CN103195558A - 带有排气涡轮增压和排气再循环的内燃发动机以及操作所述类型内燃发动机的方法 - Google Patents

带有排气涡轮增压和排气再循环的内燃发动机以及操作所述类型内燃发动机的方法 Download PDF

Info

Publication number
CN103195558A
CN103195558A CN2013100036901A CN201310003690A CN103195558A CN 103195558 A CN103195558 A CN 103195558A CN 2013100036901 A CN2013100036901 A CN 2013100036901A CN 201310003690 A CN201310003690 A CN 201310003690A CN 103195558 A CN103195558 A CN 103195558A
Authority
CN
China
Prior art keywords
exhaust
control unit
explosive motor
cylinder
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100036901A
Other languages
English (en)
Other versions
CN103195558B (zh
Inventor
Y·M·S·雅克布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of CN103195558A publication Critical patent/CN103195558A/zh
Application granted granted Critical
Publication of CN103195558B publication Critical patent/CN103195558B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/168Control of the pumps by bypassing charging air into the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本发明涉及一种内燃发动机,其具有至少一个汽缸、至少一个排气管路、以及至少一个进气管路,该内燃发动机配备有至少一个排气涡轮增压器,绕过所述至少一个汽缸的旁通管路,以及至少一个排气再循环设备。寻求提供所述类型的内燃发动机,其流体流的引导和控制被最优化。这将通过如下内燃发动机来实现,其中第一控制元件用于调整被引导通过所述再循环管路的排气量,并且至少一个第二控制元件,其在第一位置时,将所述旁通管路与所述至少一个汽缸隔开,并且将所述至少一个进气管路连接至所述至少一个汽缸,并且在第二位置时,将所述至少一个进气管路与所述至少一个汽缸隔开,并且将所述旁通管路连接至所述至少一个汽缸。

Description

带有排气涡轮增压和排气再循环的内燃发动机以及操作所述类型内燃发动机的方法
技术领域
本发明涉及这样的内燃发动机,其具有至少一个汽缸、处于出口侧用于经排气排放***排放排气的至少一个排气管路、以及处于进口侧用于经进气***供应增压空气的至少一个进气管路,该内燃发动机配备有 
至少一个排气涡轮增压器,其包含布置在进气***中的压缩机和布置在排气排放***内的涡轮, 
绕过至少一个汽缸的旁通管路,该旁通管路在压缩机下游从进气***分叉,以便形成进口侧接合处,并且在涡轮(7b)下游通向排气排放***,以及 
包含再循环管路的至少一个排气再循环设备,其中再循环管路在涡轮上游从排气排放***处分叉,以便形成出口侧接合处并且通向旁通管路。 
背景技术
在本发明的上下文中,至少一个排气管路被认为属于排气排放***,并且至少一个进气管路被认为属于进气***。 
本发明还涉及用于操作具有液体型冷却设备的所述类型内燃发动机的方法,其中在至少一个排气再循环设备的再循环管路中提供冷却装置,该装置利用冷却剂运行并且被连接至内燃发动机的液体型冷却设备。 
在本发明的上下文中,表述“内燃发动机”包含柴油发动机和火花点火式发动机以及还有使用混合燃烧过程操作的混合式内燃发动机。 
在内燃发动机研发中,基本上寻求将燃料消耗量减至最小以及降低污染排放。在现有技术中,实施各种措施以实现所述目标。 
关于污染问题,与降低氮氧化物排放高度相关,尤其是在柴油发动机的情况中。氮氧化物的形成不仅需要过量的空气,而且还需要高温度,因此降低氮氧化物排放的一个理念包括降低燃烧温度。 
在此,排气再循环,也就是排气从排气排放***再循环至进气***,有利于实现该目标,其中通过增加排气再循环率,能够相当大地降低氮氧化物排放。在此,确定排气再循环率xEGR如下: 
xEGR=mEGR/(mEGR+mFresh air
其中mEGR表示再循环的排气质量,以及mFresh air表示被供应至至少一个汽缸的新鲜空气,其之前已通过压缩机被压缩。因此,在本发明的上下文中,增压空气除了新鲜空气之外还可包含再循环的排气。 
为了显著降低氮氧化物排放,需要高的排气再循环率,其可能是xEGR≈60%到70%的量级。根据现有技术,在再循环管路中提供控制元件,也被称为EGR阀,用于调整待被再循环的排气量,也就是再循环率。排气再循环(EGR)可还被用于降低未燃烃的排放。 
所提供的排气再循环设备是所谓的高压EGR设备,其中在涡轮上游从排气排放***中抽出排气,并且排气被引进至压缩机下游的进气***,或者被引进至旁通管路,其是或者能够被连接至进气***。 
本发明所涉及的内燃发动机不仅配有至少一个排气再循环设备,还具有至少一个排气涡轮增压器,其包含被布置在进气***中的压缩机和被布置在排气排放***中的涡轮。 
在具有排气涡轮增压以及同时使用高压EGR设备的内燃发动机的运行中,存在基本冲突,该冲突为在涡轮上游所抽取的未通过涡轮引导的用于再循环的排气违背了原则,因此不可用于在进口侧上产生充气压力。 
在提高排气再循环率的情况中,同时减少了引进至涡轮的排气流。通过涡轮的降低的排气质量流导致较低的涡轮压力比,结果充气压力比也下降,其等于较小的压缩机质量流。除了减少的充气压力之外,在压缩机操作中还将出现关于压缩机的喘振极限的其他的问题。 
引导通过EGR设备的再循环管路的排气量和引导通过涡轮的排气量仅是流体流的两个例子,在内燃发动机运行过程中,必须通过控制元件测量和调整流体流。 
排气涡轮增压器的涡轮时常被设计为具有小涡轮横截面的废气门涡轮,以改善处于低转速下的内燃发动机的扭矩特性。如果排气质量流超过临界值,那么通过打开控制元件,在所谓的排气放出过程中,部分排气流通过经过涡轮或者轮机推动器的旁通管路引导。放出排气同样地能够用作流体流的例子,其必须通过控制元件调整和控制。 
如果内燃发动机配备了二次空气喷射设备或者液体型冷却设备,其中汽缸盖或者汽缸体被提供了冷却剂-引导冷却剂通道,则出现必须被调整(也就是被控制)的流体流的进一步例子。 
因为在所有工况下,从内燃发动机中抽取最大可能的热量不是液体型冷却设备的目标和目的,所以根据要求寻求通过控制元件实施冷却剂流控制,因此控制液体型冷却设备,该控制还允许这样的内燃发动机运行模式,即其中更有利的是:从内燃发动机中抽取较少热或者尽可能少的热,并且如果适当则将热引入内燃发动机。 
以上陈述清楚地表明在内燃发动机运行过程中,必须通过控制元件调整和控制多个流体流。由于该原因,需要以有利的方式布置流体-引导管路,并且保持尽可能小的控制元件数量。 
发明内容
针对上述背景技术,本发明的目标是提供根据权利要求1前序部分所述的内燃发动机,其最优化与流体流引导和控制有关的现有技术。 
本发明的进一步子目标是说明用于操作所述类型的内燃发动机的方法。 
通过如下的内燃发动机实现所述第一子目标,其具有至少一个汽缸、处于出口侧用于经排气排放***排放排气的至少一个排气管路、以及处于进口侧用于经进气***供应增压空气的至少一个进气管路,该内燃发动机配备有 
至少一个排气涡轮增压器,其包含布置在进气***中的压缩机和布置在排气排放***内的涡轮, 
绕过至少一个汽缸的旁通管路,该旁通管路在压缩机下游从进气***分叉,以便形成进口侧接合处,并且在涡轮下游通向排气排放***,以及 
包含再循环管路的至少一个排气再循环设备,其中再循环管路在涡轮上游从排气排放***处分叉,以便形成出口侧接合处并且通向旁通管路, 
并且其中 
在出口侧布置有第一控制元件,其用于调整被引导通过再循环管路的排气量,并且 
在进口侧布置有至少一个第二控制元件,其在第一位置中时,将旁通管路与至少一个汽缸隔开,并且将至少一个进气管路连接至至少一个汽缸,并且在第二位置中时,将至少一个进气管路与至少一个汽缸隔开,并且将旁通管路连接至至少一个汽缸。 
根据本发明的内燃发动机具有至少两个或者两个控制元件,其中在出口侧布置第一控制元件,在进口侧布置第二控制元件。第一控制元件用于调整通过再循环管路引导的排气量,并且因此同时用于调整通过涡轮引导的排气量。 
因为内燃发动机配有所述类型的旁通管路,并且排气再循环设备的再循环管路通向所述旁通管路,再循环管路还能够与旁通管路相互作用被用于或被用作涡轮的放出管路。 
第二控制元件到第一位置的移动,分离了旁通管路和内燃发动机的至少一个汽缸。通过驱动,也就是调整第一控制元件,然后判定是否所有的排气均通过涡轮引导或者部分排气通过再循环管路和旁通管路放出,并且被引导至涡轮下游的排气排放***。 
在所述第一位置,第二控制元件同时将至少一个进气管路连接至至少一个汽缸,以便将通过压缩机引导的所有新鲜空气而无排气作为增压空气经进气管路供应给至少一个汽缸。 
此外,可调整布置在进口侧的第二控制元件,以便至少一个进气管路和旁通管路彼此连接,以及连接至至少一个汽缸。在所述位置,可能的是:或者排气能够经引导返回至至少一个汽缸,以便增压空气不仅包含新鲜空气还包含排气,或者新鲜空气能够经旁通管路被喷射至排气排放***。在后一情况中,旁通管路用于所谓的二次空气喷射。 
最终,第二控制元件可被移至第二位置,其中至少一个进气管路与至少一个汽缸分离,并且旁通管路被连接至至少一个汽缸。在所述 位置,只有排气而无新鲜空气被引进内燃发动机的至少一个汽缸。此外,第二位置在进气管路关闭的情况下,能够使所有的排气通过涡轮引导,结果,部分排气能够经旁通管路被再循环至至少一个汽缸内。 
根据本发明的内燃发动机的流体引导管路,尤其是引导新鲜空气或者增压空气的管路以及引导排气的管路,以这样的方式被有利地布置和彼此连接,即在内燃发动机运行过程中,仅需要两个控制元件用于有关流体流的控制。 
利用本发明的内燃发动机,本发明基于的第一个问题因此被解决,也就是提供这样的内燃发动机,即其就流体流的引导和控制达到最优。 
正如已被描述的,在增压式内燃发动机的情况中,通常观察到扭矩朝向低排气量下降,这是因为涡轮压力比且因此充气压力比随排气质量流速降低。这可通过具有相对小的涡轮横截面的废气门涡轮达到一定程度的纠正。 
此外,可依靠并联或串联连接的多个涡轮增压器或涡轮来进一步改善增压式内燃发动机的扭矩特性。可在进气***中串联或并联布置关联的压缩机。 
由于该原因,这样的内燃发动机的实施例也是有利的,尤其是其中提供了至少两个排气涡轮增压器。 
结合从属权利要求将讨论内燃发动机的进一步优选实施例。 
如下的内燃发动机的实施例是有利的,其中在出口侧接合处布置第一控制元件。当控制元件阻塞再循环管路或者是通向涡轮的管路,特别在排气不应被引入各个管路时,所述控制元件的布置阻止排气被传递至再循环管路,或按涡轮的方向传递。如果在再循环管路或在旁通管路中布置控制元件,尽管阻塞但是会发生传递至管路的现象。 
如下的内燃发动机的实施例是有利的,其中在进口侧接合处布置第二控制元件,能够在第一位置和第二位置之间调整第二控制元件。所述实施例的特性是,在进口侧,不是提供多个控制元件,而是仅有一个控制元件。在本情况中,在进口侧接合处布置所述控制元件。关于在接合处布置而不是在远离接合处的管路中布置的优势,参考结合上述实施例所做的陈述。 
在此,如下的内燃发动机实施例是有利的,其中所述第二控制元 件能够被调整至至少一个第三位置,其中至少一个进气管路和旁通管路彼此连接以及连接至至少一个汽缸。 
正如已被说明的,在第二控制元件的所述位置中,排气能够与供应至至少一个汽缸的新鲜空气混合;然而,尤其是新鲜空气还能够在二次空气喷射过程中,经旁通管路被喷射至排气排放***。 
如下的内燃发动机的实施例是有利的,其中在至少一个排气再循环设备的再循环管路中提供冷却装置,以便冷却排气。 
在再循环管路中提供的冷却装置有利于降低热排气流的温度,从而增加排气密度。在某种程度上,冷却的结果是产生压缩。以这种方式,能够实现降低氮氧化物排放所需的高再循环率。 
基本上能够根据换热器的原理,以空气冷却设备或者液体型冷却设备的形式设计冷却设备。在空气冷却设备的情况中,通过空气流冷却通过冷却器引导的气流,其中由相对风导致和/或由鼓风机产生空气流。相反,如果适当地使用已有的回路,例如液冷式内燃发动机的发动机冷却设备,液体型冷却设备需要冷却回路构造。在此,冷却剂是由布置在冷却回路中的泵供给,以便所述冷却剂通过冷却器循环和流动。从增压空气散至冷却器中的冷却剂的热被引导出去,并且再次从另一个换热器或者一些其他位置的冷却剂中被抽出。 
由于液体相对于空气的热容量显著较高,通过液体型冷却的方式能够显著地散去比使用空气冷却时要多的热量。由于该原因,尤其是在具有排气再循环的增压式内燃发动机的情况中,使用液体型冷却设备是有利的,因为可以散去相对大的热量。 
这样的内燃发动机的实施例也是有利的,即其中排气再循环设备的冷却装置为利用冷却剂运行的冷却装置。 
这样的内燃发动机的实施例是有利的,即其中内燃发动机配有液体型冷却设备,因为具有排气再循环的增压式内燃发动机尤为地热性高负荷并且对冷却设备提出更高的要求。 
在液冷式内燃发动机的情况中,其中排气再循环设备的冷却装置为利用冷却剂运行的冷却装置,这样的内燃发动机的实施例是有利的,即其中所述冷却装置被连接至内燃发动机的液体型冷却设备。 
使用通过冷却剂运行的冷却装置,所述内燃发动机的实施例能够- 例如在暖机阶段或者冷启动之后-将热排气流中的热引入冷却剂,并且以这种方式促进,也就是加速,内燃发动机的升温过程。 
为了降低摩擦损失,从而降低内燃发动机的燃料消耗量,寻求发动机油的快速加热。在内燃发动机暖机阶段的发动机油的快速加热确保相应地快速减少油的粘度,从而降低摩擦和摩擦损失,尤其是被供应油的轴承,例如曲轴的轴承。 
通过快速加热内燃发动机本身的方式基本上将有助于快速加热发动机油,以降低摩擦损失,进而依靠在暖机阶段通过冷却剂从内燃发动机中抽取尽可能少的热,或者使用热排气将热额外地引进至内燃发动机而促进,也就是迫使内燃发动机的快速加热。 
利用冷却剂运行的冷却装置与内燃发动机的液体型冷却设备的连接能够使两个冷却设备共同使用某些组件,例如用于传递冷却剂的泵。因此减少了组件数量,这对于驱动单元的重量是有利的,并且有助于发动机舱的高密集封装。 
这样的内燃发动机实施例是有利的,即其中在至少一个排气涡轮增压器的涡轮下游在排气排放***中提供至少一个排气后处理***。为了降低污染物排放,内燃发动机排气经受排气后处理是有利的。为了该目的,如果需要可使用颗粒过滤器、存储催化转换器、氧化催还转换器、三元催化转换器或者SCR催化转换器、以及其组合。 
这样的内燃发动机实施例是有利的,即其中第一控制元件和/或第二控制元件形成阀瓣,其围绕轴可旋转。 
控制元件还可具有阀门的形式,尤其是具有三个端口和三个切换位置的3-3方向控制阀。这样的实施例是有利的,即其中能够电力地、水力地、气动地、机械地或者磁力地控制控制元件,优选通过发动机控制器的方式。控制元件能够是双级或多级切换或可以是连续可调整的。 
特别地,本发明基于的第二个子目标是说明用于操作上述类型的液冷式内燃发动机的方法,其中 
在至少一个排气再循环设备的再循环管路中提供冷却装置,该冷却装置利用冷却剂运行并且被连接至内燃发动机的液体型冷却设备, 
在出口侧接合处布置第一控制元件,其用于调整被引导通过再循环管路的排气量,以及 
在进口侧接合处布置第二控制元件,其能够被移至至少三个位置,其中在第三位置中,至少一个进气管路和旁通管路彼此连接,并且被连接至至少一个汽缸, 
通过这样的方法实现第二个子目标,其中 
控制元件根据内燃发动机的运行而被调整,以便根据要求,引导排气和增压空气通过进气***和排气排放***。 
结合根据本发明的内燃发动机的陈述同样适用于根据本发明的方法。尤其参考是关于内燃发动机、控制元件及其位置的致动或者调整的描述过程中讨论的方法特征。 
如权利要求10到12所述的三种下列方法变体是关于第二控制元件的设置或调整以及所述第二控制元件的三个主要位置。所述三种变体或位置中的每个可与权利要求13至15所述第一控制元件的设置相结合。 
这样的方法变体基本是有利的,其中第二控制元件移至第一位置,以便通过压缩机引导的所有新鲜空气而无排气作为增压空气经进气管路供应给至少一个汽缸。 
在第二控制元件的所述位置,无排气被再循环至至少一个汽缸。通过适当地调整第一控制元件,则能够实现或有利地促进不同的运行方式。 
例如,可阻塞再循环管路,以便引导所有排气通过涡轮,并且可获得和使用所有排气,以在进口侧产生尽可能高的充气压力。这在高负荷或全负荷,也就是实现高扭矩时尤为有利。 
还可以调整第一控制元件,以便部分排气是通过再循环管路被引导的,而余下的排气是通过涡轮引导的。 
因为第二控制元件在处于第一位置时阻止排气的再循环,在这种情况下,至少部分打开的再循环管路和旁通管路一并用作放出管路,其中排气是通过放出管路引导通过涡轮。排气放出导致进口侧上的充气压力降低,从而导致被引入汽缸的空气质量减少,结果导致功率减少。通过降低功率或平均压力,所述措施,其能够在所谓的降级 (de-rating)的背景下被实施,降低内燃发动机的热负荷。在所述运行状态中,额外的情况是在冷却装置中冷却放出排气,结果,能够降低在排气排放***中提供的排气后处理***的热负荷。 
通过利用冷却剂运行的冷却装置,在冷启动之后或在暖机阶段中可还使用放出排气,从而将热引入内燃发动机的液体型冷却设备内,从而引入内燃发动机本身。这有利地促进内燃发动机的加热过程,结果,显著地降低摩擦损失以及排放,尤其是未燃烃的排放。 
依靠调整第一控制元件,能够进一步加速所述加热过程,以便无任何排气是通过涡轮引导的,反而所有的排气均通过再循环管路引导。被引入内燃发动机的热量因此而增加或者达到最大化,其中由于排气涡轮增压器停用,结果内燃发动机作为自然吸气发动机运行。 
这样的方法变体也是有利的,其中第二控制元件被移至第三位置,其中至少一个进气管路和旁通管路彼此连接,并且连接至至少一个汽缸。 
在第二控制元件的所述位置,通过相应的第一控制元件的调整,排气能够经引导返回至至少一个汽缸,以便增压空气不仅包含新鲜空气,也包含再循环的排气。这对于降低氮氧化物排放是有利的,尤其是当内燃发动机已被加热或被变热的时候。 
在此,可按照这样的方式调整第一控制元件,即通过再循环管路引导部分排气或所有排气。后者对于降低排气背压,从而改善部分载荷效率尤为有利。 
如果所有排气均通过涡轮引导,在二次空气喷射过程中,新鲜空气能够经旁通管路被喷射至排气排放***。在进口侧,所有排气用于产生充气压力,其还用于传递二次空气,并因此有效地共同确定了喷射至排气排放***的二次空气量。通过二次空气喷射的方式,能够冷却设置在排气排放***中的排气后处理***。此外,通过降低被供应至汽缸的空气量,二次空气喷射构成在降级背景内的可能的措施,用于降低内燃发动机的热负荷。 
这样的方法变体也是有利的,即其中第二控制元件被移至第二位置,以便只有再循环排气而无引导通过压缩机的新鲜空气作为增压空气经进气管路被供应给至少一个汽缸。 
不管第一控制元件的位置,阻止了新鲜空气引入汽缸,这在例如带档滑行/超速(overrun)的过程中是有利的。相反,排气再循环的方式,以及再循环的排气量均取决于第一控制元件的位置。 
可以这样的方式调整第一控制元件,以便通过再循环管路引导部分排气或者所有排气。然后,通过再循环管路引导的部分排气经进气管路被供应给至少一个汽缸,并且部分排气是经旁通管路、绕过涡轮、被供给进入排气排放***。 
这提供了例如在内燃发动机的带档滑行操作中的优势,其中优选中断燃料供应。热的再循环排气确保在带档滑行操作过程中内燃发动机不会冷却、或者冷却至较小程度。如果内燃发动机在带档滑行操作后再次被切换回燃烧操作,这对污染物排放,尤其是对未燃烃和一氧化碳的排放具有有利的影响。 
第二控制元件在第二位置时用于在排气排放***和进气***之间提供增加的压力梯度,从而在带档滑行操作过程中提供高的排气再循环率。在进气管路被阻塞的情况下,以发动机制动的方式,内燃发动机经旁通管路吸入排气,这增加了泵送损失,也就是充气交换损失。 
这样的变体同样是有利的,即其中以这样的方式调整第一控制元件,即所有排气通过涡轮被引导。然后,内燃发动机经旁通管路从排气排放***中吸入排气。所述方法变体的一个优势具体是涡轮的所有排气被提供用于在进口侧产生高的充气压力。以这种方式,一旦第二控制元件从第二位置移至另一个位置时,确保了内燃发动机的快速反应。 
类似地,用于内燃发动机带档滑行操作的陈述还可应用至内燃发动机的制动模式。 
由于上述原因,关于第一控制元件的三种下列方法变体是有利的。 
第一,如下方法变体是有利的,其中 
调整第一控制元件,以便无排气被引导通过再循环管路,而是引导所有排气通过涡轮。 
如下方法变体同样是有利的,其中 
调整第一控制元件,以便引导部分排气通过再循环管路,而余下的排气被引导通过涡轮。 
如下方法变体仍是有利的,其中 
调整第一控制元件,以便无排气被引导通过涡轮,而是引导所有排气通过再循环管路。 
附图说明
基于根据图1至图10所示内燃发动机的实施例,下面将更详细地描述本发明。附图中: 
图1示意性地示出内燃发动机的第一实施例, 
图2示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第一切换状态下, 
图3示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第二切换状态下, 
图4示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第三切换状态下, 
图5示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第四切换状态下, 
图6示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第五切换状态下, 
图7示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第六切换状态下, 
图8示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第七切换状态下, 
图9示意性地示出图1所示内燃发动机的实施例,两个控制元件处于第八切换状态下,以及 
图10示意性地示出图1所示内燃发动机的实施例两个控制元件处于第九切换状态下。 
具体实施方式
图1示意性地示出内燃发动机1的第一实施例以及代表性的一个汽缸2。未示出流体流。 
内燃发动机1在出口侧具有排气管路3,其用于经排气排放*** 3a排放排气,以及在进口侧具有进气管路4,其用于通过进气***4a供应增压空气。 
为了增压,内燃发动机1配有排气涡轮增压器7,其压缩机7a布置在进气***4a的进气管路4中,其涡轮7b布置在排气排放***3a的排气管路3中。 
此外,内燃发动机1被提供了绕过汽缸2的旁通管路6,该旁通管路在压缩机7a下游处从进气***4a分叉,以便形成进口侧接合处4b,并且在涡轮7b下游通向排气排放***3a。 
此外,内燃发动机1配有排气再循环设备5,其包含再循环管路5a,其在涡轮7b上游从排气排放***3a分叉,以便形成出口侧接合处3b并且其通向旁通管路6。因此,图1所示的内燃发动机1的排气再循环设备5为高压力EGR设备5。 
在再循环管路5a中提供用于冷却排气的冷却装置5b。在本情况中,冷却装置5b为这样的冷却装置5b,即其利用冷却剂运行,并且与发动机冷却设备8(也就是内燃发动机1的液体型冷却设备8)形成结合冷却回路。在此,通过被布置在冷却回路中的泵8a传递冷却剂,以便所述冷却剂在内燃发动机1中循环,并且同样地流经冷却装置5b。如果需要,在另一个换热器或散热器中,再次从冷却剂中抽取散至冷却剂的热。 
使用冷却装置5b,在暖机阶段或冷启动后,所述冷却回路的设计也能够使热从热排气流中引入冷却剂,从而引入内燃发动机1。 
在出口侧接合处3b,布置第一控制元件3c,其用于调整通过再循环管路5a引导的排气量,因此还用于调整通过涡轮7b引导的排气量。 
在进口侧接合处4b,布置第二控制元件4c,其在第一位置中,将旁通管路6与汽缸2分离,并且将进气管路4连接至汽缸2(参看图2至图4)。在控制元件4c的第二位置中,将进气管路4与汽缸2分离,并且将旁通管路6连接至汽缸2(同样参看图8至10)。在第二控制元件4c的第三位置中,进气管路4和旁通管路6彼此连接,并且连接至汽缸2(同样参看图5至图7)。 
在排气涡轮增压器7的涡轮7b下游的排气排放***3a中提供排气后处理***9。 
图2至图10示出图1所示内燃发动机1的实施例,其具有在不同切换状态,也就是位置中的两个控制元件3c、4c。示出流体流,其中用虚线示出新鲜空气流,用实线示出排气流。相同的组件已使用相同的参考标记,由于该原因,另外参考图1。 
图2示意性地示出图1所示内燃发动机1的实施例,其具有第一切换状态下的两个控制元件3c、4c。 
第二控制元件4c位于第一位置,其中旁通管路6与汽缸2分离,进气管路4被连接至汽缸2。通过压缩机7a引导的所有新鲜空气并且无排气作为增压空气经进气管路4被供应给汽缸2。 
以这样的方式设置第一控制元件3c,即引导所有排气通过涡轮7b,从而有助于进口侧上的充气压力增加。以这种方式,能够实现高负荷或者高扭矩。 
图3示意性地示出图1所示内燃发动机1的实施例,其具有处于第二切换状态下的两个控制元件3c、4c。其仅试图解释与图2所示切换状态的差异,由于该原因,另外参考图2。相同组件已使用相同的参考标记。 
在图3所示的切换状态中,与图2所示的切换状态相反,以这样的方式设置第一控制元件3c,即引导部分排气通过再循环管路5a,而余下的排气部分引导通过涡轮7b。 
位于第一位置的第二控制元件4c阻止了排气再循环,以便在本情况中,再循环管路5a与旁通管路6共同形成越过涡轮7b的放出(blow-off)管路。放出排气降低了进口侧上的充气压力,从而降低引入汽缸2中的空气质量。同样地,内燃发动机1的热负荷减少。 
在冷启动后,放出排气可用于经冷却装置5b将热引入内燃发动机1,这样加速了内燃发动机1的暖机过程。 
还可调整第一控制元件,如图4所示,以便排气不是被引导通过涡轮7b,而是引导所有的排气通过再循环管路5a。图4示意性地示出在所述第三切换状态中的两个控制元件3c、4c。在所述切换状态中,由于完全绕过涡轮7b,导致内燃发动机1作为自然吸气发动机运行。 
图5示意性地示出图1所示内燃发动机1的实施例,其具有第四切换状态下的两个控制元件3c、4c。其试图解释与上述切换状态有关 的差异,由于该原因,另外参考图2至4。相同组件已使用相同的参考标记。 
第二控制元件4c位于第三位置,其中进气管路4和旁通管路6彼此连接,并且连接至汽缸2。在所述第二控制元件4c的位置,通过第一控制元件3c的相应调整,排气能够经引导返回至汽缸2,以便不仅新鲜空气,而且再循环排气被引入汽缸2。 
在图5中,设置第一控制元件3c,以便通过引导部分排气再循环管路5a,以及引导余下的排气通过涡轮7b。这对于降低氮氧化物排放是有利的。 
图6示意性地示出图1所示内燃发动机1的实施例,其具有第五切换状态下的两个控制元件3c、4c。其试图解释与图5所示的切换状态的差异,由于该原因,另外参考图5。相同组件已使用相同的参考标记。 
在图6中,以这样的方式设置第一控制元件3c,即引导所有排气通过涡轮7b,以及在进口侧,所有排气用于产生充足的高充气压力。能够通过旁通管路6将二次空气喷射至排气排放***3a。 
图7示意性地示出图1所示内燃发动机1的实施例,其具有第六切换状态下的两个控制元件3c、4c。其试图解释与图5所示的切换状态的差异,由于该原因,另外参考图5。相同组件已使用相同的参考标记。 
以这样的方式设置第一控制元件3c,即引导所有排气通过再循环管路5a。按照这种方式,排气背压被降低,并且达到改善部分负荷范围效益的目的。 
图8示意性地示出图1所示内燃发动机1的实施例,其具有第七切换状态下的两个控制元件3c、4c。其试图解释与上述切换状态的差异,由于该原因,另外参考图2至图7。相同组件已使用相同的参考标记。 
第二控制元件4c位于第二位置,其中进气管路4与汽缸2分离,并且旁通管路6被连接至汽缸2,以便经进气管路4,只有再循环排气而无被引导通过压缩机7a的新鲜空气作为增压空气被或者能够被供应至汽缸2。不管第一控制元件3c的位置,阻止了新鲜空气引入汽缸 2,这在带档滑行(overrun)操作过程中是有利的。 
在本情况中,设置第一控制元件3c,以便通过再循环管路5a引导部分排气,其中该部分排气经进气管路4被供应给汽缸2,或者经旁通管路6、绕过涡轮7b、进入排气排放***3a。位于第二位置的第二控制元件4c用于在排气排放***3a和进气***4a之间提供增加的压力梯度,从而提供高的排气再循环率。 
图9示意性地示出图1所示内燃发动机1的实施例,其具有第八切换状态下的两个控制元件3c、4c。只解释与图8所示的切换状态的差异,由于该原因,另外参考图8。相同组件已使用相同的参考标记。 
以这样的方式设置第一控制元件3c,即引导所有排气通过再循环管路5a。 
图10示意性地示出图1所示内燃发动机1的实施例,其具有第九切换状态下的两个控制元件3c、4c。只解释与图8所示的切换状态的差异,由于该原因,另外参考图8。相同组件已使用相同的参考标记。 
以这样的方式设置第一控制元件3c,即引导所有排气通过涡轮7b。然后汽缸2经旁通管路6从排气排放***3a吸入排气,其中排气先前已从涡轮7中流过。 
参考标记 
1  内燃发动机 
2  汽缸 
3  排气管路 
3a 排气排放*** 
3b 出口侧接合处 
3c 第一控制元件,EGR阀 
4  进气管路 
4a 进气*** 
4b 进口侧接合处 
4c 第二控制元件 
5  排气再循环设备 
5a 再循环管路 
5b 冷却装置,换热器 
6  旁通管路 
7  排气涡轮增压器 
7a 压缩机 
7b 涡轮 
8  液体型冷却设备,发动机冷却设备 
8a 泵 
9  排气后处理*** 
EGR        排气再循环 
mEGR       再循环排气的质量 
mfresh air   供应的新鲜空气或燃烧空气的质量 
xEGR       排气再循环率 

Claims (15)

1.一种内燃发动机(1),其具有至少一个汽缸(2)、处于出口侧用于经排气排放***(3a)排放排气的至少一个排气管路(3)、以及处于进口侧用于经进气***(4a)供应增压空气的至少一个进气管路(4),该内燃发动机配备有
至少一个排气涡轮增压器(7),其包含布置在所述进气***(4a)中的压缩机(7a)和布置在所述排气排放***(3a)内的涡轮(7b),
绕过所述至少一个汽缸(2)的旁通管路(6),该旁通管路在所述压缩机(7a)下游从所述进气***(4a)分叉,以便形成进口侧接合处(4b),并且在所述涡轮(7b)下游通向所述排气排放***(3a),以及
包含再循环管路(5a)的至少一个排气再循环设备(5),其中所述再循环管路(5a)在所述涡轮(7b)上游从所述排气排放***(3a)处分叉,以便形成出口侧接合处(3b)并且通向所述旁通管路(6),
其中
在所述出口侧布置有第一控制元件(3c),其用于调整被引导通过所述再循环管路(5a)的排气量,并且
在所述进口侧布置有至少一个第二控制元件(4c),其在第一位置时,将所述旁通管路(6)与所述至少一个汽缸(2)隔开,并且将所述至少一个进气管路(4)连接至所述至少一个汽缸(2),并且在第二位置时,将所述至少一个进气管路(4)与所述至少一个汽缸(2)隔开,并且将所述旁通管路(6)连接至所述至少一个汽缸(2)。
2.根据权利要求1所述的内燃发动机(1),其中在所述出口侧接合处(3b)布置所述第一控制元件(3c)。
3.根据权利要求1或2所述的内燃发动机(1),其中在所述进口侧接合处(4b)布置第二控制元件(4c),能够在所述第一位置和所述第二位置之间调整该第二控制元件。
4.根据权利要求3所述的内燃发动机(1),其中所述第二控制元件(4c)能够被调整至至少一个第三位置,在该至少一个第三位置中所述至少一个进气管路(4)和所述旁通管路(6)彼此连接并且连接至所述至少一个汽缸(2)。
5.根据上述权利要求中的一项所述的内燃发动机(1),其中在所述至少一个排气再循环设备(5)的所述再循环管路(5a)中提供冷却装置(5b),以便冷却所述排气。
6.根据上述权利要求中的一项所述的内燃发动机(1),其中所述内燃发动机(1)配备有液体型冷却设备(8)。
7.根据权利要求6所述的具有液体型冷却设备(8)的所述内燃发动机(1),其中所述排气再循环设备(5)的所述冷却装置(5b)是利用冷却剂运行并且连接至所述液体型冷却设备(8)的冷却装置(5b)。
8.根据上述权利要求中的一项所述的内燃发动机(1),其中在所述至少一个排气涡轮增压器(7)的所述涡轮(7b)下游在所述排气排放***(3a)中提供至少一个排气后处理***(9)。
9.一种用于操作根据上述权利要求中的一项所述的液冷式内燃发动机(1)的方法,其中
在所述至少一个排气再循环设备(5)的再循环管路(5a)中提供冷却装置(5b),该冷却装置(5b)利用冷却剂运行并且被连接至所述内燃发动机(1)的液体型冷却设备(8),
在所述出口侧接合处(3b)布置第一控制元件(3c),其用于调整被引导通过所述再循环管路(5a)的排气量,以及
在所述进口侧接合处(4b)布置第二控制元件(4c),其能够被移至至少三个位置,其中在所述第三位置中,所述至少一个进气管路(4)和所述旁通管路(6)彼此连接,并且被连接至所述至少一个汽缸(2),
其中
所述控制元件(3c、4c)根据所述内燃发动机(1)的运行而被调整,以便根据需求,引导排气和增压空气通过所述进气***(4a)和所述排气排放***(3a)。
10.根据权利要求9所述的方法,其中
所述第二控制元件(4c)被移至所述第一位置,以便所有新鲜空气被引导通过所述压缩机(7a)而无排气作为增压空气经所述进气管路(4)供应给所述至少一个汽缸(2)。
11.根据权利要求9所述的方法,其中
所述第二控制元件(4c)被移至所述第三位置,在该第三位置中所述至少一个进气管路(4)和所述旁通管路(6)彼此连接并且连接至所述至少一个汽缸(2)。
12.根据权利要求9所述的方法,其中
所述第二控制元件(4c)被移至所述第二位置,以便只有再循环排气而无被引导通过所述压缩机(7a)的新鲜空气作为增压空气经所述进气管路(4)被供给所述至少一个汽缸(2)。
13.根据权利要求9至12中的一项所述的方法,其中
调整所述第一控制元件(3c),以便无排气被引导通过所述再循环管路(5a),而是所有排气被引导通过所述涡轮(7b)。
14.根据权利要求9至12中的一项所述的方法,其中
调整所述第一控制元件(3c),以便部分排气被引导通过所述再循环管路(5a),而余下的排气部分被引导通过所述涡轮(7b)。
15.根据权利要求9至12中的一项所述的方法,其中
调整所述第一控制元件(3c),以便无排气被引导通过所述涡轮(7b),而是所有所述排气被引导通过所述再循环管路(5a)。
CN201310003690.1A 2012-01-05 2013-01-05 带有排气涡轮增压和排气再循环的内燃发动机以及操作所述类型内燃发动机的方法 Expired - Fee Related CN103195558B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012200111.5 2012-01-05
DE102012200111 2012-01-05

Publications (2)

Publication Number Publication Date
CN103195558A true CN103195558A (zh) 2013-07-10
CN103195558B CN103195558B (zh) 2016-12-28

Family

ID=48652705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310003690.1A Expired - Fee Related CN103195558B (zh) 2012-01-05 2013-01-05 带有排气涡轮增压和排气再循环的内燃发动机以及操作所述类型内燃发动机的方法

Country Status (3)

Country Link
US (1) US9551302B2 (zh)
CN (1) CN103195558B (zh)
DE (1) DE102012223808B4 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101189A1 (zh) * 2014-12-24 2016-06-30 深圳智慧能源技术有限公司 活塞透平复合发动机
CN107882659A (zh) * 2016-09-30 2018-04-06 福特环球技术公司 具有排气再循环装置的内燃发动机和用于操作所述类型的内燃发动机的方法
CN113195877A (zh) * 2018-12-14 2021-07-30 沃尔沃卡车集团 用于控制内燃发动机设备的方法
CN107882658B (zh) * 2016-09-30 2022-04-08 福特环球技术公司 具有冷却式排气再循环装置的增压内燃发动机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010736A1 (fr) * 2013-09-13 2015-03-20 Peugeot Citroen Automobiles Sa Groupe motopropulseur pour vehicule automobile comprenant une vanne de decharge de compresseur
WO2015112589A1 (en) * 2014-01-24 2015-07-30 Eaton Corporation Air delivery system for a farm machine
DE102015208684B4 (de) 2015-05-11 2019-04-18 Ford Global Technologies, Llc Kraftfahrzeug mit einem Abgasrückführungsstrang und zwei Verdichtern
DE102015208685A1 (de) 2015-05-11 2016-11-17 Ford Global Technologies, Llc Kraftfahrzeug
DE202015103052U1 (de) 2015-05-11 2015-06-25 Ford Global Technologies, Llc Kraftfahrzeug
DE102017113524A1 (de) 2016-06-24 2017-12-28 FEV Europe GmbH Einrichtung zur Abgasrückführung einer Brennkraftmaschine
US10337347B2 (en) 2016-06-30 2019-07-02 Ge Global Sourcing Llc Method and systems for an energy recovery and energy converting unit for an engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098278A (ja) * 2003-09-05 2005-04-14 Denso Corp 排気ガス再循環装置
CN101002015A (zh) * 2004-08-11 2007-07-18 株式会社小松制作所 进排气连通回路的开关控制装置
DE102010023524A1 (de) * 2010-06-11 2011-12-15 Audi Ag Kraftwagen sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2478736A1 (fr) * 1980-03-21 1981-09-25 Semt Procede et systeme de generation de puissance par moteur a combustion interne suralimente
DE10011954A1 (de) 2000-03-11 2001-09-13 Modine Mfg Co Abgaswärmetauscher in einer Abgasrückführungsanordnung
EP1138928B1 (en) * 2000-03-27 2013-04-24 Mack Trucks, Inc. Turbocharged engine with exhaust gas recirculation
US7251932B2 (en) * 2004-11-08 2007-08-07 Southwest Research Institute Exhaust system and method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
US7454896B2 (en) 2005-02-23 2008-11-25 Emp Advanced Development, Llc Thermal management system for a vehicle
SE530766C2 (sv) * 2005-03-09 2008-09-09 Komatsu Mfg Co Ltd Turboladdad motor med avgasrecirkulationsanordning
JP2008309053A (ja) * 2007-06-14 2008-12-25 Toyota Motor Corp 内燃機関の制御装置
DE102009046370B4 (de) * 2009-11-04 2017-03-16 Ford Global Technologies, Llc Verfahren und Anordnung zur Abgasrückführung bei einem Verbrennungsmotor
CN102124200B (zh) * 2009-11-11 2013-09-25 丰田自动车株式会社 内燃机的控制装置
US7934486B1 (en) 2010-04-02 2011-05-03 Ford Global Technologies, Llc Internal and external LP EGR for boosted engines
US8042335B2 (en) * 2010-06-03 2011-10-25 Ford Global Technologies, Llc Intake air heating and exhaust cooling
US8479511B2 (en) * 2010-09-09 2013-07-09 Ford Global Technologies, Llc Method and system for a turbocharged engine
US8899040B2 (en) * 2011-09-29 2014-12-02 Caterpillar Inc. Compressor bypass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098278A (ja) * 2003-09-05 2005-04-14 Denso Corp 排気ガス再循環装置
CN101002015A (zh) * 2004-08-11 2007-07-18 株式会社小松制作所 进排气连通回路的开关控制装置
DE102010023524A1 (de) * 2010-06-11 2011-12-15 Audi Ag Kraftwagen sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101189A1 (zh) * 2014-12-24 2016-06-30 深圳智慧能源技术有限公司 活塞透平复合发动机
CN107882659A (zh) * 2016-09-30 2018-04-06 福特环球技术公司 具有排气再循环装置的内燃发动机和用于操作所述类型的内燃发动机的方法
CN107882659B (zh) * 2016-09-30 2021-09-03 福特环球技术公司 具有排气再循环装置的内燃发动机和用于操作所述类型的内燃发动机的方法
CN107882658B (zh) * 2016-09-30 2022-04-08 福特环球技术公司 具有冷却式排气再循环装置的增压内燃发动机
CN113195877A (zh) * 2018-12-14 2021-07-30 沃尔沃卡车集团 用于控制内燃发动机设备的方法
CN113195877B (zh) * 2018-12-14 2022-08-16 沃尔沃卡车集团 用于控制内燃发动机设备的方法

Also Published As

Publication number Publication date
CN103195558B (zh) 2016-12-28
US20130174546A1 (en) 2013-07-11
US9551302B2 (en) 2017-01-24
DE102012223808B4 (de) 2019-06-13
DE102012223808A1 (de) 2013-07-11

Similar Documents

Publication Publication Date Title
CN103195558A (zh) 带有排气涡轮增压和排气再循环的内燃发动机以及操作所述类型内燃发动机的方法
US6360732B1 (en) Exhaust gas recirculation cooling system
CN202300717U (zh) 用于高增压发动机***的egr混合器
US8943823B2 (en) Fluid handling system having dedicated EGR turbo-generator
EP0869275B1 (en) Exhaust gas recirculation system for an internal combustion engine
CN103370510B (zh) 车辆及其带有增压空气冷却器和egr***的发动机设备
CN104471230B (zh) 包括热机和电压缩机的组件
EP0869276A1 (en) Exhaust gas recirculation system for an internal combustion engine
US20060174621A1 (en) Two-turbocharger engine and method
US6418721B1 (en) Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine
US20100146968A1 (en) Emission system, apparatus, and method
CN103061872A (zh) 具有排气再循环装置的增压内燃发动机和用于运行所述类型内燃发动机的方法
CN106065809A (zh) 具有两级机械增压和排气后处理的发动机及其运行方法
CN107882658B (zh) 具有冷却式排气再循环装置的增压内燃发动机
CN104220717A (zh) 用于对置活塞二冲程发动机的排气管理策略
CN110234860B (zh) 用于控制内燃发动机的方法
US20100146967A1 (en) Emission system, apparatus, and method
US6484499B2 (en) Twin variable nozzle turbine exhaust gas recirculation system
CN101245730B (zh) 用于混合动力汽车的均质压燃汽油机进气***
US9003792B2 (en) Exhaust aftertreatment and exhaust gas recirculation systems
US11952951B2 (en) Thermal management of aftertreatment devices of opposed-piston engines under motoring conditions
CN105863792A (zh) 具有外源点火内燃发动机的能增压的内燃机及其运行方法
CN203769966U (zh) 机械增压的内燃发动机
WO2013010923A1 (en) Exhaust gas recirculation for an i.c. engine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161228

Termination date: 20220105