与光电二极管D4连接,另外,第一传输晶体管N41的源极端可被配置为与FD节点连接。
另外,源极跟随器N61的栅极端可被配置为与FD节点连接,源极跟随器N61的漏极端可被配置为与电源VDD连接,以及源极跟随器N61源极端可被配置为与选择晶体管N62连接。
可基于FD节点的电压确定源极跟随器N61的源极端的电压。FD节点的电压还可被配置为根据从像素210、220、230和240中的至少一个传输的电荷量限定。
在该示例中,选择晶体管N62的栅极端可被配置为与行控制信号(即,示例ROW信号)连接,选择晶体管N62的漏极端可被配置为与源极跟随器N61的源极端连接,选择晶体管N62的源极端可以与示例COL节点(即位线)连接。
在此,行控制信号ROW可表示选择被像素210、220、230和240共享的节点FD。当激活行控制信号ROW时,源极跟随器N61和选择晶体管N62可基于FD节点的电压驱动位线。
因此,重置晶体管N51的栅极端可被配置为与RST信号连接,重置晶体管N51的漏极端可被配置为与电源VDD连接,以及重置晶体管N51的源极端可被配置为与FD节点连接。
在基于FD节点的电压像素信息的检测被执行之后,并在激活RST信号时,重置晶体管N51可被配置为将FD节点的电压重置为电源VDD。
通过如上布置,用于获得深度图像的另外过程如下。如上所述,与深度帧相应的图像传感器获得深度图像的时间段被称为第二时间段。
像素210、220、230和240可将基于感测的光产生的电荷传输到FD节点。在这种获得深度图像的情况下,可同时激活TR1、TR2、TR3和TR4信号。
为便于描述,在第二时间段的该深度图像获得处理中,TR1、TR2、TR3和TR4信号全部被激活的时间段还可被称为激活时间段。反之,在第二时间段中的TR1、TR2、TR3和TR4信号全部被停用的时间段可被称为非激活时间段。因此,激活时间段和非激活时间段可以是在与深度帧相应的示例第二时间段中的时间段。
例如,包括具有红外发射能力的传感器或图像传感器的装置的图像传感器(诸如相应配置的相机)可向对象发射红外光以获得距离信息。图像传感器可周期性地执行例如至少一次发射和不发射红外光。
仅作为示例,可将红外发射时间段与激活时间段之间的相差设置为0度、90度、180度等,以获得深度图像。例如,如图5所示,图像传感器可将红外发射时间段与激活时间段匹配,并可将红外非发射时间段与非激活时间段匹配。在这种情况下,图像传感器可感测反射的红外光并获得第一信息。在获得第一信息之后,图像传感器可将红外发射时间段与非激活时间段(在此,红外发射时间段与红外非发射时间段具有180度相差)匹配并将红外非发射周期与激活时间段匹配。在这种情况下,图像传感器可感测反射的红外光并获得第二信息。图像传感器可随后基于第一信息和第二信息获得深度图像。该方法可被称为间接深度图像产生方法。
光电二极管D1至D4可感测反射的红外光并基于感测的红外光产生EHP。在所述示例中,像素210、220、230和240的第一晶体管N11、N21、N31和N41可在激活时间段期间将光电二极管D1、D2、D3和D4产生的电荷传输到FD节点。像素210、220、230和240的第二晶体管N12、N22、N32和N42可在非激活时间段期间将光电二极管D1、D2、D3和D4产生的电荷传输到AN_BL节点。图像传感器可在非激活时间段期间将AN_BL节点的电压保持为电源电压VDD。
反射的红外光产生的EHP的一部分可在激活时间段被传输到FD节点,剩余的EHP可被传输到AN_BL节点。红外光被发射的时间与反射的红外光被感测的时间的时间差被称为飞行时间(TOF)。因此,在激活时间段期间传输到FD节点的EHP的量与由反射的红外光产生的EHP的量的比率可以与TOF相应。
因此,图像传感器将由在非激活时间段期间感测的红外光产生的EHP传输到AN_BL节点。在这种情况下,AN_BL节点可被多个像素共享。AN_BL节点可操作为不被用作产生深度图像的EHP的接收通路(sink path)。
由于第二晶体管N12、N22、N32和N42可在非激活时间段期间灌入或排出不被用于产生深度图像的EHP,所以第二晶体管N12、N22、N32和N42的大小可小于第一晶体管N11、N21、N31和N41的大小。
当获得深度图像时,图像传感器还可存储由四个像素210、220、230和240产生的电荷,从而即使光电二极管D1、D2、D3和D4具有低的红外光灵敏度,也可增加深度图像的灵敏度和SNR。
根据示例性实施例,红外光可在与激活时间段相比极短的时间段内被发射,图像传感器可感测反射的红外光以获得深度图像。在这种情况下,图像传感器可感测反射的红外光并基于感测的红外光产生电荷。产生的电荷可立即通过FD节点和位线输出。图像传感器可使用时间数字转换器(time to digitalconverter)等直接获得关于位线的电压变化的时间与红外光被发射的时间之差的信息。图像传感器可基于时间差信息获得TOF(Time of Flight)。不使用另外的计算操作就可获得深度图像的方法可被称为直接深度图像获得方法。
图像传感器可在不发射红外光的情况下,使用像素210、220、230和240同样地获得颜色图像。
图像传感器可使用像素210获得红色图像。在获得红色图像的时间段中,TR1信号可被激活,并且TR2、TR3和TR4信号可保持停用。在这种情况下,光电二极管D1可与带通滤波器结合从而感测红色光和红外光。
图像传感器可使用像素220获得绿色图像1。在获得绿色图像1的时间段中,TR2信号可被激活,并且TR1、TR3和TR4信号可保持停用。在这种情况下,光电二极管D2可与带通滤波器结合从而感测绿色光和红外光。
图像传感器可使用像素230获得绿色图像2。在获得绿色图像2的时间段中,TR3信号可被激活,并且TR1、TR2和TR4信号可保持停用。在这种情况下,光电二极管D3可与带通滤波器结合,从而感测绿色光和红外光。
图像传感器可使用像素240获得蓝色图像。在获得蓝色图像的时间段中,TR4信号可被激活,并且TR1、TR2和TR3信号可保持停用。在这种情况下,光电二极管D4可与带通滤波器结合从而感测蓝色光和红外光。
图像传感器在获取颜色图像时可使用第二晶体管N12、N22、N32和N42防止开花现象(blooming phenomenon)。当入射光极强时可出现所述开花现象。
图像传感器的像素可包括前述第一传输晶体管和第二传输晶体管,图像传感器的四个像素可共享重置晶体管和两个选择驱动的晶体管。因此,在实施例中,每个像素可被认为包括2.75个晶体管。
根据实施例,特定频带的光可被发射以获得对象的深度图像,当发射的光被对象反射时图像传感器可感测反射的光。被发射以获得深度图像的光可不限于红外光,并且可基于与像素结合的滤波器的特性被确定。
虽然图2示出根据示例性实施例的四个像素共享单个FD节点和多个晶体管的形式,但可根据深度图像的空间分辨率来确定共享单个FD节点的像素的替代的数量。
在实施例中,为了将光电二极管D1产生的电荷传输到FD节点,期望保持与光电二极管D1连接的晶体管N11的漏极端与FD节点之间的相差。当在传输光电二极管D1产生的电荷的同时N11的漏极端的电压和FD节点的电压改变时,光电二极管D1产生的所有电荷可能不被传输到FD节点。基于上述原因,会降低光电二极管D1的灵敏度。
由于当光电二极管D1是PINNED光电二极管时,可根据发射强度确定光电二极管D1的电压低于PINNING电压,所以光电二极管D1的电压可低于FD节点的电压。因此,当光电二极管D1是PINNED光电二极管时,当TR1被激活的同时光电二极管D1产生的所有电荷可被传输到FD节点。在这种情况下,可增加光电二极管D1的灵敏度。
图3示出根据一个或多个实施例的与图2的等效电路图相应的半导体装置的示例的部分截面。
参照图3,图2的光电二极管D1是示例PINNED光电二极管,具有P+/N-/P-基底的结构。
参照图3,图2的晶体管N11的栅极端可被配置为与TR信号连接。晶体管N11的源极端可被配置为与FD节点连接。
参照图3,图2的重置晶体管N51的栅极端还可被配置为与RST信号连接,晶体管N51的漏极端可被配置为与电源VDD连接,晶体管N51的源极端可被配置为与FD节点连接。
图4是示出根据本发明的一个或多个实施例的包括光源和图像传感器的成像装置(例如,相机***)的控制方法的流程。
参照图4,在操作S410,控制方法可重置像素信息。
在操作S410重置之后,在操作S420,可在与颜色帧相应的时间段期间保持红外光不发射。
在操作430,可在例如不发射红外光的情况下基于感测的光获得可视光信息A。如上所述,在操作S430获得可视光信息可包括适当的消除红外光的噪音的后置处理。
在上述第一时间段期间可执行操作S410至S430,并在操作S470基于在操作S430获得的可视光信息A可产生颜色图像。
在操作S430获得可视光信息A之后,在操作S440,成像装置的光源可发射红外光,所述红外光以特定频率被调制。随后,在操作S451,可获得对象反射的红外光信息B1。在这种情况下,仅作为示例,通过与在操作S440中的脉冲具有0度相差的脉冲可执行操作S451。
在执行操作S451之后,在操作S452,成像装置的光源可发射以特定频率调制的红外光。
在操作S453,可获得反射的红外光信息B2。在这种情况下,作为示例,通过与在操作S452中的脉冲具有180度相差的脉冲可执行操作S453。
在操作S454,可基于反射的红外光信息B1和B2产生深度信息。如上所述,在操作S454产生深度信息可包括消除可视光的噪音和可能不是从光源发射的红外光的操作。
在第二时间段期间可执行操作S440至S454,并基于在操作S454产生的深度图像信息可产生深度图像。
例如,在第二时间段期间以及在下一帧图像帧的第一时间段期间可执行操作S460和S470。
可重复执行获得可视光信息A的操作S410至S430和/或产生反射的红外光信息B1和B2的操作S440至S454,通过所述重复执行的操作获得的平均值可被用作合成确定的可视光信息A和红外光信息B1和B2。
图5是示出根据一个或多个实施例的图像传感器(例如,图2的图像传感器)的示例操作的时序图。
参照图5,图像传感器可在获得颜色图像之前激活RST、TR1、TR2、TR3和TR4信号以重置像素210、220、230和240。
图像传感器可将电荷存储在每个光电二极管D1、D2、D3和D4的寄生电容中,在积分时间Tint_color期间感测的光产生所述电荷。
在Tint_color之后,颜色获得时间Tread_color可以开始。Tint_color和Tread_color可形成与颜色帧相应的第一时间段。
在Tread_color之后,图像传感器可激活ROW信号和RST信号以重置FD节点。图像传感器可检测此时FD节点的电压Vrst_color(1)。Vrst_color(1)是重置FD节点的偏置电压,Vrst_color(1)可被用于获得消除了噪音的影响的颜色信息。
在检测Vrst_color(1)之后,图像传感器可激活TR1信号以将存储在光电二极管D1的寄生电容中的电荷传输到FD节点。图像传感器可检测此时FD节点的电压Vsig_color(1)。例如,当光电二极管D1与红色滤波器结合时,电压Vsig_color(1)可以是与红色图像相应的原始数据。
在检测Vsig_color(1)之后,图像传感器可激活RST信号以重置FD节点。图像传感器可检测此时FD节点的Vrst_color(2)。Vrst_color(2)可以是另一偏置电压。
在检测Vrst_color(2)之后,图像传感器可激活TR2信号并将存储在光电二极管D2的寄生电容中的电荷传输到FD节点。图像传感器可检测此时FD节点的电压Vsig_color(2)。例如,当D2与绿色滤波器结合时,电压Vsig_color(2)可以是与绿色图像相应的原始数据。
在检测Vsig_color(2)之后,图像传感器可激活RST信号以重置FD节点。图像传感器可检测此时FD节点的Vrst_color(3)。Vrst_color(3)可以是另一偏置电压。
在检测Vrst_color(3)之后,图像传感器可激活TR3信号并将存储在光电二极管D3的寄生电容中的电荷传输到FD节点。图像传感器可检测此时FD节点的电压Vsig_color(3)。例如,当D3与绿色滤波器结合时,电压Vsig_color(3)可以是与绿色图像相应的原始数据。
在检测Vsig_color(3)之后,图像传感器可激活RST信号以重置FD节点。图像传感器可检测此时FD节点的Vrst_color(4)。Vrst_color(4)可以是另一偏置电压。
在检测Vrst_color(4)之后,图像传感器可激活TR4信号并将存储在光电二极管D4的寄生电容中的电荷传输到FD节点。图像传感器可检测此时FD节点的电压Vsig_color(4)。例如,当D4与蓝色滤波器结合时,电压Vsig_color(4)可以是与蓝色图像相应的原始数据。
在实施例中,图像传感器可对检测的Vrst_color(1)和Vsig_color(1)执行相关双采样(correlated double sampling),并可计算检测的Vrst_color(1)与Vsig_color(1)之差。图像传感器可基于计算的差获得红色图像。
按同样的方式,图像传感器可对检测的Vrst_color(2)和Vsig_color(2)执行相关双采样,并可计算检测的Vrst_color(2)与Vsig_color(2)之差。另外,图像传感器可对检测的Vrst_color(3)和Vsig_color(3)执行相关双采样,并可计算检测的Vrst_color(3)与Vsig_color(3)之差。图像传感器可基于计算的差获得绿色图像。
图像传感器可对检测的Vrst_color(4)和Vsig_color(4)执行相关双采样,并可计算检测的Vrst_color(4)与Vsig_color(4)之差。图像传感器可基于计算的差获得蓝色图像。
图像传感器可分别执行相关双采样,从而消除由每个像素的晶体管的劣化引起的固定模式噪声、1/f噪声等。图像传感器可基于例如PINNED光电二极管的PINNING电压,在Tread_color期间将AN_BL的电压保持在最优电压以帮助防止开花现象的出现。
在获得颜色图像之后,例如在通过特定频率的红外光的调制脉冲发射红外光之后,通过检测被对象反射的红外光可获得对象的深度图像。用于获得深度图像的操作可包括例如第一测量和第二测量。可如下执行第一测量。首先,图像传感器可激活TR信号TR1、TR2、TR3和TR4,以在时间段Tint_depth1期间与调制的红外光脉冲具有相同的相位,并将反射的红外光产生的电荷存储到FD节点。在这种情况下,上述的四个像素210、220、230和240可操作为一个像素。在图5中,与第一测量相应的时间段由时间段Tint_depth1和Tread_depth1表示。图像传感器可在时间段Tread_depth1期间重置FD节点,并同时处理在时间段Tint_depth1期间测量的深度值以产生与第一测量相应的深度信息。与关于可视光的传统光电二极管的灵敏度比较,传统的光电二极管具有关于红外光的明显低的灵敏度。在一个或多个实施例中,为了解决这个问题,图像传感器可将从四个光电二极管D1、D2、D3和D4产生的电荷共同地传输到单个FD节点,从而与单个光电二极管比较,实现对红外光的四倍灵敏度。
在红外光不被发射的时间期间,图像传感器可停用TR信号TR1、TR2、TR3和TR4并保持AN_BL节点的电压为相对高。在红外光不被发射的时间期间产生的电荷可通过第二传输晶体管N12、N22、N32和N42释放到AN_BL节点,从而电荷不被传输到FD节点。图像传感器可在红外光被发射的同时保持AN_BL节点的电压为相对低,从而可防止红外光产生的电荷释放到AN_BL节点。因此,在实施例中,在红外光被发射的同时产生的所有电荷可被传输到FD节点。由于红外脉冲的频率极快,在几MHz至几十MHz范围内,所以发射时间极短并且在该时间段期间发生开花的可能性非常低,因此,在红外光被发射的同时,图像传感器可将AN_BL节点的电压设置为十分的低。另外,例如在所述红外环境中,由于产生的电荷量可能极小,所以图像传感器可在Tint_depth1期间执行N次将电荷传输到FD节点。在该示例中,图像传感器可通过执行N次传输操作在FD节点中积累电荷。在Tint_depth1之后,图像传感器可检测FD节点的电压并重置FD节点以及各光电二极管D1、D2、D3和D4。
可如下执行第二测量。图像传感器可激活TR信号,(TR1、TR2、TR3和TR4)以在时间段Tint_depth2期间与调制的红外光脉冲具有180度的相差,从而可将反射的红外光产生的电荷存储在FD节点中。在实施例中,图像传感器可在Tint_depth2期间执行N次上述操作。
与第二测量相应的时间段可由图5中的Tint_depth2和Tread_depth2表示。在时间段Tread_depth2内,图像传感器可重置FD节点,并同时处理在时间段Tint_depth2期间测量的深度值以产生与第二测量相应的深度信息。
因此,在所述实施例中,图像传感器可控制TR信号在第一测量期间与调制的红外光脉冲具有0度的相差,来检测FD节点的电压,并且还控制TR信号在第二测量期间与调制的红外光脉冲具有180度的相差,来检测FD节点的电压。在这种情况下,根据示例性实施例,90度的相差是可能的。图像传感器可执行第一测量和第二测量,从而可两次检测FD节点的电压并可产生分别与第一测量和第二测量相应的深度信息。通过这种双重检测,图像传感器可消除对象的反射率影响距离的测量的效果,并可基于与第一测量相应的深度信息和与第二测量相应的深度信息产生深度图像。
图6示出根据一个或多个实施例的图5的操作的示例时序。
参照图6,波形610可表示反射的红外光。波形620可表示在Tint_depth1期间授权的TR信号。波形630可表示在Tint_depth2期间授权的TR信号。
示出的Tdep可表示红外光被发射的时间段。波形620和630的每个的阴影区域还可表示反射的红外光产生的电荷中传输到FD节点的电荷量。
示出的TTOF可表示从发射的红外光被对象反射到反射光被图像传感器感测的时间。
在Tint_depth1期间执行的操作可被表示为第一测量,在Tint_depth2期间执行的操作可被表示为第二测量。因此在所述实施例中,图像传感器在第一测量中的时间(Tdep-TTOP)期间将电荷传输到FD节点,并在第二测量中的时间TTOF期间将电荷传输到FD节点。
在示例布置中,光电二极管D1可感测红光以及红外光,光电二极管D2和D3可感测绿光以及红外光,光电二极管D4可感测蓝光以及红外光。因此,例如,可由下式1表示通过第一测量的每个脉冲存储在FD节点中的电荷Qdep1
式1:
Qdep1=Tdep×(ir+ig1+ig2+ib)+(Tdep-TTOF)×iir
在此,ir表示光电二极管D1产生的光电流,ig1表示光电二极管D2产生的光电流,ig2表示光电二极管D3产生的光电流,ib表示光电二极管D4产生的光电流。另外,iir表示光电二极管D1、D2、D3和D4共同地产生的光电流。
例如,可由下式2表示通过第二测量的每个脉冲存储在FD节点中的电荷Qdep2
式2:
Qdep2=Tdep×(ir+ig1+ig2+ib)+TTOF×iir
图像传感器还可使用在时间段Tread_color获得的颜色图像信息消除可视光的影响。当获得颜色时,例如,可通过下式3表示存储的电荷Qcol
式3:
Qcol=Tcol×(ir+ig1+ig2+ib)
在此,Tcol是颜色积分时间,并且Tdep与Tcol之间存在特定的比例关系。例如,可通过式4表示该关系。
式4:
Tdep=k×Tcol
在此,k是比例常数。因此,结合式1、2、3和4,可获得下面的示例式5。
式5:
Q dep 1 - k Q col Q dep 2 - k Q col = T dep - T TOF T TOF
通过整理式5还可获得下面的示例式6。
式6:
T TOF = T dep ( Q dep 2 - k Q col ) Q dep 1 + Q dep 2 - 2 k Q col
图像传感器可使用通过第一测量和第二测量获得的电荷信息计算反射的红外光的TOF,并计算对象与TOF之间以及图像传感器与TOF之间的的距离信息。
图7是根据一个或多个实施例的示出图像传感器(例如,图2的图像传感器)的操作的另一示例的时序图。
在该示例中,提供了示例直接深度图像产生方法以及用于所述方法的时序图。
参照图7,图像传感器可在获得颜色图像之前激活RST信号以重置FD节点的电压。
该示例直接方法可通过使用时间数字转换器(Time-to-digital,TDC)等直接测量发射的光与反射的光之间的时间差来计算距离。为了执行直接方法,可能期望反射的光一到达图像传感器就感测信号,从而图像传感器可使用例如具有高灵敏度的雪崩光电二极管(Avalanche photodiode,APD)。根据实施例,图像传感器可使用在Geiger模式中操作的APD。由于在Geiger模式下增益可接近无穷大,所以可显著地增加灵敏度。例如,光电二极管可以是单光子雪崩二极管(SPAD)。在SPAD中增益非常高,因此即使一个光子进入时,二极管的信号也可能饱和。因此,图像传感器可能需要特殊的读出电路以读取饱和信号。读出电路可将像素的输出提供为脉冲。
图像传感器可在特定频率的光没有被发射时对从每个像素输出的脉冲的数量进行计数,因此可获得颜色信息。图像传感器可基于在Tint_color期间计数的脉冲输出的数量获得颜色信息。像素输出信号表示当可视光或红外光对SPAD起作用时从像素输出的脉冲。脉冲的数量可与光的强度成比例,因此图像传感器可基于脉冲的数量计算颜色图像。
图像传感器可在Tdepth期间基于特定频率的发射的光与特定频率的反射的光之间的时间差获得TOF。
在特定频率的光被发射之后,TDC可提供随着时间逐1增加的输出。当输出响应于感测反射光而产生的脉冲时,TDC值可被固定。然后,图像传感器可读取固定的TDC值。在图像传感器读取TDC值之后,TDC可被重置。
图像传感器可基于TDC的测量的i1计算TOF1。按相同的方式,图像传感器可基于TDC的测量的im计算TOFm
由于可在很短的时间段内执行上述操作,所以在重复TOF的测量m次之后,图像传感器可以取TOF1至TOFm的平均值作为TOF,或选择TOF1至TOFm中频繁测量到的值为TOF。
图8示出根据一个或多个实施例的图像传感器800的等效电路图的部分。
参照图8,光电二极管D1、晶体管N11和晶体管N12可配置为产生第一像素。光电二极管D2、晶体管N21和晶体管N22可配置为产生第二像素,光电二极管D3、晶体管N31和晶体管N32可配置为产生第三像素,以及光电二极管D4、晶体管N41和晶体管N42可配置为产生第四像素。
在该示例中,四个像素可共享FD节点,并且还共享重置晶体管N51、运算放大器810和反馈电容器C1。
可配置重置晶体管N51以基于RST信号重置FD节点的电压。还可配置运算放大器810和反馈电容器C1以形成负反馈回路。在此,例如负反馈回路可将D1、D2、D3和D4产生的所有电荷传输到反馈电容器C1。
虽然,例如在图8的该实施例中的光电二极管D1、D2、D3和D4可以不是PINNED光电二极管,但是使用所述结构不会出现灵敏度的劣化。因此,图像传感器可使用负反馈回路,从而可不需要用于形成PINNED光电二极管的上述示例特殊处理。在此,所述图像传感器可不需要所述PINNED特殊处理,从而降低制造成本。另外,图像传感器可以使多个像素共享形成负反馈回路的运算放大器810和反馈电容器C1,从而减小像素的尺寸。
图9示出根据一个或多个实施例的可在图像传感器中使用的滤波器的示例。在此,示出的滤波器可被理解为例如根据波长选择性地允许光通过的带通滤波器。
参照图9,例如蓝色+红外(IR)滤波器910是可使具有400nm至500nm的波长的蓝光和具有800nm和900nm的波长的红外光通过的滤波器。
例如,绿色+IR滤波器920是可使具有500nm至600nm的波长的绿光和具有800nm和900nm的波长的红外光通过的滤波器。
例如,红色+IR滤波器930是可使具有600nm至700nm的波长的红光和具有800nm和900nm的波长的红外光通过的滤波器。
图像传感器可结合蓝色+IR滤波器910、绿色+IR滤波器920和红色+IR滤波器930来产生R、G和B的颜色图像,并可使用红外光产生深度图像。
例如,L滤波器940是可使具有400nm至900nm的波长的光通过的滤波器。例如,M滤波器950是可使具有500nm至900nm的波长的光通过的滤波器。例如,N滤波器960是可使具有600nm至900nm的波长的光通过的滤波器。L滤波器940、M滤波器950和N滤波器960的特点公开在ISSCC(国际固态电子电路会议)2005第348-349页、作者为M.Kasano的“A2.0-μmPixel Pitch MOS Image Sensor With1.5Transistor/Pixel and an Amorphous SiColor Filter”中。
图像传感器可结合L滤波器940、M滤波器950和N滤波器960来提取光并随后执行矩阵操作以提取R、G和B以及红外光的值。
图10示出根据一个或多个实施例的可在图像传感器中使用的滤波器的其它示例。
参照图10,示出洋红(Mg)、青色(Cy)、黄色(Ye)和绿色(G)滤波器的特点。
例如,Mg滤波器1010是可使具有400nm至500nm波长的蓝色光和具有600nm至700nm的波长的红色光(即洋红色)通过的滤波器。
例如,Cy滤波器1020是可使具有400nm至500nm波长的蓝色光和具有500nm至600nm的波长的绿色光(即青色)通过的滤波器。
例如,Ye滤波器1030是可使具有500nm至600nm波长的绿色光和具有600nm至700nm的波长的蓝色光(即黄色)通过的滤波器。
例如,G滤波器1040是可使具有500nm至600nm波长的绿色光通过的滤波器。
图像传感器可结合来自Mg滤波器1010、Cy滤波器1020、Ye滤波器1030和G滤波器1040的信息以产生颜色图像。例如,图像传感器或与图像传感器结合的图像源(如相机***)还可发射绿光,感测反射的绿光,并获得距离信息以产生深度图像。在这种情况下,图像传感器还可使用除Mg滤波器1010之外的Cy滤波器1020、Ye滤波器1030和G滤波器1040来产生深度图像。
图11共同地示出根据一个或多个实施例的可在图像传感器中使用的滤波器的特点。
参照图11,示出单色(Mono)滤波器1110、蓝色滤波器1120、绿色滤波器1130和红色滤波器1140的特点。图11示出在灰点的数字相机(FireflyMV)中的使用特点。
蓝色1120可使可视光的蓝光带和红外光带通过。绿色1130可使可视光的绿光带和红外光带通过。红色1130可使可视光的红光带和红外光带通过。图像传感器可使用具有850nm波长的红外光获得深度图像。
图12共同地示出根据一个或多个实施例的可在图像传感器中使用的滤波器的特点。
图12的示例滤波器还在ISSCC(国际固态电子电路会议)2005第348-349页、作者为M.Kasano的“A2.0-μm Pixel Pitch MOS Image Sensor With1.5Transistor/Pixel and an Amorphous Si Color Filter”中讨论。
在此,如示出,图像传感器可基于通过Z、Y和W滤波器的光产生的电荷的量计算R、G和B信息。所述计算可被概括为将滤波器的归一化特征转换为R、G和B特征的操作。
根据示例性实施例的图像传感器可提供不需要增加像素的数量就获得颜色图像和深度图像的方法和设备。因此,根据实施例,在此的图像传感器增加像素空间分辨率。
图像传感器可使用红外光或具有特定频率/波长的光(例如,绿光)等以获得深度图像,注意,可同样地使用选择性的实施例。
图像传感器可使用间接方法获得深度图像或使用直接方法获得深度图像。可使用PINNED光电二极管或使用常用光电二极管实现图像传感器。
图像传感器可采用多个像素共享FD节点和检测电路的结构以减小填充因子。基于空间分辨率还可确定共享FD节点和相应的检测电路的像素的数量。
通过记录在计算机可读介质中的计算机可读代码可实现根据本发明的示例性实施例的控制图像传感器的方法。例如,计算机可读代码可包括程序指令,并且可控制至少一个处理装置以实现各种操作。所述介质还可包括数据文件、数据结构等。所述计算机可读介质的示例包括:磁介质(例如,硬盘、软盘、磁带);光介质(例如,CD-ROM盘和DVD);磁光介质(例如,磁光盘);专门配置为存储和执行程序指令的硬件装置(例如,只读存储器(ROM)、随机存取存储器(RAM)、闪存等)。计算机可读代码的示例包括:程序指令(例如,由编译器产生的机器代码、包含可由处理装置使用解释器执行的高级代码的文件)。仅作为示例,处理装置可实现为计算机。
一个或多个实施例示出图像传感器,使用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合装置(ChargeCoupled Device,CCD)可实现所述图像传感器,注意,可同样地使用选择性的实施例。
一个或多个实施例可以是包括可需要深度测量(例如,期望精确深度反馈的医学成像装置或远程操作)的任何应用和相应的装置的成像装置(例如,数字相机、可携式摄像机、便携式通信装置的相机、CCTV等)。另外,应该注意,所述双带宽滤波器图像感测***可以对上述颜色和深度成像应用开放,因此实施例不限于此。
虽然参照本发明的不同实施例具体地示出和描述了本发明的各方面,但应该理解,这些示例性实施例应该解释为仅为描述性的而非限制性的目的。在每个实施例中的特点或方面的描述应通常理解为可用于其余实施例中的其它相似特点或方面。
因此,虽然已表示和描述了本发明的一些实施例以及同样可用的附加的实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本发明的原理和精神的情况下,可以对这些实施例进行修改。

Claims (60)

1.一种图像传感器,包括:
多个像素;
其中,所述多个像素中的每个像素包括各自的光检测器元件和滤波器,各个滤波器被配置为将选择的入射可视光分量带通通过至各个光检测器元件,并将选择的入射非可视光分量带通通过至各个光检测器元件。
2.根据权利要求1所述的图像传感器,其中,各个光检测器元件是光电二极管。
3.根据权利要求1所述的图像传感器,其中,非可视光分量是红外光。
4.根据权利要求1所述的图像传感器,其中,所述多个像素中的至少一个像素包括:使红光分量带通通过并使选择的入射非可视光分量带通通过的滤波器。
5.根据权利要求1所述的图像传感器,其中,所述多个像素中的至少一个像素包括:使绿光分量带通通过并使选择的入射非可视光分量带通通过的滤波器。
6.根据权利要求1所述的图像传感器,其中,所述多个像素中的至少一个像素包括:使蓝光分量带通通过并使选择的入射非可视光分量带通通过的滤波器。
7.根据权利要求1所述的图像传感器,其中,所述多个像素中的至少一个像素包括:使青光分量带通通过并使选择的入射非可视光分量带通通过的滤波器。
8.根据权利要求1所述的图像传感器,其中,所述多个像素中的至少一个像素包括:使洋红光分量带通通过并使选择的入射非可视光分量带通通过的滤波器。
9.根据权利要求1所述的图像传感器,其中,所述多个像素中的至少一个像素包括:使黄光分量带通通过并使选择的入射非可视光分量带通通过的滤波器。
10.根据权利要求1所述的图像传感器,其中,包括在所述多个像素的每个像素中的各个滤波器的面积相同。
11.根据权利要求1所述的图像传感器,其中,所述多个像素被配置为重复的2×2像素组的阵列。
12.根据权利要求11所述的图像传感器,其中,重复的2×2像素组的阵列中的至少一个2×2像素组包括:红色像素、蓝色像素和两个绿色像素。
13.根据权利要求11所述的图像传感器,其中,重复的2×2像素组的阵列中的至少一个2×2像素组包括:青色像素、洋红色像素、黄色像素和绿色像素。
14.根据权利要求1所述的图像传感器,其中,所述多个像素中的每个像素包括:第一传输器,将各个光检测器与各个浮置扩散节点连接;驱动单元,基于浮置扩散节点的电压和行控制信号控制位线的电压;以及第二传输器,将各个光检测器与接收线连接。
15.根据权利要求14所述的图像传感器,其中,所述多个像素中的至少两个像素包括各自第一传输器和相同的浮置扩散节点,其中,所述至少两个像素被配置为选择性地分别将相应的各个光检测器元件与浮置扩散节点连接以及共同地将相应的各个光检测器元件与浮置扩散节点连接。
16.一种成像装置,包括:
光源,产生非可视光分量;和
多个像素,
其中,所述多个像素中的每个像素包括各自光检测器元件和滤波器,各个滤波器被配置为使选择的入射可视光分量带通通过至各个光检测器元件并使选择的入射非可视光带通通过至各个光检测器元件,所述选择的入射非可视光与产生的非可视光分量具有确定的关系。
17.根据权利要求16所述的成像装置,其中,所述多个像素中的每个像素基于各个选择的入射可视光分量分别产生颜色值的指示,并基于选择的入射非可视光分量分别产生深度值的指示。
18.根据权利要求17所述的成像装置,其中,通过将彩色图像的像素与基于各个产生的颜色值指示产生的各个颜色值相互关联来产生彩色图像,通过将深度图像的像素与基于各个产生的深度值指示产生的各个深度值相互关联来产生深度图像。
19.根据权利要求17所述的成像装置,其中,所述多个像素中的每个像素在第一时间段期间产生颜色值的指示并在第二时间段期间产生深度值的指示。
20.根据权利要求19所述的图像成像装置,其中,光源在第二时间段期间选择性地产生非可视光分量。
21.一种图像传感器,包括:
至少一个像素;
其中,所述至少一个像素包括:第一传输器,将光检测器元件与浮置扩散节点连接;驱动单元,基于浮置扩散节点的电压和行控制信号控制位线的电压;以及第二传输器,将光检测器元件与接收线连接。
22.根据权利要求21所述的图像传感器,其中,浮置扩散节点被配置为选择性地电连接到所述至少一个像素的第一传输器和图像传感器的另一个像素的第一传输器。
23.根据权利要求22所述的图像传感器,其中,所述至少一个像素和所述另一个像素被配置为选择性地分别仅将一个光检测器元件与浮置扩散节点连接以及共同地将所述至少一个像素和另一个像素的各个光检测器元件与浮置扩散节点连接。
24.根据权利要求21所述的图像传感器,其中,第一传输器在限定的激活时间段期间将光检测器元件产生的电荷传输到浮置扩散节点,并在限定的非激活时间段期间在光检测器元件与浮置扩散节点之间选择性地产生电连接断开。
25.根据权利要求24所述的图像传感器,其中,第二传输器在激活时间段期间在光检测器元件与接收线之间选择性地产生电连接断开,并在非激活时间段期间将光检测器元件产生的电荷传输到接收线。
26.根据权利要求24所述的图像传感器,其中,第二传输器是晶体管,
其中,所述晶体管的栅极端和源极端分别连接到接收线,所述晶体管的漏极端连接到光检测器元件。
27.根据权利要求24所述的图像传感器,其中,在激活时间段期间,第一传输器将与观察的对象和所述至少一个像素之间的距离相应的电荷量传输到浮置扩散节点。
28.根据权利要求21所述的图像传感器,其中,所述至少一个像素还包括:重置晶体管,根据重置控制信号重置浮置扩散节点的电压。
29.根据权利要求21所述的图像传感器,其中,驱动单元包括驱动晶体管和选择晶体管,
其中,驱动晶体管的栅极端连接到浮置扩散节点,驱动晶体管的漏极端连接到电源,驱动晶体管的源极端连接到选择晶体管的漏极端,以及
其中,选择晶体管的栅极端连接到行控制信号,选择晶体管的源极端连接到位线。
30.根据权利要求21所述的图像传感器,其中,驱动单元包括:放大器,具有负增益;输入端,连接到浮置扩散节点;电容器,连接到放大器的输入端和输出端;重置晶体管,根据重置控制信号重置放大器的输入端与输出端之间的电压差;以及选择晶体管,
其中,选择晶体管的栅极端连接到行控制信号,选择晶体管的漏极端连接到放大器的输出端,选择晶体管的源极端连接到位线。
31.根据权利要求21所述的图像传感器,其中,四个像素共享与任何其它像素分开的单个浮置扩散节点,所述任何其它像素共享任何其它浮置扩散节点。
32.一种成像方法,包括:
在第一时间段期间使用像素感测第一光分量;和
在第二时间段期间使用所述像素感测第二光分量,第一光分量具有与第二光分量不同的光特性。
33.根据权利要求32所述的方法,其中,感测第一光分量的步骤包括测量第一光分量的强度,感测第二光分量的步骤包括感测第二光分量的飞行时间。
34.根据权利要求32所述的方法,其中,第一光分量是可视光分量,第二光分量是非可视光分量。
35.根据权利要求34所述的方法,其中,第二光分量是红外光。
36.根据权利要求32所述的方法,还包括:
基于在第一时间段期间感测的第一光分量产生所述像素的颜色值;和
基于在第二时间段期间感测的第二光分量产生所述像素的深度值。
37.一种成像方法,包括:
在第一时间段期间使用多个共址的像素感测第一光分量;
基于感测第一光分量的结束发射第二光分量,第一光分量具有与第二光分量不同的光特性;
在第二时间段期间使用多个共址像素至少感测从对象发射的第二光分量的反射;以及
从感测的反射光产生对象的深度图像。
38.根据权利要求37所述的方法,其中,感测第一光分量的步骤包括测量第一光分量的幅度,感测第二光分量的步骤包括测量第二光分量的飞行时间。
39.根据权利要求37所述的方法,其中,第一光分量是可视光分量,第二光分量是非可视光分量。
40.根据权利要求39所述的方法,其中,第二光分量是红外光。
41.根据权利要求37所述的方法,还包括:
基于在第一时间段期间感测的第一光分量产生对象的彩色图像。
42.根据权利要求41所述的方法,其中,产生彩色图像的步骤包括:基于各个感测的第一光分量产生对多个共址像素中的每个像素的颜色值,以及通过将多个像素中的每个像素的产生的颜色值与彩色图像的像素相关联而获得对象的彩色图像。
43.根据权利要求41所述的方法,其中,产生彩色图像的步骤包括:基于在第一时间段期间感测的第一光分量产生第一感测信息,以及关于第一感测信息消除由来自另一光分量的影响产生的噪音。
44.根据权利要求42所述的方法,其中,所述另一光分量是第二光分量。
45.根据权利要求37所述的方法,其中,产生对象的深度图像的步骤包括:基于由所述多个共址像素中一个限定组的多个像素同时地和共同地感测的反射光来获得所述多个共址像素中的每个像素的深度值,以及通过将每个限定组的多个像素的深度值与深度图像的像素相关联来产生对象的深度图像。
46.根据权利要求37所述的方法,其中,产生对象的深度图像的步骤包括:基于在第二时间段期间感测的第二光分量来产生第二感测信息,以及关于第二感测信息消除由来自另一光分量的影响产生的噪声。
47.根据权利要求46所述的方法,其中,所述另一光分量是第一光分量。
48.根据权利要求37所述的方法,其中,在发射第二光分量的操作之后执行产生对象的深度图像的步骤,在第二时间段期间感测反射光的步骤被重复与产生深度图像的阈值相等的次数。
49.根据权利要求37所述的方法,其中,在第二时间段期间感测反射的光的步骤包括:传输与通过检测在第二时间段的激活时间段期间感测的反射光产生的电荷相关联的信息,以及释放通过检测在第二时间段的非激活时间段期间感测的反射光产生的电荷。
50.一种图像传感器方法,包括:
将至少一个像素配置为图像传感器,包括:将所述至少一个像素配置为具有光检测器元件和带通滤波器;将所述至少一个像素配置为具有连接光检测器元件与浮置扩散节点的第一传输器;将至少一个像素配置为具有位线信号线、行信号线和驱动单元,其中,驱动单元被配置为基于浮置扩散节点的电压和行信号线上的行控制信号来控制位线信号线上的位线信号的电压;以及将所述至少一个像素配置为具有第二传输器和接收线,光检测器元件配置为连接到接收线。
51.根据权利要求50所述的方法,还包括:将浮置扩散节点配置为选择性地电连接到所述至少一个像素的第一传输器和图像传感器的另一像素的第二传输器。
52.根据权利要求51所述的方法,还包括:将所述至少一个像素和所述另一像素配置为选择性地分别仅将一个光检测器元件连接到浮置扩散节点,以及共同地将所述至少一个像素和所述另一像素的各个光检测器元件连接到浮置扩散节点。
53.根据权利要求50所述的方法,还包括:配置第一传输器以使第一传输器在限定的激活时间段期间将光检测器元件产生的电荷传输到浮置扩散节点,并在限定的非激活时间段期间在光检测器元件与浮置扩散节点之间选择性地产生电连接断开。
54.根据权利要求53所述的方法,还包括:配置第二传输器以使第二传输器在激活时间段期间在光检测器元件与接收线之间选择性地产生电连接断开并在非激活时间段期间将光检测器元件产生的电荷传输到接收线。
55.根据权利要求53所述的方法,还包括:将第二传输器配置为晶体管,以使晶体管的栅极端和源极端分别连接到接收线并使晶体管的漏极端连接到光检测器元件。
56.根据权利要求53所述的方法,还包括:配置第一传输器,从而在激活时间段期间第一传输器将与所述至少一个像素感测的光相应的累积的电荷传输到浮置扩散节点。
57.根据权利要求50所述的方法,还包括:将所述至少一个像素配置为还包括重置晶体管和重置控制线,重置晶体管被配置为根据在重置控制线上的重置控制信号重置浮置扩散节点的电压。
58.根据权利要求50所述的方法,还包括:将驱动单元配置为具有驱动晶体管和选择晶体管,从而驱动晶体管的栅极端连接到浮置扩散节点,驱动晶体管的漏极端连接到电源,驱动晶体管的源极端连接到选择晶体管的漏极端;和
选择晶体管的栅极端连接到行信号线,选择晶体管的源极端连接到位线信号线。
59.根据权利要求50所述的方法,还包括:将驱动单元配置为具有放大器、输入端、电容器和重置晶体管,其中,放大器具有负增益,输入端连接到浮置扩散节点,电容器连接到输入端和放大器的输出端,重置晶体管根据重置控制信号重置输入端与放大器的输出端之间的电压差;以及
将驱动单元配置为具有选择晶体管,以使选择晶体管的栅极端连接到行信号线,选择晶体管的漏极端连接到放大器的输出端,以及选择晶体管的源极端连接到位线信号线。
60.根据权利要求50所述的方法,还包括:将图像传感器配置为具有多组像素,从而所述多组像素中的仅一组像素共享单个浮置扩散节点,并将所述一组像素配置为选择性地将来自形成所述一组像素的各个像素的积累的电荷共同地和单独地传输到单个浮置扩散节点。
CN201310277025.1A 2008-07-25 2009-07-17 成像方法和设备 Active CN103369339B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0072992 2008-07-25
KR1020080072992A KR101467509B1 (ko) 2008-07-25 2008-07-25 이미지 센서 및 이미지 센서 동작 방법
CN2009101403649A CN101635860B (zh) 2008-07-25 2009-07-17 成像设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009101403649A Division CN101635860B (zh) 2008-07-25 2009-07-17 成像设备

Publications (2)

Publication Number Publication Date
CN103369339A true CN103369339A (zh) 2013-10-23
CN103369339B CN103369339B (zh) 2016-12-28

Family

ID=41228399

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310277025.1A Active CN103369339B (zh) 2008-07-25 2009-07-17 成像方法和设备
CN2009101403649A Active CN101635860B (zh) 2008-07-25 2009-07-17 成像设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009101403649A Active CN101635860B (zh) 2008-07-25 2009-07-17 成像设备

Country Status (5)

Country Link
US (2) US8344306B2 (zh)
EP (1) EP2148514A1 (zh)
JP (1) JP5599170B2 (zh)
KR (1) KR101467509B1 (zh)
CN (2) CN103369339B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049754A (zh) * 2014-04-28 2015-11-11 三星电子株式会社 图像处理装置和具有该图像处理装置的移动计算装置
CN105611258A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 图像传感器的成像方法、成像装置和电子装置
CN105991978A (zh) * 2014-08-28 2016-10-05 爱思开海力士有限公司 具有深度检测像素的图像传感器和产生深度数据的方法
CN106303306A (zh) * 2015-06-22 2017-01-04 豪威科技股份有限公司 具有单光子雪崩二极管和传感器平移的成像***,及相关的方法
CN106664354A (zh) * 2014-12-22 2017-05-10 谷歌公司 单片集成的三原色像素阵列和z像素阵列
CN109001927A (zh) * 2018-07-24 2018-12-14 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的空间定位方法
CN113614489A (zh) * 2019-03-21 2021-11-05 砺铸智能装备私人有限公司 使用多个波长的光的单色成像

Families Citing this family (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584982B2 (ja) * 2009-02-09 2014-09-10 ソニー株式会社 固体撮像素子およびカメラシステム
KR101483462B1 (ko) * 2008-08-27 2015-01-16 삼성전자주식회사 깊이 영상 획득 장치 및 방법
US8194149B2 (en) * 2009-06-30 2012-06-05 Cisco Technology, Inc. Infrared-aided depth estimation
US8405751B2 (en) * 2009-08-03 2013-03-26 International Business Machines Corporation Image sensor pixel structure employing a shared floating diffusion
KR101648353B1 (ko) * 2009-09-25 2016-08-17 삼성전자 주식회사 거리 센서를 포함하는 이미지 센서
US20110175981A1 (en) * 2010-01-19 2011-07-21 Chun-Hung Lai 3d color image sensor
KR101108742B1 (ko) * 2010-03-02 2012-02-24 국립대학법인 울산과학기술대학교 산학협력단 투명 적외선 센서를 이용한 단안 3차원 영상 포획 소자
US8279418B2 (en) 2010-03-17 2012-10-02 Microsoft Corporation Raster scanning for depth detection
KR101289269B1 (ko) * 2010-03-23 2013-07-24 한국전자통신연구원 영상 시스템에서 영상 디스플레이 장치 및 방법
US8514269B2 (en) * 2010-03-26 2013-08-20 Microsoft Corporation De-aliasing depth images
US8330804B2 (en) * 2010-05-12 2012-12-11 Microsoft Corporation Scanned-beam depth mapping to 2D image
WO2011162041A1 (ja) * 2010-06-22 2011-12-29 富士フイルム株式会社 撮像装置及び撮像方法
JP5751766B2 (ja) * 2010-07-07 2015-07-22 キヤノン株式会社 固体撮像装置および撮像システム
CN103181160B (zh) * 2010-07-28 2016-06-15 富士胶片株式会社 成像设备和成像方法
US8381976B2 (en) * 2010-08-10 2013-02-26 Honeywell International Inc. System and method for object metrology
US8687174B2 (en) * 2010-08-11 2014-04-01 Samsung Electronics Co., Ltd. Unit pixel, photo-detection device and method of measuring a distance using the same
KR101697519B1 (ko) 2010-09-08 2017-01-19 삼성전자주식회사 깊이 센싱 장치 및 방법
US8548270B2 (en) 2010-10-04 2013-10-01 Microsoft Corporation Time-of-flight depth imaging
KR101925137B1 (ko) 2010-10-29 2018-12-06 삼성전자주식회사 전기 신호를 이용하여 선택적으로 가시광선과 적외선을 투과하는 필터
US8542348B2 (en) * 2010-11-03 2013-09-24 Rockwell Automation Technologies, Inc. Color sensor insensitive to distance variations
EP2667218B1 (de) * 2010-11-15 2017-10-18 Cedes AG Energiespar-3-D-Sensor
EP2466560A1 (en) * 2010-12-20 2012-06-20 Axis AB Method and system for monitoring the accessibility of an emergency exit
KR101887099B1 (ko) * 2010-12-29 2018-08-09 삼성전자주식회사 이미지 처리 시스템 및 이미지 처리 방법
US9076706B2 (en) 2011-01-07 2015-07-07 Samsung Electronics Co., Ltd. Image sensor based on depth pixel structure
US8742309B2 (en) 2011-01-28 2014-06-03 Aptina Imaging Corporation Imagers with depth sensing capabilities
CN103270757B (zh) * 2011-03-11 2015-07-22 富士胶片株式会社 图像传感装置和控制其操作的方法
KR20120105169A (ko) * 2011-03-15 2012-09-25 삼성전자주식회사 복수의 거리 픽셀들을 포함하는 3차원 이미지 센서의 구동 방법
JP5829036B2 (ja) * 2011-03-31 2015-12-09 本田技研工業株式会社 単位画素の信号加算方法
JP5635938B2 (ja) 2011-03-31 2014-12-03 本田技研工業株式会社 固体撮像装置
KR101305885B1 (ko) * 2011-06-24 2013-09-06 엘지이노텍 주식회사 픽셀, 픽셀 어레이, 이를 포함하는 이미지센서 및 그 구동방법
KR101823347B1 (ko) 2011-07-08 2018-02-01 삼성전자주식회사 센서와 이를 포함하는 데이터 처리 시스템
KR101869371B1 (ko) * 2011-07-21 2018-06-21 삼성전자주식회사 거리 측정 방법 및 이를 수행하는 3차원 이미지 센서
KR20130011692A (ko) * 2011-07-22 2013-01-30 삼성전자주식회사 깊이 영상과 컬러 영상을 획득하는 픽셀 구조를 가진 이미지 센서
KR20130015915A (ko) 2011-08-05 2013-02-14 에스케이하이닉스 주식회사 이미지 센서
US10015471B2 (en) 2011-08-12 2018-07-03 Semiconductor Components Industries, Llc Asymmetric angular response pixels for single sensor stereo
TWI575494B (zh) * 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 半導體裝置的驅動方法
KR101709282B1 (ko) 2011-11-15 2017-02-24 삼성전자주식회사 이미지 센서, 이의 동작 방법, 및 이를 포함하는 장치들
KR101334099B1 (ko) * 2011-11-17 2013-11-29 (주)실리콘화일 이중 감지 기능을 가지는 기판 적층형 이미지 센서
WO2013099537A1 (en) 2011-12-26 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Motion recognition device
WO2013099723A1 (ja) * 2011-12-27 2013-07-04 ソニー株式会社 撮像素子、撮像装置、電子機器および撮像方法
US8642938B2 (en) * 2012-01-13 2014-02-04 Omnivision Technologies, Inc. Shared time of flight pixel
EP2624172A1 (en) * 2012-02-06 2013-08-07 STMicroelectronics (Rousset) SAS Presence detection device
JP6029286B2 (ja) 2012-02-17 2016-11-24 キヤノン株式会社 光電変換装置および撮像システム
US9554115B2 (en) 2012-02-27 2017-01-24 Semiconductor Components Industries, Llc Imaging pixels with depth sensing capabilities
US8686367B2 (en) 2012-03-01 2014-04-01 Omnivision Technologies, Inc. Circuit configuration and method for time of flight sensor
WO2013133143A1 (en) 2012-03-09 2013-09-12 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
KR20140009774A (ko) * 2012-07-13 2014-01-23 삼성전자주식회사 3d 이미지 센서 및 이를 포함하는 시스템
US8988598B2 (en) * 2012-09-14 2015-03-24 Samsung Electronics Co., Ltd. Methods of controlling image sensors using modified rolling shutter methods to inhibit image over-saturation
KR101938648B1 (ko) 2012-10-23 2019-01-15 삼성전자주식회사 이미지 센서를 포함하는 모바일 기기, 이미지 센서의 구동 방법 및 모바일 기기의 구동 방법
KR101932587B1 (ko) 2012-11-20 2018-12-26 삼성전자주식회사 컬러-깊이 디모자이킹 영상 처리 장치 및 방법
KR102070778B1 (ko) 2012-11-23 2020-03-02 엘지전자 주식회사 Rgb-ir 센서 및 이를 이용한 3차원 영상 획득 방법 및 장치
JP6145826B2 (ja) 2013-02-07 2017-06-14 パナソニックIpマネジメント株式会社 撮像装置及びその駆動方法
KR102007279B1 (ko) 2013-02-08 2019-08-05 삼성전자주식회사 3차원 이미지 센서의 거리 픽셀, 이를 포함하는 3차원 이미지 센서 및 3차원 이미지 센서의 거리 픽셀의 구동 방법
US20140347442A1 (en) * 2013-05-23 2014-11-27 Yibing M. WANG Rgbz pixel arrays, imaging devices, controllers & methods
US9247109B2 (en) 2013-03-15 2016-01-26 Samsung Electronics Co., Ltd. Performing spatial and temporal image contrast detection in pixel array
WO2014156018A1 (ja) * 2013-03-29 2014-10-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 推定装置、推定方法、集積回路およびプログラム
JP6368115B2 (ja) * 2013-05-10 2018-08-01 キヤノン株式会社 固体撮像装置およびカメラ
WO2015011869A1 (ja) * 2013-07-23 2015-01-29 パナソニックIpマネジメント株式会社 撮像装置及びその駆動方法
US9182490B2 (en) 2013-11-27 2015-11-10 Semiconductor Components Industries, Llc Video and 3D time-of-flight image sensors
KR102153045B1 (ko) 2013-12-04 2020-09-07 삼성전자주식회사 파장 분리 소자 및 이를 포함하는 3차원 영상 획득 장치
CN103796001B (zh) * 2014-01-10 2015-07-29 深圳奥比中光科技有限公司 一种同步获取深度及色彩信息的方法及装置
KR102277309B1 (ko) * 2014-01-29 2021-07-14 엘지이노텍 주식회사 깊이 정보 추출 장치 및 방법
KR102158212B1 (ko) * 2014-02-05 2020-09-22 엘지전자 주식회사 입체적 형상을 감지하기 위한 카메라 및 그것의 제어 방법
JP6366325B2 (ja) * 2014-03-28 2018-08-01 キヤノン株式会社 撮像システム
US9729809B2 (en) 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
CN105313782B (zh) * 2014-07-28 2018-01-23 现代摩比斯株式会社 车辆行驶辅助***及其方法
US9627424B2 (en) * 2014-11-19 2017-04-18 Silicon Laboratories Inc. Photodiodes for ambient light sensing and proximity sensing
GB201421512D0 (en) 2014-12-03 2015-01-14 Melexis Technologies Nv A semiconductor pixel unit for simultaneously sensing visible light and near-infrared light, and a semiconductor sensor comprising same
US9871065B2 (en) * 2014-12-22 2018-01-16 Google Inc. RGBZ pixel unit cell with first and second Z transfer gates
US9741755B2 (en) * 2014-12-22 2017-08-22 Google Inc. Physical layout and structure of RGBZ pixel cell unit for RGBZ image sensor
US9591247B2 (en) 2014-12-22 2017-03-07 Google Inc. Image sensor having an extended dynamic range upper limit
US9425233B2 (en) * 2014-12-22 2016-08-23 Google Inc. RGBZ pixel cell unit for an RGBZ image sensor
TWI585726B (zh) * 2015-03-25 2017-06-01 鴻海精密工業股份有限公司 畫素結構
TWI696278B (zh) 2015-03-31 2020-06-11 日商新力股份有限公司 影像感測器、攝像裝置及電子機器
US11076115B2 (en) * 2015-04-14 2021-07-27 Sony Corporation Solid-state imaging apparatus, imaging system, and distance measurement method
US9921298B2 (en) * 2015-07-20 2018-03-20 Google Llc Method and apparatus for increasing the resolution of a time of flight pixel array
EP3136528B1 (de) * 2015-08-31 2020-04-22 Siemens Aktiengesellschaft Differentialschutzverfahren, differentialschutzeinrichtung und differentialschutzsystem
KR102497281B1 (ko) 2015-08-31 2023-02-08 삼성디스플레이 주식회사 표시 장치, 헤드 마운트 표시 장치, 및 화상 표시 방법
US10663608B2 (en) * 2015-09-21 2020-05-26 Shanghai United Imaging Healthcare Co., Ltd. System and method for calibrating a PET scanner
CN105306796A (zh) * 2015-10-10 2016-02-03 安霸半导体技术(上海)有限公司 具有定期红外照明和全局快门cmos传感器的夜视设备
US10942261B2 (en) 2015-10-21 2021-03-09 Samsung Electronics Co., Ltd Apparatus for and method of range sensor based on direct time-of-flight and triangulation
JP6823815B2 (ja) * 2015-12-08 2021-02-03 パナソニックIpマネジメント株式会社 固体撮像装置、距離測定装置および距離測定方法
JP2017118191A (ja) * 2015-12-21 2017-06-29 ソニー株式会社 撮像素子及びその駆動方法、並びに撮像装置
KR102512729B1 (ko) * 2015-12-24 2023-03-22 엘지전자 주식회사 야간 영상표시 장치 및 그 영상처리 방법
CN107275359B (zh) 2016-04-08 2021-08-13 乐金显示有限公司 有机发光显示装置
US11462581B2 (en) 2016-05-31 2022-10-04 BAE Systems Imaging Solutions Inc. Photodetector adapted to provide additional color information
KR102301744B1 (ko) * 2016-06-15 2021-09-14 소니그룹주식회사 촬영 장치, 촬영 방법, 프로그램
KR102523377B1 (ko) * 2016-07-15 2023-04-20 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이를 포함하는 두부 장착 표시 시스템
KR102538172B1 (ko) 2016-08-30 2023-05-31 삼성전자주식회사 데이터 출력 장치
KR102549621B1 (ko) * 2016-09-02 2023-06-28 삼성전자주식회사 반도체 장치
FR3056332A1 (fr) * 2016-09-21 2018-03-23 Stmicroelectronics (Grenoble 2) Sas Dispositif comportant un capteur d'image 2d et un capteur de profondeur
GB2555585A (en) * 2016-10-31 2018-05-09 Nokia Technologies Oy Multiple view colour reconstruction
CN106657826B (zh) * 2016-12-08 2019-08-13 中国科学院上海高等研究院 一种单光子雪崩二极管型像素电路
US10616519B2 (en) 2016-12-20 2020-04-07 Microsoft Technology Licensing, Llc Global shutter pixel structures with shared transfer gates
US10389957B2 (en) 2016-12-20 2019-08-20 Microsoft Technology Licensing, Llc Readout voltage uncertainty compensation in time-of-flight imaging pixels
US10075663B2 (en) 2017-01-20 2018-09-11 Semiconductor Components Industries, Llc Phase detection pixels with high speed readout
US10271037B2 (en) 2017-01-20 2019-04-23 Semiconductor Components Industries, Llc Image sensors with hybrid three-dimensional imaging
US10527728B2 (en) * 2017-01-27 2020-01-07 Samsung Electronics Co., Ltd Apparatus and method for range measurement
JP6881074B2 (ja) 2017-06-22 2021-06-02 株式会社デンソー 光検出器
WO2019014494A1 (en) * 2017-07-13 2019-01-17 Apple Inc. EARLY-DELAYED PULSE COUNTING FOR DEPTH SENSORS EMITTING LIGHT
US10593712B2 (en) * 2017-08-23 2020-03-17 Semiconductor Components Industries, Llc Image sensors with high dynamic range and infrared imaging toroidal pixels
JP7100518B2 (ja) * 2017-08-31 2022-07-13 キヤノン株式会社 固体撮像素子及び撮像装置
EP3451655B1 (en) * 2017-08-31 2020-10-21 Canon Kabushiki Kaisha Solid-state image sensor and image capture apparatus
KR102016942B1 (ko) 2017-09-20 2019-09-02 연세대학교 산학협력단 차량용 라이다 센서 및 라이다 센서의 동작 방법
US10580807B2 (en) 2017-10-24 2020-03-03 Stmicroelectronics, Inc. Color pixel and range pixel combination unit
CN107742631B (zh) * 2017-10-26 2020-02-14 京东方科技集团股份有限公司 深度摄像器件及制造方法、显示面板及制造方法、装置
US11758111B2 (en) * 2017-10-27 2023-09-12 Baidu Usa Llc 3D lidar system using a dichroic mirror for autonomous driving vehicles
US10545224B2 (en) 2017-12-06 2020-01-28 Samsung Electronics Co., Ltd. Time-resolving sensor using SPAD + PPD or capacitors in pixel for range measurement
IL308768A (en) 2017-12-13 2024-01-01 Magic Leap Inc A general shutter pixel circuit and method for computer vision applications
CN108497839B (zh) * 2017-12-18 2021-04-09 上海云拿智能科技有限公司 可感知货品的货架
US11658193B2 (en) 2018-01-23 2023-05-23 Samsung Electronics Co., Ltd. Image sensor
KR20190089694A (ko) * 2018-01-23 2019-07-31 삼성전자주식회사 이미지 센서
US10714517B2 (en) * 2018-01-23 2020-07-14 Samsung Electronics Co., Ltd. Image sensor
KR102643112B1 (ko) * 2018-03-30 2024-02-29 삼성전자주식회사 전자 디바이스 및 그 제어 방법
KR101965529B1 (ko) 2018-04-06 2019-04-03 한양대학교 산학협력단 양자점층을 포함하는 듀얼 이미지 센서
US10942274B2 (en) * 2018-04-11 2021-03-09 Microsoft Technology Licensing, Llc Time of flight and picture camera
CN110603457A (zh) * 2018-04-12 2019-12-20 深圳市汇顶科技股份有限公司 影像传感***及电子装置
US10598936B1 (en) * 2018-04-23 2020-03-24 Facebook Technologies, Llc Multi-mode active pixel sensor
US10340408B1 (en) 2018-05-17 2019-07-02 Hi Llc Non-invasive wearable brain interface systems including a headgear and a plurality of self-contained photodetector units configured to removably attach to the headgear
US10515993B2 (en) 2018-05-17 2019-12-24 Hi Llc Stacked photodetector assemblies
US10158038B1 (en) 2018-05-17 2018-12-18 Hi Llc Fast-gated photodetector architectures comprising dual voltage sources with a switch configuration
US10420498B1 (en) 2018-06-20 2019-09-24 Hi Llc Spatial and temporal-based diffusive correlation spectroscopy systems and methods
US11213206B2 (en) 2018-07-17 2022-01-04 Hi Llc Non-invasive measurement systems with single-photon counting camera
CN108900772A (zh) * 2018-07-19 2018-11-27 维沃移动通信有限公司 一种移动终端及图像拍摄方法
EP3605606B1 (en) * 2018-08-03 2022-06-15 ams Sensors Belgium BVBA Imaging system comprising an infrared light source and an image sensor
US10760957B2 (en) 2018-08-09 2020-09-01 Ouster, Inc. Bulk optics for a scanning array
US10739189B2 (en) * 2018-08-09 2020-08-11 Ouster, Inc. Multispectral ranging/imaging sensor arrays and systems
CN109005326B (zh) * 2018-08-30 2021-03-26 Oppo广东移动通信有限公司 成像装置及电子设备
US11435476B2 (en) * 2018-10-12 2022-09-06 Microsoft Technology Licensing, Llc Time-of-flight RGB-IR image sensor
US11006876B2 (en) 2018-12-21 2021-05-18 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
JP2022522952A (ja) * 2019-01-15 2022-04-21 エコール ポリテクニーク フェデラル デ ローザンヌ (イーピーエフエル) 飛行時間型装置および3d光学検出器
US11813041B2 (en) 2019-05-06 2023-11-14 Hi Llc Photodetector architectures for time-correlated single photon counting
WO2020236371A1 (en) 2019-05-21 2020-11-26 Hi Llc Photodetector architectures for efficient fast-gating
CA3137921A1 (en) 2019-06-06 2020-12-10 Hi Llc Photodetector systems with low-power time-to-digital converter architectures
CN110398477B (zh) * 2019-07-03 2022-06-24 香港光云科技有限公司 材质分类及识别方法
CN110441784A (zh) * 2019-08-27 2019-11-12 浙江舜宇光学有限公司 深度图像成像***和方法
CN112461154B (zh) * 2019-09-09 2023-11-10 睿镞科技(北京)有限责任公司 3d成像方法、装置和深度相机
CN111048540B (zh) * 2019-11-15 2023-07-21 西安电子科技大学 一种门控式像素单元以及3d图像传感器
US11079515B2 (en) 2019-12-18 2021-08-03 Microsoft Technology Licensing, Llc Micro lens time-of-flight sensor having micro lens heights that vary based on image height
US11630310B2 (en) 2020-02-21 2023-04-18 Hi Llc Wearable devices and wearable assemblies with adjustable positioning for use in an optical measurement system
WO2021167890A1 (en) 2020-02-21 2021-08-26 Hi Llc Wearable module assemblies for an optical measurement system
US11515014B2 (en) 2020-02-21 2022-11-29 Hi Llc Methods and systems for initiating and conducting a customized computer-enabled brain research study
US11969259B2 (en) 2020-02-21 2024-04-30 Hi Llc Detector assemblies for a wearable module of an optical measurement system and including spring-loaded light-receiving members
US11950879B2 (en) 2020-02-21 2024-04-09 Hi Llc Estimation of source-detector separation in an optical measurement system
US11883181B2 (en) 2020-02-21 2024-01-30 Hi Llc Multimodal wearable measurement systems and methods
US11771362B2 (en) 2020-02-21 2023-10-03 Hi Llc Integrated detector assemblies for a wearable module of an optical measurement system
US12029558B2 (en) 2020-02-21 2024-07-09 Hi Llc Time domain-based optical measurement systems and methods configured to measure absolute properties of tissue
US11819311B2 (en) 2020-03-20 2023-11-21 Hi Llc Maintaining consistent photodetector sensitivity in an optical measurement system
US11645483B2 (en) 2020-03-20 2023-05-09 Hi Llc Phase lock loop circuit based adjustment of a measurement time window in an optical measurement system
US11903676B2 (en) 2020-03-20 2024-02-20 Hi Llc Photodetector calibration of an optical measurement system
US11187575B2 (en) 2020-03-20 2021-11-30 Hi Llc High density optical measurement systems with minimal number of light sources
US11857348B2 (en) 2020-03-20 2024-01-02 Hi Llc Techniques for determining a timing uncertainty of a component of an optical measurement system
US11245404B2 (en) 2020-03-20 2022-02-08 Hi Llc Phase lock loop circuit based signal generation in an optical measurement system
US11864867B2 (en) 2020-03-20 2024-01-09 Hi Llc Control circuit for a light source in an optical measurement system by applying voltage with a first polarity to start an emission of a light pulse and applying voltage with a second polarity to stop the emission of the light pulse
US11877825B2 (en) 2020-03-20 2024-01-23 Hi Llc Device enumeration in an optical measurement system
WO2021188487A1 (en) 2020-03-20 2021-09-23 Hi Llc Temporal resolution control for temporal point spread function generation in an optical measurement system
US11443447B2 (en) 2020-04-17 2022-09-13 Samsung Electronics Co., Ltd. Three-dimensional camera system
CN111584673A (zh) * 2020-05-22 2020-08-25 成都天马微电子有限公司 传感器、传感器的制造方法及电子设备
US11941857B2 (en) 2020-05-26 2024-03-26 Hi Llc Systems and methods for data representation in an optical measurement system
TWI773133B (zh) * 2020-07-10 2022-08-01 大陸商廣州印芯半導體技術有限公司 測距裝置以及測距方法
US11789533B2 (en) 2020-09-22 2023-10-17 Hi Llc Synchronization between brain interface system and extended reality system
TW202213978A (zh) * 2020-09-28 2022-04-01 大陸商廣州印芯半導體技術有限公司 影像感測裝置以及影像感測方法
US11954877B2 (en) * 2020-12-08 2024-04-09 Zoox, Inc. Depth dependent pixel filtering
WO2022150155A1 (en) 2021-01-06 2022-07-14 Hi Llc Devices, systems, and methods using wearable time domain-based activity tracker
KR20220105292A (ko) * 2021-01-20 2022-07-27 에스케이하이닉스 주식회사 이미지 센싱 장치 및 그의 동작 방법
CN112887577A (zh) * 2021-02-08 2021-06-01 革点科技(深圳)有限公司 一种抗环境光的rgb-d三维相机
WO2022182526A1 (en) 2021-02-26 2022-09-01 Hi Llc Brain activity tracking during electronic gaming
US11543885B2 (en) 2021-05-26 2023-01-03 Hi Llc Graphical emotion symbol determination based on brain measurement data for use during an electronic messaging session
US20230035088A1 (en) * 2021-07-29 2023-02-02 Omnivision Technologies, Inc. Readout architectures for dark current reduction in indirect time-of-flight sensors
US11658201B2 (en) 2021-08-25 2023-05-23 Silead Inc. Dual conversion gain image sensor pixels
WO2023180021A1 (en) * 2022-03-21 2023-09-28 Sony Semiconductor Solutions Corporation Time-of-flight system and method
CN117221686A (zh) * 2022-05-30 2023-12-12 华为技术有限公司 一种图像传感器的像素和图像传感器
WO2024071091A1 (ja) * 2022-09-27 2024-04-04 ヌヴォトンテクノロジージャパン株式会社 撮像装置、測距装置及び撮像装置の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030052252A1 (en) * 2001-09-20 2003-03-20 Toshinobu Sugiyama Solid-state image pickup apparatus and control method thereof
US20040196398A1 (en) * 2001-06-08 2004-10-07 Eiko Doering Cmos image sensor and method for operating a cmos image sensor with increased dynamic range
CN1538528A (zh) * 2003-04-07 2004-10-20 ���µ�����ҵ��ʽ���� 固态成像装置、信号处理装置、摄像机及光谱装置
CN1574383A (zh) * 2003-06-17 2005-02-02 摩托罗拉公司 宽频带光感像素阵列
CN101162724A (zh) * 2006-10-13 2008-04-16 美格纳半导体有限会社 具有改进的色串扰的图像传感器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204445A (ja) 1993-01-01 1994-07-22 Canon Inc 光センサ及びそれを有する画像情報処理装置
JP2000196961A (ja) * 1998-12-28 2000-07-14 Canon Inc 撮像装置
EP1214609B1 (en) 1999-09-08 2004-12-15 3DV Systems Ltd. 3d imaging system
JP2001337166A (ja) * 2000-05-26 2001-12-07 Minolta Co Ltd 3次元入力方法および3次元入力装置
JP4453189B2 (ja) 2000-10-31 2010-04-21 株式会社豊田中央研究所 撮像装置
AU2001218821A1 (en) 2000-12-14 2002-06-24 3Dv Systems Ltd. 3d camera
KR100454447B1 (ko) 2002-02-07 2004-10-28 주식회사 네오콤 일체형 ccd카메라
JP2003324751A (ja) * 2002-05-07 2003-11-14 Toshiba Corp 情報入力装置
US6946715B2 (en) * 2003-02-19 2005-09-20 Micron Technology, Inc. CMOS image sensor and method of fabrication
JP4057996B2 (ja) 2003-12-15 2008-03-05 株式会社東芝 固体撮像装置およびそれを利用した撮像システム
JP3906202B2 (ja) * 2003-12-15 2007-04-18 株式会社東芝 固体撮像装置およびそれを利用した撮像システム
JP4665422B2 (ja) * 2004-04-02 2011-04-06 ソニー株式会社 撮像装置
JP2005309072A (ja) 2004-04-21 2005-11-04 Fujinon Corp 可視光・赤外光撮影用アダプター
JP2006067194A (ja) 2004-08-26 2006-03-09 Hitachi Kokusai Electric Inc 固体撮像装置
US20060065811A1 (en) * 2004-09-27 2006-03-30 Hongil Yoon Wide dynamic range CMOS image sensor having controllabale photo-response characteristic and control method thereof
JP4882297B2 (ja) 2004-12-10 2012-02-22 ソニー株式会社 物理情報取得装置、半導体装置の製造方法
KR100598015B1 (ko) * 2005-02-07 2006-07-06 삼성전자주식회사 공유 구조 상보성 금속 산화막 반도체 액티브 픽셀 센서어레이의 레이 아웃
US7262402B2 (en) 2005-02-14 2007-08-28 Ecole Polytechnique Federal De Lausanne Integrated imager circuit comprising a monolithic array of single photon avalanche diodes
JP4997794B2 (ja) 2006-03-08 2012-08-08 ソニー株式会社 固体撮像素子
US7638852B2 (en) * 2006-05-09 2009-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making wafer structure for backside illuminated color image sensor
JP2007311447A (ja) 2006-05-17 2007-11-29 Sanyo Electric Co Ltd 光電変換装置
US8106348B2 (en) * 2006-06-07 2012-01-31 Polyvalor, Limited Partnership Wavelength detection based on depth penetration for color image sensing
KR20080029051A (ko) 2006-09-28 2008-04-03 엠텍비젼 주식회사 이미지 센서를 구비한 장치 및 영상 획득 방법
JP5058632B2 (ja) * 2007-03-02 2012-10-24 キヤノン株式会社 撮像装置
US7935560B2 (en) * 2007-09-06 2011-05-03 International Business Machines Corporation Imagers having electrically active optical elements
US8456517B2 (en) * 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
US8717416B2 (en) * 2008-09-30 2014-05-06 Texas Instruments Incorporated 3D camera using flash with structured light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040196398A1 (en) * 2001-06-08 2004-10-07 Eiko Doering Cmos image sensor and method for operating a cmos image sensor with increased dynamic range
US20030052252A1 (en) * 2001-09-20 2003-03-20 Toshinobu Sugiyama Solid-state image pickup apparatus and control method thereof
CN1538528A (zh) * 2003-04-07 2004-10-20 ���µ�����ҵ��ʽ���� 固态成像装置、信号处理装置、摄像机及光谱装置
CN1574383A (zh) * 2003-06-17 2005-02-02 摩托罗拉公司 宽频带光感像素阵列
CN101162724A (zh) * 2006-10-13 2008-04-16 美格纳半导体有限会社 具有改进的色串扰的图像传感器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291872B2 (en) 2014-04-28 2019-05-14 Samsung Electronics Co., Ltd. Image processing device and mobile computing device having the same
US11477409B2 (en) 2014-04-28 2022-10-18 Samsung Electronics Co., Ltd. Image processing device and mobile computing device having the same
US11159758B2 (en) 2014-04-28 2021-10-26 Samsung Electronics Co., Ltd. Image processing device and mobile computing device having the same
CN105049754A (zh) * 2014-04-28 2015-11-11 三星电子株式会社 图像处理装置和具有该图像处理装置的移动计算装置
CN105049754B (zh) * 2014-04-28 2020-02-18 三星电子株式会社 图像处理装置和具有该图像处理装置的移动计算装置
CN105991978A (zh) * 2014-08-28 2016-10-05 爱思开海力士有限公司 具有深度检测像素的图像传感器和产生深度数据的方法
CN105991978B (zh) * 2014-08-28 2018-07-17 爱思开海力士有限公司 具有深度检测像素的图像传感器和产生深度数据的方法
CN106664354A (zh) * 2014-12-22 2017-05-10 谷歌公司 单片集成的三原色像素阵列和z像素阵列
US10291870B2 (en) 2014-12-22 2019-05-14 Google Llc Monolithically integrated RGB pixel array and Z pixel array
US10368022B2 (en) 2014-12-22 2019-07-30 Google Llc Monolithically integrated RGB pixel array and Z pixel array
CN106303306B (zh) * 2015-06-22 2019-03-26 豪威科技股份有限公司 具有单光子雪崩二极管和传感器平移的成像***,及相关的方法
CN106303306A (zh) * 2015-06-22 2017-01-04 豪威科技股份有限公司 具有单光子雪崩二极管和传感器平移的成像***,及相关的方法
CN105611258A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 图像传感器的成像方法、成像装置和电子装置
CN109001927A (zh) * 2018-07-24 2018-12-14 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的空间定位方法
CN109001927B (zh) * 2018-07-24 2021-10-01 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的空间定位方法
US11637149B2 (en) 2018-07-24 2023-04-25 Boe Technology Group Co., Ltd. Array substrate, display device and spatial positioning method of display device
CN113614489A (zh) * 2019-03-21 2021-11-05 砺铸智能装备私人有限公司 使用多个波长的光的单色成像

Also Published As

Publication number Publication date
CN101635860A (zh) 2010-01-27
US8633431B2 (en) 2014-01-21
JP2010035168A (ja) 2010-02-12
US20130120623A1 (en) 2013-05-16
EP2148514A1 (en) 2010-01-27
CN103369339B (zh) 2016-12-28
KR20100011676A (ko) 2010-02-03
US20100020209A1 (en) 2010-01-28
CN101635860B (zh) 2013-11-20
US8344306B2 (en) 2013-01-01
KR101467509B1 (ko) 2014-12-01
JP5599170B2 (ja) 2014-10-01

Similar Documents

Publication Publication Date Title
CN101635860B (zh) 成像设备
US8785982B2 (en) Pixel for depth sensor and image sensor including the pixel
TWI627864B (zh) 在影像感測器中具有斜面產生器隔離之水平條帶減少
US7521661B2 (en) Driving an image sensor with reduced area and high image quality
US11979673B2 (en) Image sensor with a plurality of super-pixels
US6970195B1 (en) Digital image sensor with improved color reproduction
US7817198B2 (en) Active pixel array of CMOS image sensor
US9229096B2 (en) Time-of-flight imaging systems
US8299513B2 (en) High conversion gain image sensor
US8462247B2 (en) Single gate pixel and operation method of single gate pixel
US9264643B1 (en) Methods and circuitries for pixel sampling
EP2874388B1 (en) Method for avoiding pixel saturation
US10785432B2 (en) Image sensor
US10887536B2 (en) Image sensor with reduced noise
CN103369268A (zh) 固态成像装置、输出成像信号的方法和电子装置
CN101981694A (zh) 用于高动态范围图像传感器感测阵列的***和方法
KR19990063505A (ko) 촬상 장치, 화상 신호 판독 방법 및 화상신호 처리 시스템
CN102629996B (zh) 彩色的时间延时积分型cmos图像传感器
Findlater et al. A CMOS image sensor employing a double junction photodiode
US20230388666A1 (en) Image sensor circuit and image sensor device
Shen et al. Global shutter efficiency improvement to> 100 dB in advanced global shutter imager with correction processing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant