CN103324847B - 电力***动态不良数据检测与辨识方法 - Google Patents

电力***动态不良数据检测与辨识方法 Download PDF

Info

Publication number
CN103324847B
CN103324847B CN201310237624.0A CN201310237624A CN103324847B CN 103324847 B CN103324847 B CN 103324847B CN 201310237624 A CN201310237624 A CN 201310237624A CN 103324847 B CN103324847 B CN 103324847B
Authority
CN
China
Prior art keywords
measurement
state
node
bad data
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310237624.0A
Other languages
English (en)
Other versions
CN103324847A (zh
Inventor
张葛祥
赵俊博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201310237624.0A priority Critical patent/CN103324847B/zh
Publication of CN103324847A publication Critical patent/CN103324847A/zh
Application granted granted Critical
Publication of CN103324847B publication Critical patent/CN103324847B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明涉及电力***运行与控制技术领域。本发明公开了一种电力***动态不良数据检测与辨识方法。本发明的技术方案包括步骤:A、读取电力***当前网络参数和网络拓扑结构,并由此形成节点导纳矩阵和支路‑节点关联矩阵;B、根据电力***网络拓扑结构建立等效电路,配置电力***量测函数和PMU,***的量测包括节点电压幅值量测、节点电流幅值量测、节点功率注入量测和节点潮流量测;C、电力***动态不良数据检测与辨识;D、收敛条件判断。本发明能发现和排除来自SCADA***和PMU量测中偶然出现的不良数据,从而得到电网各节点更准确的运行状态——电压幅值和相角。

Description

电力***动态不良数据检测与辨识方法
技术领域
本发明涉及一种基于同步相角测量装置(PMU)的鲁棒电力***动态不良数据检测与辨识方法,属于电力***运行与控制技术领域。
背景技术
电力***状态估计是能量管理***的重要组成部分,其主要功能是对数据采集与监控***(SCADA)和广域量测***(WAMS)提供的实时信息进行滤波,以提高数据精度,排除错误信息的干扰,从而得到一个高质量的实时数据库,为能量管理中心(EMS)进行各种重要的控制和规划提供数据支持,例如,电网的实时建模、潮流优化和基于电力***状态估计的可靠与安全性评估。而不良数据检测与辨识是电力***状态估计的重要功能之一,其功能是在获得状态估计值的基础上依靠***提供的多余信息,发现和排除测量采样数据中偶然出现的少数不良数据,以提高状态估计的可靠性。
现代电力***呈现出规模巨大、区域互联等特点,以中国为例,中国的电网规模比世界上任何一个国家的都要大,都要复杂,而且最近几年中国的各大区域电网又以同步或者异步的方式互联,进一步加大了***动态监测的难度,此外,中国的新能源资源丰富,分布广泛,但是地域和气候的差异为***带来很多不确定的因素,并网容量与电力***消纳能力的关系也需要妥善处置,再者,新能源具有随机性、波动性和间歇性等特点,将给电网的运行方式带来极大的不确定性,***中不良数据的出现概率大大的提高。因此,分析和预测***的运行趋势,排除对***带来安全隐患的不良数据离不开动态不良数据的检测与辨识方法。
电力***量测值要经过多个环节才能达到调度中心,这些环节使量测均存在误差,并可能出现故障或干扰,因此量测值与真实值总有差异。不良数据可能产生的方式有:量测传输受到较大的随机干扰;量测传送***出现偶尔故障;电力***快速变化中各测点非同步量测等。这些数据的存在均会影响动态状态估计的滤波效果。对于基于状态线性最小方差估计的动态状态估计方法,当存在不良数据时,会导致误差的概率分布不再满足高斯分布,导致估计值偏差而无法获得最佳解,影响滤波效果。***的预测值一般由前一时刻的估计值和真值形成,一旦存在不良数据,新息向量将产生异常变化,使得估计性能下降,因此在滤波之前利用PMU的高精度实时量并结合传统SCADA量测值检测并排除不良数据,可以大大提高动态状态估计的计算精度。
另一方面,目前的电力***动态状态估计方法中很少有方法介绍滤波之前的不良数据检测与辨识问题,大多数不良数据的检测与辨识方法都是在状态估计结果的基础完成,一旦在预测阶段出现误差较小的不良数据,在滤波阶段也很难检测出来;此外,融合PMU量测的动态不良数据检测与辨识方法更是缺乏。
发明内容
本发明所要解决的技术问题,就是针对现有技术的不足,提供一种基于PMU的鲁棒电力***动态不良数据检测与辨识方法。该方法能发现和排除来自SCADA***和PMU量测中偶然出现的不良数据,从而得到电网各节点更准确的运行状态——电压幅值和相角。
本发明解决所述技术问题采用的技术方案是,电力***动态不良数据检测与辨识方法,其特征在于,包括以下步骤:
A、读取电力***当前网络参数和网络拓扑结构,并由此形成节点导纳矩阵和支路-节点关联矩阵;
B、根据电力***网络拓扑结构建立等效电路,配置电力***量测函数和同步相角测量装置,***的量测包括节点电压幅值量测、节点电流幅值量测、节点功率注入量测和节点潮流量测;
C、电力***动态不良数据检测与辨识
一个电力***的状态可以由一个包含一系列复杂电压幅值和相角的n维状态向量x来表示,***使用状态估计每隔一定的采样间隔更新一次状态;
在已知量测zk后,***在第k次采样时的状态xk由下式表示:
zk=h(xk)+vk
其中,h(·)表示m维非线性函数向量;vk是服从正态分布的随机白噪声,即vk~N(0,Rk),Rk是量测误差的方差;
采用扩展卡尔曼滤波方法对***不良数据检测与辨识,包括参数辨识、状态预测、不良数据检测、不良数据辨识和状态滤波:
参数辨识:电力***运行状态的变化可由以下线性化的准稳态模型来描述:
xk+1=Fkxk+Gk+wk
其中,Fk,Gk是n维非零对角动态模型参数矩阵;Fk是状态转移矩阵;Gk是控制向量;wk是服从正态分布的随机白噪声,即wk~N(0,Qk),Qk是***模型误差的方差;参数Fk,Gk由Holt’s两参数线性指数平滑法求得;
状态预测:一个含n节点***的状态和协方差矩阵Mk+1预测结果为:
x ~ k + 1 = F k x ^ k + G k
M k + 1 = F k P k F k T + Q k
其中,是一个(2n-1)×1维状态向量的估计值,Pk是误差协方差关联矩阵;
不良数据检测:只要在k+1时刻,一个新的量测可用,那么新息向量ξk+1表示为:是k+1时刻的量测预测值;从而新息向量的协方差矩阵表示为:
N k + 1 = H k + 1 M k + 1 H k + 1 T + R k + 1
其中在***正常运行的情况下,假设归一化新息向量ξN(i)满足以下条件:
N(i)|=|ξ(i)|/σN(i)≤γ
其中,是新息向量中第i个元素的标准差;γ是门限值;
当***出现粗差数据或者***发生突变时,观测值和预测值之间的偏差会很大,为了检测和辨识幅值较小的粗差,提高不良数据检测的灵敏度,引入参数A(i),且A(i)=|ξ(i)|/σR(i)≤γA,其中σR(i)是第i个量测向量的标准差;γA是门限值;参数A(i)对等式右边电压幅值粗差的灵敏度比ξN(i)高,量测值z(i)有粗差并且粗差的幅度值为ασR(i),则有:z(i)=zt(i)+ασR(i),其中zt(i)表示第i个量测的真值,将此式带入上一式可得:
由此可得不良数据的检测过程如下:首先,找到最大归一化新息maxξN(i),然后相关的A(i)可以通过上式计算得到;如果A(i)小于给定的门限值γA,则执行后续的状态滤波步骤,否则相关的量测被视为可疑量测并且找到第二大的最大归一化新息ξN(j),同时计算相关的A(j),如果A(j)小于给定的门限值γA,那么只有上一个量测是可疑量测,否则,这两个量测都是可疑量测并且重复上一步以寻找下一个可疑量测,最后形成可疑量测集;
不良数据辨识:移除最大归一化新息maxξN(i)并执行状态滤波,如果滤波之后的滤波值与真值之间的误差不在(-3σ,+3σ)之间,那么此可疑量测不是不良数据,接着对可疑量测集中的其它元素执行相同的操作,一旦发现滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么移除此量测,并将与此量测相关的其它量测全部置为0,继续进行滤波,如果还有滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么确定此量测就是不良数据并且将其剔除;如此循环往复,直到算法收敛;
状态滤波:假设已经获得一组电力***的实时量测值zk,则通过对预测的状态向量进行滤波可得到新的状态估计向量因此在k+1时刻,状态估计的目标函数为:
J k + 1 ( x k + 1 ) = [ z k + 1 - h ( x k + 1 ) ] T R - 1 [ z k + 1 - h ( x k + 1 ) ] + [ x k + 1 - x ~ k + 1 ] T M - 1 [ x k + 1 - x ~ k + 1 ]
其中,R为量测误差矩阵,W=R-1是一个对角权重矩阵,它的对角元素由每个量测的标准差决定;zk+1和h(xk+1)都是k+1时刻的量测值和量测函数计算值;xk+1分别是k+1时刻的状态真值和在k时刻预测得到的k+1时刻的状态值;M是状态预测误差协方差矩阵。
D、收敛条件判断
算法收敛,输出各个节点剔除不良数据之后***更准确的电压幅值和相角,否则转步骤C。
具体的,步骤B中,所述节点功率注入量测包括有功功率注入量测和无功功率注入量测;所述节点潮流量测包括有功潮流量测和无功潮流量测。
具体的,步骤B中,所述等效电路为π型等效电路。
进一步的,步骤C中,R=S;其中Sk为新的量测误差矩阵S中的第k个元素,Wk为对角权重矩阵W的第k个元素。
本发明的有益效果是有效融合了PMU技术,具备较强的不良数据检测与辨识能力。本发明通过引入新息向量并设置合适的门限值并结合量测权重函数有助于遏制负荷突变、切机、拓扑错误等突变对***的冲击,简单高效的剔除不良数据,进一步提高***的鲁棒性。状态估计精度高,不良数据检测灵敏度高。本发明中PMU的引入能够为***提供实时准确的电压、相角等量测信息,并且能够保证***获得更高的量测冗余度,增强不良数据辨识及拓扑错误辨识能力,进而提高状态估计的精度。此外,通过引入参数A(i)提高了不良数据检测的灵敏度。普适应较好。本发明针对实际的交直流输电和配电***均可以进行不良数据的检测。应用前景好。本发明在动态状态估计中能够检测并辨识出不良数据,为***提供更为准确的实时电压和相角,对控制决策中心进行更为有效的经济调度、安全评估和其它相关的高级应用具有很重要的意义,满足未来智能电网发展要求。
附图说明
图1是本发明流程图;
图2是本发明所采用的不含变压器支路的π型等效电路量测计算图;
图3是本发明所采用的变压器支路π型等效电路量测计算图;
图4是本发明实施例IEEE14测试图;
图5是图4中节点6电压幅值测试结果。
具体实施方式
下面结合附图对本发明的技术方案进行详细描述。
本发明的电力***动态不良数据检测与辨识方法,流程如图1所示,包括以下步骤:
(1)网络数据读取
在本步骤中,网络数据读取包括电力***当前的网络参数和拓扑结构,并由此形成节点导纳矩阵和支路-节点关联矩阵。
(2)***量测函数和PMU配置原则
***的量测包括节点电压幅值量测、电流幅值量测、功率注入量测和潮流量测,下面将对典型π型等效电路的相关量测所采用的量测函数进行说明。
图2中不含变压器支路时节点的有功注入和无功注入、有功潮流注入和无功潮流注入、电流幅值量测函数如下:
节点i的有功注入Pi和无功Qi注入量测函数分别为:
节点i到j的有功潮流注入Pij和无功潮流注入Qij量测函数分别为:
Pij=Vi 2(gsi+gij)-ViVj(gijcosθij+bijsinθij)和Qij=-Vi 2(bsi+bij)-ViVj(gijsinθij-bijcosθij);
节点i到j的线路电流幅值Iij为:
I i j = P i j 2 + Q i j 2 V i
图3中含变压器支路时节点的有功和无功功率注入、有功和无功潮流注入、电流幅值量测函数如下:
节点i的有功注入Pi和无功Qi注入量测函数分别为:
节点i到j的有功潮流注入Pij和无功潮流Qij量测函数分别为:
P i j = 1 K V i V j b T sinθ i j ;
Q i j = 1 K 2 V i 2 b T + 1 K V i V j b T cosθ i j ;
P j i = 1 K V i V j b T sinθ i j ;
Q i j = - V j 2 b T + 1 K V i V j b T cosθ i j ;
其中,Vi和Vj分别为节点i和j的电压幅值;节点i和j之间的相角差θij=θij,θi和θj分别为节点i和j的相角;Ni为连接到节点i的节点数量;Gij+jBij为导纳矩阵的第i行第j列元素;gij+jbij节点i到j间的序导纳;gsi+jbsi节点i到j间的并联导纳;K为变压器非标准变比;bT为变压器标准侧的电纳。
PMU配置原则
为了保证整个***的可观测性,本发明采用已有的一种***可观测性PMU最优配置方法来配置***的PMU。
(3)电力***动态不良数据检测与辨识
在电力***量测及PMU配置后,本步将在扩展卡尔曼滤波(EKF)基础上对***进行不良数据检测与辨识。
一个电力***的状态可以由一个包含一系列复杂电压幅值和相角的n维状态向量x来表示,***通常使用状态估计每隔几分钟或者一定的采样间隔更新一次状态。
在已知量测zk后,***在第k次采样时的状态xk可由下式表示:
zk=h(xk)+vk
其中,h(·)表示m维非线性函数向量;vk是服从正态分布的随机白噪声,即vk~N(0,Rk),Rk是量测误差的方差。
扩展卡尔曼滤波(EKF)基础上的***不良数据检测与辨识主要包含5个主要的阶段:参数辨识、状态预测、不良数据检测、不良数据辨识和状态滤波,下面将分别进行详细的说明:
参数辨识:电力***运行状态的变化可由以下线性化的准稳态模型来描述:
xk+1=Fkxk+Gk+wk
其中,Fk,Gk是n维非零对角动态模型参数矩阵;Fk是状态转移矩阵;Gk是控制向量;wk是服从正态分布的随机白噪声,即wk~N(0,Qk),Qk是***模型误差的方差,它通常被假设为一个对角元素全是10-6的对角矩阵;参数Fk,Gk可由Holt’s两参数线性指数平滑法所求得。
状态预测:一个含n节点***的状态和协方差矩阵Mk+1预测结果为:
x ~ k + 1 = F k x ~ k + G k
M k + 1 = F k P k F k T + Q k
其中,是一个(2n-1)×1维状态向量的估计值,Pk是误差协方差关联矩阵;n是节点数量,n为正整数。
不良数据检测:只要在k+1时刻,一个新的量测可用,那么新息向量ξk+1可以表示为:从而新息向量的协方差矩阵可以表示为:
N k + 1 = H k + 1 M k + 1 H k + 1 T + R k + 1
其中,
在***正常运行的情况下,假设归一化新息向量ξN(i)满足条件:|ξN(i)|=|ξ(i)|/σN(i)≤γ,其中,是新息向量中第i个元素的标准差;γ是门限值。
当***出现粗差数据或者***发生突变时,观测值和预测值之间的偏差会很大,为了检测和辨识幅值较小的粗差,提高不良数据检测的灵敏度,引入另外一个新的参数A(i),且A(i)=|ξ(i)|/σR(i)≤γA
其中σR(i)是第i个量测向量的标准差;γA是门限值;参数A(i)对等式右手边电压幅值粗差的灵敏度比ξN(i)高。为了便于理解,考虑量测值z(i)有粗差并且粗差的幅度值为ασR(i),则有:z(i)=zt(i)+ασR(i),其中zt(i)表示第i个量测的真值。将此式带入上一式可得:
A(i)便可近似反应存在于量测中的相同的粗差。
由此可得不良数据的检测过程如下:首先,找到最大归一化新息maxξN(i),然后相关的A(i)可以通过上式计算得到。如果A(i)小于给定的门限值γA,则执行后续的状态滤波步骤,否则相关的量测被视为可疑量测并且找到第二大的最大归一化新息ξN(j),同时计算相关的A(j),如果A(j)小于给定的门限值γA,那么只有上一个量测是可疑量测,否则,这两个量测都是可疑量测并且类似的重复上一步以寻找下一个可疑量测,最后便可形成可疑量测集。
不良数据辨识:在可疑量测集的基础上,本步的任务是确定这些可疑量测是否是不良数据。具体的辨识过程如下:首先,移除最大归一化新息maxξN(i)并执行状态滤波,如果滤波之后的滤波值与真值之间的误差不在(-3σ,+3σ)之间,那么此可疑量测不是不良数据,接着对可疑量测集中的其它元素执行相同的操作,一旦发现滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么移除此量测,并将与此量测相关的其它量测全部置为0,继续进行滤波,如果还有滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么确定此量测就是不良数据并且将其剔除;如此循环往复,直到算法收敛。
状态滤波:假设已经获得一组电力***的实时量测值zk,则通过对预测的状态向量进行滤波可得到新的状态估计向量因此在k+1时刻,状态估计的目标函数为:
J k + 1 ( x k + 1 ) = [ z k + 1 - h ( x k + 1 ) ] T R - 1 [ z k + 1 - h ( x k + 1 ) ] + [ x k + 1 - x ~ k + 1 ] T M - 1 [ x k + 1 - x ~ k + 1 ]
其中,R为量测误差矩阵,W=R-1是一个对角权重矩阵,它的对角元素由每个量测的标准差决定;zk+1和h(xk+1)都是k+1时刻的量测值和量测函数计算值;xk+1分别是k+1时刻的状态真值和在k时刻预测得到的k+1时刻的状态值;M是状态预测误差协方差矩阵。例如,如果量测值的误差满足高斯分布,那么权重矩阵的对角元素就是相对应量测值标准差的倒数。
在本发明中,为了增强算法的鲁棒性,引入一个新的量测权重函数其中Sk为新的量测误差矩阵S中的第k个元素,Wk为对角权重矩阵W的第k个元素,此时有W=S-1。该权重函数引入有如下优点:
在正常的稳态运行情况下,量测误差很小,接近于0,量测权重就为相对应量测值标准差的倒数,不需要我们对量测函数作较大的调整;
在***的量测遭受比较大的扰动,比如负荷突变、切机、不良数据注入等而造成量测误差发生较大的变化时,指数函数将有助于减少这些突变对***的冲击,从而使不可预测的突变对***的冲击的影响得到遏制,进一步提高***的鲁棒性;
PMU的量测精度本来就比SCADA精度高很多,量测误差不论是在正常稳态还是***遭受不可预测的突变时,都可以保持在较低的水平,进而保证PMU的量测值权重相比于SCADA中的量测权重高很多,并且量测权重更稳定,更利于***动态运行的监测和控制。
当目标函数最小时有:
∂ J k ( x ) ∂ x | x = x ^ = 0
经过整理有可得k+1时刻***的状态:
x ^ k + 1 = x ~ k + 1 + K k + 1 [ z k + 1 - h ( x ~ k + 1 ) ]
其中增益矩阵、与Kk+1相关的矩阵如下所示:
H = ∂ h ( x ) ∂ x
P k = { [ I - K k H k ] M k [ I - K k H k ] T + K k R k K k T } | x = x ~
上式中,I为单位矩阵;Pk为误差协方差矩阵。
由此,利用参数辨识、状态预测、不良数据检测、不良数据辨识和状态滤波,动态状态估计器就可根据已知的量测z0,z1,...,zk估计出***的运行状态。
(4)收敛条件判断
算法收敛,输出各个节点剔除不良数据之后***更准确的电压幅值和相角,否则转步骤3。
实施例
步骤1:网络数据读取
在本步骤中,网络数据读取包括读取电力***当前的网络参数和拓扑结构,并由此形成节点导纳矩阵和支路-节点关联矩阵。
步骤2:***量测函数和PMU配置原则
以图4所示IEEE14***量测配置为例,共有4个PMU分别安装在节点2、6、7、9上,其中在节点2上的PMU可以测量2-4、2-3的相角和节点2的电压;在节点6上的PMU测量6-11、6-12、6-13的相角和节点6的电压值;在节点7上的PMU测量7-9、7-4、7-8的相角和节点7的电压值;在节点9上的PMU测量9-10、9-14的相角和节点9的电压值;所有的相角值都用度数表示,所有的电压量测值除了节点6以外都是在真实的潮流计算结果上加了一个均值为零,方差为0.01的高斯随机误差,在节点1、2之间的有功功率量测加入大小20σ的粗差,在节点4、7之间的有功功率量测加入大小15σ的粗差,在节点6、12之间的有功功率量测加入大小10σ的粗差,在节点6处的电压量测加入大小5σ的粗差,前面的粗差都是在第10次采样时加入到量测中去;此外,***各个节点的有功和无功功率注入量测、有功和无功潮流注入功率量测、电流幅值量测可由上文的相关量测函数计算得到。
步骤3:电力***动态不良数据检测与辨识
在电力***量测及PMU配置后,本步将在扩展卡尔曼滤波基础上对***进行不良数据检测与辨识。
一个电力***的状态可以由一个包含一系列复杂电压幅值和相角的n维状态向量x来表示,***通常使用状态估计每隔几分钟或者一定的采样间隔更新一次状态。在已知观测的量测zk后,***在第k次采样时的状态xk可由下式表示:
zk=h(xk)+vk
其中,h(·)表示m维非线性函数向量;vk是服从正态分布的随机白噪声,即vk~N(0,Rk),Rk是量测误差的方差。
扩展卡尔曼滤波基础上的***不良数据检测与辨识主要包含5个主要的阶段:参数辨识、状态预测、不良数据检测、不良数据辨识和状态滤波,下面将分别进行详细的说明:
参数辨识:电力***运行状态的变化可由以下线性化的准稳态模型来描述:
xk+1=Fkxk+Gk+wk
其中,Fk,Gk是n维非零对角动态模型参数矩阵;Fk是状态转移矩阵;Gk是控制向量;wk是服从正态分布的随机白噪声,即wk~N(0,Qk),Qk是***模型误差的方差,它通常被假设为一个对角元素全是10-6的对角矩阵;参数Fk,Gk可由Holt’s两参数线性指数平滑法所求得。
状态预测:在这一步中,采用传统的期望理论,一个含n节点***的状态和协方差矩阵Mk+1预测结果为:
x ~ k + 1 = F k x ^ k + G k
M k + 1 = F k P k F k T + Q k
其中,是一个(2n-1)×1维状态向量的估计值,Pk是误差协方差关联矩阵。
不良数据检测:只要在k+1时刻,一个新的量测可用,那么新息向量ξk+1可以表示为:从而新息向量的协方差矩阵可以表示为:
N k + 1 = H k + 1 M k + 1 H k + 1 T + R k + 1
其中在***正常运行的情况下,假设归一化新息向量ξN(i)满足以下条件:
N(i)|=|ξ(i)|/σN(i)≤γ
其中,是新息向量中第i个元素的标准差;γ是门限值。
当***出现粗差数据或者***发生突变时,观测值和预测值之间的偏差会很大,为了检测和辨识幅值较小的粗差,提高不良数据检测的灵敏度,故引入另外一个新的参数A(i),且A(i)=|ξ(i)|/σR(i)≤γA,其中σR(i)是第i个量测向量的标准差;γA是门限值;参数A(i)对等式右手边电压幅值粗差的灵敏度比ξN(i)高。为了便于理解,考虑量测值z(i)有粗差并且粗差的幅度值为ασR(i),则有:z(i)=zt(i)+ασR(i),其中zt(i)表示第i个量测的真值。将此式带入上一式可得:
A(i)便可近似反应存在于量测中的相同的粗差。
由此可得不良数据的检测过程如下:首先,找到最大归一化新息maxξN(i),然后相关的A(i)可以通过上式计算得到。如果A(i)小于给定的门限值γA,则执行后续的状态滤波步骤,否则相关的量测被视为可疑量测并且找到第二大的最大归一化新息ξN(j),同时计算相关的A(j),如果A(j)小于给定的门限值γA,那么只有上一个量测是可疑量测,否则,这两个量测都是可疑量测并且类似的重复上一步以寻找下一个可疑量测,最后便可形成可疑量测集。
不良数据辨识:在可疑量测集的基础上,本步的任务是确定这些可疑量测到底是不是不良数据。具体的辨识过程如下:首先,移除最大归一化新息maxξN(i)并执行状态滤波,如果滤波之后的滤波值与真值之间的误差不在(-3σ,+3σ)之间,那么此可疑量测不是不良数据,接着对可疑量测集中的其它元素执行相同的操作,一旦发现滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么移除此量测,并将与此量测相关的其它量测全部置为0,继续进行滤波,如果还有滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么此量测确定就是不良数据并且将其剔除;如此循环往复,直到算法收敛。
状态滤波:假设已经获得一组电力***的实时量测值zk,则通过对预测的状态向量进行滤波可得到新的状态估计向量因此在k+1时刻,状态估计的目标函数为:
J k + 1 ( x k + 1 ) = [ z k + 1 - h ( x k + 1 ) ] T R - 1 [ z k + 1 - h ( x k + 1 ) ] + [ x k + 1 - x ~ k + 1 ] T M - 1 [ x k + 1 - x ~ k + 1 ]
其中,W=R-1,W是一个对角权重矩阵,它的对角元素由每个量测的标准差决定;例如,如果量测值的误差满足高斯分布,那么权重矩阵的对角元素就是相对应量测值标准差的倒数。zk+1和h(xk+1)都是k+1时刻的量测值和量测函数计算值;xk+1分别是k+1时刻的状态真值和在k时刻预测得到的k+1时刻的状态值;M是状态预测误差协方差矩阵。
在本发明中,为了增强算法的鲁棒性,引入一个新的量测权重函数:
其中Sk为新的量测误差矩阵S中的第k个元素,Wk为原来对角权重矩阵W的第k个元素,此时新的权重矩阵应该变为W=S-1
当目标函数最小时有:
∂ J k ( x ) ∂ x | x = x ^ = 0
经过整理可得k+1时刻***的状态:
x ^ k + 1 = x ~ k + 1 + K k + 1 [ z k + 1 - h ( x ~ k + 1 ) ]
其中增益矩阵以及与Kk+1相关的矩阵如下所示:
H = ∂ h ( x ) ∂ x
P k = { [ I - K k H k ] M k [ I - K k H k ] T + K k R k K k T } | x = x ~
上式中,I为单位矩阵;Pk为误差协方差矩阵。
由此,利用参数辨识、状态预测、不良数据检测、不良数据辨识和状态滤波三步,动态状态估计器就可根据已知的量测z0,z1,...,zk估计出***的运行状态。
步骤4:收敛条件判断
算法收敛,输出各个节点剔除不良数据之后***更准确的电压幅值和相角,否则转步骤3。
最终的不良数据检测与辨识结果如表1所示:
表1不良数据检测与辨识结果
量测z 加入的粗差大小 ξN A 结论
P(1-2) 20σ 17.06 19.27 不良数据
P(4-7) 15σ 8.63 14.76 正常量测
P(12-6) 10σ 2.91 10.34 正常量测
V(6) 4.76 5.16 正常量测
从表1可以看出,本发明可以有效地检测和辨识不良数据,以提高基于扩展卡尔曼滤波的动态状态估计的估计精度。此外,图5给出了***中节点6的真值、预测值、滤波值的实时追踪结果,从图5可以看出,在节点加入粗差的情况下,本发明方法依然可以准确的追踪节点电压的变化情况。
综上,本发明能发现和排除来自SCADA***和PMU量测中偶然出现的不良数据,从而得到电网各节点更准确的运行状态(电压幅值和相角),另外本方法在***负荷发生突变时也具有较好的鲁棒性,这些特性对于未来智能电网建设具有很重要的意义。

Claims (4)

1.电力***动态不良数据检测与辨识方法,其特征在于,包括以下步骤:
A、读取电力***当前网络参数和网络拓扑结构,并由此形成节点导纳矩阵和支路-节点关联矩阵;
B、根据电力***网络拓扑结构建立等效电路,配置电力***量测函数和同步相角测量装置,***的量测包括节点电压幅值量测、节点电流幅值量测、节点功率注入量测和节点潮流量测;
C、电力***动态不良数据检测与辨识
一个电力***的状态可以由一个包含一系列复杂电压幅值和相角的n维状态向量x来表示,***使用状态估计每隔一定的采样间隔更新一次状态;在已知量测zk后,***在第k次采样时的状态xk由下式表示:
zk=h(xk)+vk
其中,h(·)表示m维非线性函数向量;vk是服从正态分布的随机白噪声,即vk~N(0,Rk),Rk是量测误差的方差;
采用扩展卡尔曼滤波方法对***不良数据检测与辨识,包括参数辨识、状态预测、不良数据检测、不良数据辨识和状态滤波:
参数辨识:电力***运行状态的变化可由以下线性化的准稳态模型来描述:
xk+1=Fkxk+Gk+wk
其中,Fk,Gk是n维非零对角动态模型参数矩阵;Fk是状态转移矩阵;Gk是控制向量;wk是服从正态分布的随机白噪声,即wk~N(0,Qk),Qk是***模型误差的方差;参数Fk,Gk由Holt’s两参数线性指数平滑法求得;
状态预测:一个含n节点***的状态和协方差矩阵Mk+1预测结果为:
x ~ k + 1 = F k x ^ k + G k
M k + 1 = F k P k F k T + Q k
其中,是一个(2n-1)×1维状态向量的估计值,Pk是误差协方差关联矩阵;
不良数据检测:只要在k+1时刻,一个新的量测可用,那么新息向量ξk+1表示为: 是k+1时刻的量测预测值;从而新息向量的协方差矩阵表示为:
N k + 1 = H k + 1 M k + 1 H k + 1 T + R k + 1
其中在***正常运行的情况下,假设归一化新息向量ξN(i)满足以下条件:
N(i)|=|ξ(i)|/σN(i)≤γ
其中,是新息向量中第i个元素的标准差;γ是门限值;
当***出现粗差数据或者***发生突变时,观测值和预测值之间的偏差会很大,为了检测和辨识幅值较小的粗差,提高不良数据检测的灵敏度,引入参数A(i),且A(i)=|ξ(i)/σR(i)≤γA,其中σR(i)是第i个量测向量的标准差;γA是门限值;参数A(i)对等式右边电压幅值粗差的灵敏度比ξN(i)高,量测值z(i)有粗差并且粗差的幅度值为ασR(i),则有:z(i)=zt(i)+ασR(i),其中zt(i)表示第i个量测的真值,将此式带入上一式可得:
由此可得不良数据的检测过程如下:首先,找到最大归一化新息maxξN(i),然后相关的A(i)可以通过上式计算得到;如果A(i)小于给定的门限值γA,则执行后续的状态滤波步骤,否则相关的量测被视为可疑量测并且找到第二大的最大归一化新息ξN(j),同时计算相关的A(j),如果A(j)小于给定的门限值γA,那么只有上一个量测是可疑量测,否则,这两个量测都是可疑量测并且重复上一步以寻找下一个可疑量测,最后形成可疑量测集;
不良数据辨识:移除最大归一化新息maxξN(i)并执行状态滤波,如果滤波之后的滤波值与真值之间的误差不在(-3σ,+3σ)之间,那么此可疑量测不是不良数据,接着对可疑量测集中的其它元素执行相同的操作,一旦发现滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么移除此量测,并将与此量测相关的其它量测全部置为0,继续进行滤波,如果还有滤波之后的滤波值与真值之间的误差在(-3σ,+3σ)范围内,那么确定此量测就是不良数据并且将其剔除;如此循环往复,直到算法收敛;
状态滤波:假设已经获得一组电力***的实时量测值zk,则通过对预测的状态向量进行滤波可得到新的状态估计向量因此在k+1时刻,状态估计的目标函数为:
J k + 1 ( x k + 1 ) = [ z k + 1 - h ( x k + 1 ) ] T R - 1 [ z k + 1 - h ( x k + 1 ) ] + [ x k + 1 - x ~ k + 1 ] T M - 1 [ x k + 1 - x ~ k + 1 ]
其中,R为量测误差矩阵,W=R-1是一个对角权重矩阵,它的对角元素由每个量测的标准差决定;zk+1和h(xk+1)都是k+1时刻的量测值和量测函数计算值;xk+1分别是k+1时刻的状态真值和在k时刻预测得到的k+1时刻的状态值;M是状态预测误差协方差矩阵;
D、收敛条件判断
算法收敛,输出各个节点剔除不良数据之后***更准确的电压幅值和相角,否则转步骤C。
2.根据权利要求1所述的电力***动态不良数据检测与辨识方法,其特征在于,步骤B中,所述节点功率注入量测包括有功功率注入量测和无功功率注入量测;所述节点潮流量测包括有功潮流量测和无功潮流量测。
3.根据权利要求1所述的电力***动态不良数据检测与辨识方法,其特征在于,步骤B中,所述等效电路为π型等效电路。
4.根据权利要求1所述的电力***动态不良数据检测与辨识方法,其特征在于,步骤C中,R=S;其中Sk为新的量测误差矩阵S中的第k个元素,Wk为对角权重矩阵W的第k个元素。
CN201310237624.0A 2013-06-17 2013-06-17 电力***动态不良数据检测与辨识方法 Expired - Fee Related CN103324847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310237624.0A CN103324847B (zh) 2013-06-17 2013-06-17 电力***动态不良数据检测与辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310237624.0A CN103324847B (zh) 2013-06-17 2013-06-17 电力***动态不良数据检测与辨识方法

Publications (2)

Publication Number Publication Date
CN103324847A CN103324847A (zh) 2013-09-25
CN103324847B true CN103324847B (zh) 2016-12-28

Family

ID=49193586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310237624.0A Expired - Fee Related CN103324847B (zh) 2013-06-17 2013-06-17 电力***动态不良数据检测与辨识方法

Country Status (1)

Country Link
CN (1) CN103324847B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110503268A (zh) * 2019-08-29 2019-11-26 上海交通大学 一种模型数据联合驱动的综合能源***态势感知方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745109B (zh) * 2014-01-10 2016-08-31 国家电网公司 一种基于pmu量测和scada量测的不良数据检测与辨识方法
CN104090166B (zh) * 2014-07-14 2017-09-26 国家电网公司 一种考虑状态估计大误差点的电网线路参数在线辨识方法
CN104181883A (zh) * 2014-08-08 2014-12-03 青岛高校信息产业有限公司 实时数据采集***的异常数据实时处理方法
CN104166718B (zh) * 2014-08-18 2017-11-03 国家电网公司 一种适用于大电网的不良数据检测与辨识方法
CN104462769A (zh) * 2014-11-05 2015-03-25 中国南方电网有限责任公司电网技术研究中心 基于遗传算法的变电站电流量测回路故障检测方法
CN104836223B (zh) * 2014-11-14 2017-05-03 浙江大学 电网参数错误与不良数据协同辨识与估计方法
CN104407256B (zh) * 2014-12-04 2017-11-03 河海大学 一种处理量测断面时延的电力***动态状态更新方法
CN104569658B (zh) * 2014-12-11 2016-08-24 广东电网有限责任公司电力调度控制中心 基于遗传算法的变电站电流量测回路故障检测方法
CN104573510B (zh) * 2015-02-06 2017-08-04 西南科技大学 一种智能电网恶意数据注入攻击及检测方法
CN104809339B (zh) * 2015-04-22 2018-01-05 华南理工大学 基于有功平衡的scada***电网有功坏数据识别方法
CN106655481A (zh) * 2015-10-31 2017-05-10 南京南瑞继保电气有限公司 智能变电站数据辨识***自动配置方法
CN105322539A (zh) * 2015-11-09 2016-02-10 中国电力科学研究院 一种配电网scada***电压数据修正方法
CN105391062B (zh) * 2015-12-07 2017-12-22 国网浙江省电力公司宁波供电公司 一种基于直流潮流模型的有功不良数据辨识方法
CN106022972B (zh) * 2016-06-30 2022-10-21 中国电力科学研究院 一种基于状态矩阵对称性的配电网异常数据辨识方法
CN106159941B (zh) * 2016-07-08 2018-05-22 国网江苏省电力公司电力科学研究院 一种考虑实际量测误差传递特性的电力***状态估计方法
CN106707061A (zh) * 2016-12-16 2017-05-24 湖南大学 基于混合量测的配电网动态状态估计方法
CN107016236B (zh) * 2017-03-23 2021-04-20 新疆电力建设调试所 基于非线性量测方程的电网假数据注入攻击检测方法
CN106874766B (zh) * 2017-04-09 2018-11-13 上海云剑信息技术有限公司 电力***中单点数据攻击的白盒检测方法
CN107403261A (zh) * 2017-07-11 2017-11-28 国网辽宁省电力有限公司 一种海量电网数据量测坏数据的快速检测辨识方法
CN107453484B (zh) * 2017-08-24 2020-09-04 国网辽宁省电力有限公司 一种基于wams信息的scada数据校准方法
CN108333468B (zh) * 2018-01-05 2019-08-06 南京邮电大学 一种有源配电网下不良数据的识别方法及装置
CN108764603A (zh) * 2018-03-30 2018-11-06 广东电网有限责任公司 一种基于高维随机矩阵的用户窃电行为辨识方法
US10956631B2 (en) * 2018-08-31 2021-03-23 Accenture Global Solutions Limited Distribution selection and simulation of intermittent data using machine learning (ML)
CN109470954B (zh) * 2018-11-08 2020-10-13 中研国科智能设备(河北)有限公司 一种基于大数据的电网运行状态监测***及其监测方法
CN109711662B (zh) * 2018-11-14 2021-03-09 华北电力大学 一种基于多源数据融合的电网抗差状态估计方法
CN109687438B (zh) * 2018-12-19 2022-06-24 西南交通大学 一种计及高铁冲击负荷作用下的电网脆弱线路辨识方法
CN109818349B (zh) * 2019-03-13 2022-04-22 东北大学 一种基于多维状态矩阵滑动匹配的电网鲁棒状态预测方法
CN109884550B (zh) * 2019-04-01 2020-01-17 北京理工大学 一种动力电池***在线参数辨识与回溯方法
CN110265999B (zh) * 2019-06-04 2022-06-14 西南交通大学 一种高度网状的二次配电网负载估计方法
CN110232061A (zh) * 2019-06-20 2019-09-13 国网上海市电力公司 一种配电网多源数据质量控制方法
CN110781450B (zh) * 2019-09-17 2022-12-16 广西电网有限责任公司电力科学研究院 一种配电馈线电压测量数据的不良数据检测方法及***
CN111064180B (zh) * 2019-10-23 2024-01-26 国网天津市电力公司电力科学研究院 基于ami潮流匹配的中压配电网拓扑检测与辨识方法
CN111384717B (zh) * 2020-01-15 2022-02-18 华中科技大学 一种抵御虚假数据注入攻击的自适应阻尼控制方法及***
CN111563626B (zh) * 2020-05-09 2022-04-12 山东大学 一种电力***预测辅助状态估计方法及***
CN112398117B (zh) * 2020-09-24 2023-08-04 北京航空航天大学 一种引起线路负荷过载的虚假数据注入攻击的防御方法
CN117289072A (zh) * 2023-08-22 2023-12-26 哈尔滨工业大学 一种基于电压编码的电网不良数据辨识方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719461B1 (en) * 2008-08-05 2010-05-18 Lockheed Martin Corporation Track fusion by optimal reduced state estimation in multi-sensor environment with limited-bandwidth communication path
CN102163844A (zh) * 2011-03-14 2011-08-24 国网技术学院 基于相量测量装置的电力***状态检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719461B1 (en) * 2008-08-05 2010-05-18 Lockheed Martin Corporation Track fusion by optimal reduced state estimation in multi-sensor environment with limited-bandwidth communication path
CN102163844A (zh) * 2011-03-14 2011-08-24 国网技术学院 基于相量测量装置的电力***状态检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"PMU-Based Dynamic State Estimation for Electric Power Systems";Evangelos Farantatos等;《Proc. IEEE Power Energy Soc. Gen.Meeting, Calgary, AB, Canada》;20090131;第1-8页 *
"基于WAMS的电力***状态估计若干问题研究";李虹;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20100915;第2010年卷(第9期);第C042-34页 *
"基于量测数据相关性的电力***不良数据检测和辨识新方法";黄彦全等;《电网技术》;20060131;第30卷(第2期);第70-74页 *
"新息图法电力***不良数据检测与辨识";张永超等;《四川电力技术》;20090630;第32卷(第3期);第14-15、47页 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110503268A (zh) * 2019-08-29 2019-11-26 上海交通大学 一种模型数据联合驱动的综合能源***态势感知方法
CN110503268B (zh) * 2019-08-29 2022-09-27 广州供电局有限公司 一种模型数据联合驱动的综合能源***态势感知方法

Also Published As

Publication number Publication date
CN103324847A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
CN103324847B (zh) 电力***动态不良数据检测与辨识方法
CN103326358B (zh) 基于同步相角测量装置的电力***动态状态估计方法
CN103972884B (zh) 一种电力***状态估计方法
CN103838959A (zh) 偏最小二乘回归应用于配电网谐波源定位与检测中的方法
CN103258103B (zh) 基于偏最小二乘回归的戴维南等值参数辨识方法
CN104836223A (zh) 电网参数错误与不良数据协同辨识与估计方法
CN110289613A (zh) 基于灵敏度矩阵的配电网拓扑识别与线路参数辨识方法
CN103279639A (zh) 基于响应的受端电网电压稳定全过程态势评估及防控方法
CN106707061A (zh) 基于混合量测的配电网动态状态估计方法
CN101499659B (zh) 基于基尔霍夫电流定律的变电站分布式状态估计方法
CN103713217A (zh) 一种直流偏磁条件下电力变压器运行状态的在线监测方法
CN100554976C (zh) 基于同步相量测量的区域电压稳定性监视方法
CN111413589B (zh) 一种基于灰靶决策的配电网单相短路故障定位方法
CN104778367A (zh) 基于单一状态断面的广域戴维南等值参数在线计算方法
CN108074198B (zh) 一种电力***pmu不良数据识别方法
CN104297628A (zh) 含dg的配电网的区段故障检测与定位方法
CN103116097A (zh) 基于多断面混合量测信息的设备参数在线辨识方法
CN107453484A (zh) 一种基于wams信息的scada数据校准方法
CN102590652B (zh) 基于电气信息的设备性能评价***及方法
CN103199528A (zh) 广域电力***状态估计协调方法
CN105183938A (zh) 电网不良数据辨识与估计方法
CN108206541A (zh) 一种含分布式电源的配电网电能质量扰动源定位方法
CN106208050A (zh) 一种基于pmu的电网支路静态参数检测辨识方法
CN105162094A (zh) 一种利用极线故障电流曲线簇主成分分析的特高压直流线路的纵联保护方法
CN102636706A (zh) 一种电网中参数误差支路的辨识方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161228

Termination date: 20200617

CF01 Termination of patent right due to non-payment of annual fee