CN103160054B - 具有导电性与铁磁性的复合材料及其混成浆料 - Google Patents

具有导电性与铁磁性的复合材料及其混成浆料 Download PDF

Info

Publication number
CN103160054B
CN103160054B CN201110461182.9A CN201110461182A CN103160054B CN 103160054 B CN103160054 B CN 103160054B CN 201110461182 A CN201110461182 A CN 201110461182A CN 103160054 B CN103160054 B CN 103160054B
Authority
CN
China
Prior art keywords
electroconductibility
ferric oxide
matrix material
electroconductive polymer
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110461182.9A
Other languages
English (en)
Other versions
CN103160054A (zh
Inventor
黄英婷
杨慕震
汪进忠
张光伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN103160054A publication Critical patent/CN103160054A/zh
Application granted granted Critical
Publication of CN103160054B publication Critical patent/CN103160054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Abstract

本发明提供一种具有导电性与铁磁性的复合材料,包括:5至90重量份的导电性高分子基质;以及0.1至40重量份的柱状纳米氧化铁,其是具有铁磁性的氧化铁,且该柱状纳米氧化铁的长径比大于3。本发明还提供一种混成浆料,包括:一导电性高分子;一柱状纳米氧化铁,其是具有铁磁性的氧化铁,且该柱状纳米氧化铁的长径比大于3;以及一溶剂。

Description

具有导电性与铁磁性的复合材料及其混成浆料
技术领域
本发明是涉及复合材料,且特别是涉及一种具有铁磁性及导电性的复合材料及其混成浆料(hybridslurry)。
背景技术
电磁波干扰(Electro-MagneticInterference,EMI)是近年来被发现的电子污染。随着高科技的发展,电磁辐射的程度日趋严重。若无法有效隔离电磁波,不但会妨害各种通讯、造成各式精密仪器的误差及损坏,甚至会影响人类的生活品质与健康。因此,高性能的电磁波防护材料的需求正不断增加。
电磁波主要是由互相垂直的电场与磁场组成,因而可将之分为静电场与静磁场的遮蔽。静电场遮蔽是通过金属表面的电荷分布以抵消金属内的电场;静磁场遮蔽则是由高导磁率的铁磁材料提供低电阻的线路,让磁力线传导并经过或到达遮蔽物,以减少遮蔽物内的磁场干扰。因此,电磁波防护的原理包括有反射损失及吸收损失两种。由于高导电性材料的体积阻抗低,其反射损失作用大。磁性材料的磁滞现象则与其含磁量和矫顽磁力(coercivity)相关,带磁量愈大、矫顽磁力愈大的物质,其磁力曲线中的封包面积也会愈大。因此,其所能提供的能量耗损也愈大,也即其电磁波的防护能力愈强。
目前最常用的EMI材料为高导电性的金属材料,但是使用金属材料则有较重、易腐蚀、硬度高等的缺点。为了满足电子产品轻薄化和电动车等新兴市场的需求,研发高效能、具可挠性和超薄化EMI材料有极大的潜在应用价值。
虽然已经有许多人研究发展了同时兼具有导电性与铁磁性的材料技术,但是现有技术或多或少都尚有若干的缺点,例如:纳米复合材料本身的铁磁性或导电性不足,或是复合材料制作过程存在不容易分散与加工的问题。
因此,目前亟需一种EMI材料,不仅要具备高效能磁性与导电性,同时要能够具备轻薄、易加工、可挠曲、不易腐蚀等特性,才能符合未来市场的需求。
发明内容
本发明的目的在于提供一种具有导电性与铁磁性的复合材料,同时还要能够具备轻薄、易加工、可挠曲、不易腐蚀等特性,以符合未来市场的需求。
本发明提供一种具有导电性与铁磁性的复合材料,包括:5至90重量份的导电性高分子基质;以及0.1至40重量份的柱状纳米氧化铁,其是具有铁磁性的氧化铁,且该柱状纳米氧化铁的长径比大于3。
本发明还提供一种混成浆料,包括:一导电性高分子;一柱状纳米氧化铁,其是具有铁磁性的氧化铁,且该柱状纳米氧化铁的长径比大于3;以及一溶剂。
本发明的优点在于:相较于传统的电磁波防护材料,本发明的具有导电性与铁磁性的复合材料可具有较佳的电磁波防护效果。
为让本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举出较佳实施例,并配合所附附图,作详细说明如下:
附图说明
图1显示根据本发明实施例1制备的柱状纳米氧化铁的SEM图;
图2显示根据本发明实施例1制备的柱状纳米氧化铁的XRD图;
图3显示根据本发明实施例1制备的柱状纳米氧化铁的磁性分析的结果;
图4显示根据本发明实施例2制备的具核壳结构的柱状纳米氧化铁的TEM图;
图5显示根据本发明实施例2制备的具核壳结构柱状纳米氧化铁的磁性分析的结果;
图6-8显示根据本发明实施例5制备的各复合材料的电磁波遮蔽效果。
具体实施方式
以下依本发明的不同特征举出数个不同的实施方式。本发明中特定的元件及安排是为了简化,但本发明并不以这些实施方式为限。此外,为简明起见,本发明在不同例子中以重复的元件符号及/或字母表示,但不代表所述各实施方式及/或结构间具有特定的关系。
在本发明一实施方式中,利用有机无机混成技术开发同时兼具铁磁性与导电性的混成浆料。此混成浆料可通过便利的加工与成形而成为实用的纳米复合材料。并且,通过利用控制纳米氧化铁结构的长径比而形成柱状纳米氧化铁,藉此可改变其铁磁特性,而达到良好的电磁波防护能力。
在本发明另一实施方式中,可额外在柱状氧化铁表面包覆导电性高分子外壳,以同时加强铁磁与导电双相的连续性。因此,将其应用以形成混成浆料或复合材料时,可具有较佳的铁磁性及导电性。
在本发明一实施方式中,混成浆料中,包括柱状纳米氧化铁、导电性高分子及溶剂。另外,混成浆料也可依需要包括接着剂。其中,柱状纳米氧化铁是具有铁磁性的氧化铁,且其长径比大于3,更佳为介于5至10之间。
在混成浆料中,柱状纳米氧化铁∶导电性高分子∶接着剂∶溶剂的重量比例如为0.01-0.5∶1-3∶0.5-1.5∶90-98,且其固含量例如介于0.5至90%。在一实施例中,混成浆料的导电度可介于20至2000μS。
上述柱状纳米氧化铁例如可为四氧化三铁(Fe3O4)、γ-三氧化二铁(γ-Fe2O3)、或前述的组合。在一实施方式中,柱状纳米氧化铁的直径可介于10至100nm,而依前述的长径比,其对应长度可介于30至1000nm。在另一实施方式中,柱状纳米氧化铁的饱和磁化量可介于2至90emu/g,矫顽磁力可介于0.5至200G。
由于纳米氧化铁可随着粒径的变化而呈现不同的磁特性。在特定粒径之下,氧化铁的矫顽磁力可达到最高点,此曲块称为单磁畴区(singledomain)。此外,其长径比对磁性也有显著的影响,例如当长径比>5时,纳米氧化铁会位于单磁畴区。因此,通过对纳米氧化铁的长径比加以控制,就会得到不同特性的纳米磁性材料。经实验发现,纳米氧化铁长径比较佳为大于3,更佳为介于5至10之间。
然而,应注意的是,若单独使用氧化铁作为电磁波防护材料,其遮蔽特性并不显著。例如,材料厚度在超过2mm时,遮蔽效率才可达19dB。亦即,单独使用氧化铁所形成的材料必须要有相当的厚度才有电磁波遮蔽效果。因此,本案除了柱状纳米氧化铁之外,更需加入导电性高分子形成混成浆料,才可达到较佳的电磁波防护效果。
上述导电性高分子是具有共轭双键的高分子聚合物,例如为聚乙炔(polyacetylene)、聚吡咯(polypyrrole)、聚噻吩(polythiophene)、聚苯胺(polyaniline)、聚对苯硫醚(poly(p-phenylenesulfide))、聚对苯乙炔(poly(p-phenylenevinylene))、聚3,4-二氧乙烯噻吩(poly(3,4-ethylenedioxythiophene))、聚3,4-二氧乙烯噻吩-聚苯乙烯磺酸(poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate)、或前述的组合。在一实施方式中,导电性高分子基质是使用聚3,4-二氧乙烯噻吩-聚苯乙烯磺酸。
应注意的是,虽然单独使用导电性高分子也有一定程度的电磁波防护能力,但同时使用导电性高分子与氧化铁混掺形成混成浆料时,其电磁波防护能力较单独使用导电性高分子为高,显示氧化铁与导电性高分子对于电磁波的防护具有加成效果。
另外,在上述混成浆料中所使用的接着剂例如可为聚乙烯醇(polyvinylalcohol)、聚丙烯酸(polyacrylicacid)、聚氨酯(polyurethane)、环氧树脂(epoxyresin)、聚甲基丙烯酸甲酯(Polymethylmethacrylate)、丙烯晴-丁二烯-苯乙烯共聚物(AcrylonitrileButadieneStyrene)、或前述的组合。使用接着剂的主要目的,在于后续制程中,可提升所形成复合材料与其它物质之间的粘着性,并加强材料本身的机械强度。此外,在上述混成浆料中所使用的溶剂,为一水性溶剂,例如包括以水为主要成份的溶剂或水,这是由于柱状纳米氧化铁、导电性高分子及粘着剂皆为水溶性,因而可形成均匀分散的浆料。
在本发明另一实施方式中,混成浆料不仅可包括柱状纳米氧化铁、导电性高分子、溶剂及接着剂,且其柱状纳米氧化铁表面包覆有导电性高分子外壳以形成一核壳(coreshell)结构。在一实施方式中,导电性高分子外壳的厚度介于5至50nm。
上述导电性高分子是具有共轭双键的高分子聚合物,例如为聚乙炔(polyacetylene)、聚吡咯(polypyrrole)、聚噻吩(polythiophene)、聚苯胺(polyaniline)、聚对苯硫醚(poly(p-phenylenesulfide))、聚对苯乙炔(poly(p-phenylenevinylene))、聚3,4-二氧乙烯噻吩(poly(3,4-ethylenedioxythiophene))、聚3,4-二氧乙烯噻吩-聚苯乙烯磺酸(poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate)、或前述的组合。在一实施方式中,该用以包覆柱状纳米氧化铁的导电性高分子外壳,是使用聚苯胺(polyaniline)。
经实验发现,当混成浆料中包括具有核壳结构的柱状纳米氧化铁时,可更有效的提升其电磁波防护效果。
此外,可将前述混成浆料进行加工,以形成实用的纳米复合材料。在一实施方式中,可将混成浆料倒入模具中,并于30至80℃下烘干,即可得到纳米复合材料。复合材料例如可包括:5至90重量份的导电性高分子基质;0.1至40重量份的柱状纳米氧化铁;以及0.5至85重量份的接着剂。在一实施方式中,复合材料可经由各种涂布方式形成薄膜,例如旋转涂布(spincoating)、棒状涂布(barcoating)、刮刀涂布(bladecoating)、滚筒涂布(rollercoating)、线棒涂布(wirebarcoating)、浸渍涂布(dipcoating)、喷洒涂布(spraycoating)等。此外,所形成薄膜的表面电阻例如可介于1至1000Ω/□,较佳介于1至100Ω/□。此外,复合材料例如可应用于电磁波遮蔽、雷达/微波吸收、或静电防护。
相较于传统的电磁波防护材料,例如单纯使用氧化铁所形成的电磁波防护材料、单纯使用导电性高分子所形成的电磁波防护材料、或以球形氧化铁所形成的电磁波防护材料,本案各实施方式的具有导电性与铁磁性的复合材料可具有较佳的电磁波防护效果。在一实施方式中,利用长径比大于3的纳米氧化铁以及导电性高分子混合形成混成浆料,其磁性及导电性皆可具有加成的效果。因此,再更进一步形成复合材料薄膜时(含导电性高分子基质以及长径比大于3的纳米氧化铁),其在较薄的状态下即可达到所需的电磁波防护效果。例如,当薄膜厚度介于20μm至30μm时,即可达到20dB的电磁波防护能力。
另外,在本发明另一实施方式中,则更进一步的在柱状纳米氧化铁表面包覆导电性高分子外壳以形成核壳结构。而后再以具核壳结构的柱状纳米氧化铁与导电性高分子混合形成一混成浆料,或形成具电磁波遮蔽性的复合材料。经实验发现,以具有核壳结构的柱状纳米氧化铁所形成的复合材料的电磁波防护效果更佳。上述现象可能的原因为当导电性高分子外壳包覆在柱状纳米氧化铁表面上时,会使得原本在柱状纳米氧化铁表面的不具磁性的α-三氧化二铁(α-Fe2O3)转变为具磁性的四氧化三铁(Fe3O4),故可增加整体结构的磁性,进而使得所形成的复合材料具有更高的电磁波防护效果。
综上所述,相较于传统电磁波防护薄膜的厚度需大于5mm时,才可达到20dB(EMI99%)的电磁波遮蔽效果。本案各实施方式的复合材料薄膜的厚度仅需达例如40μm,即可达到30dB(EMI99.9%)的电磁波防护效果,甚至在30MHz下时可达50dB的电磁波防护效果。
【实施例1】柱状纳米氧化铁的合成
将0.648克FeCl3溶于80ml的水中,再加入0.556克的硫酸亚铁(FeSO4·7H2O)并搅拌使其溶解。溶解后于氮气下加入40ml的甲苯(Toluene),然后缓缓加入10ml(20mM)的溴化鲸蜡基三甲基铵(CTAB;cetyltrimethylammoniumbromide)及10ml的乙二胺(ethylenediamine)作为表面活性剂,搅拌20分钟后,于120℃反应20小时。而后,取出样品并加纯水清洗,再使用超音波振荡器将粒子分散于水溶液中。将合成的氧化铁分别以扫描式电子显微镜(SEM;scanningelectronmicroscope)、穿透式电子显微镜(TEM;Transmissionelectronmicroscopy)以及X-光绕射仪(XRD;X-rayscatteringtechniques)分析其形状、粒径及成份。
图1显示所形成柱状纳米氧化铁的SEM图。在图1中,可看出所形成纳米氧化铁的形状为柱状,宽度约介于10至50nm,长度约介在100至300nm之间,平均长径比约为5-10。
图2显示为所形成柱状纳米氧化铁的XRD图。在图2中,可看出本发明所合成的氧化铁为四氧化三铁,其为立方(cubic)晶形,在XRD图谱中呈现出(220)、(311)、(400)、(422)、(511)、(440)六个晶面。
图3显示所形成的柱状纳米氧化铁使用振动试品磁强计(VSM;VibratingSampleMagnetometer)测得饱和磁化量(Ms;saturatedmagnetization)及矫顽磁力(Hc;coercivity),其饱和磁化量为62.9emu/g,矫顽磁力为122.5G。
【实施例2】具导电性高分子外壳的柱状纳米氧化铁的合成
取0.04克实施例1中合成的纳米柱状氧化铁,置入水中并加入40μl的苯胺(aniline)搅拌。同时将0.328克的过硫酸铵(APS;Ammoniumpersulfate)作为引发剂溶于0.01M盐酸溶液中。而后,将过硫酸铵溶液慢慢加入反应溶液中,并且持续搅拌及保持冰浴6小时,反应后即可得到四氧化三铁(Fe3O4)/聚苯胺(PANi;polyaniline)核壳结构微粒。以纯水清洗,再将之分散于水中。以TEM分析所合成的四氧化三铁/聚苯胺微粒的核壳结构。参照图4可发现微粒的内层是颜色较深的氧化铁,外层披覆一层极薄且颜色较淡的聚苯胺。这是由于聚苯胺的电子密度低于四氧化三铁,因而在TEM上颜色的表现会淡于四氧化三铁。从TEM分析也可知道此导电性高分子外壳厚度(即PANi膜厚)约为5~10nm。
图5显示所形成的柱状纳米氧化铁/聚苯胺核壳结构使用振动试品磁强计(VSM)测得的磁性分析结果,其测量得到的饱和磁化量为71.69emu/g,矫顽磁力为137.09G,由测量值可知经过聚苯胺的包覆并没有减弱氧化铁本身的磁性。
【实施例3】配制混成浆料-B
将实施例1合成制得且已分散于水中的柱状纳米氧化铁、适当比例的导电性高分子和1wt%聚乙烯醇(PVA;polyvinylalcohol)混合。其中,所使用的导电性高分子为聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS;Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate);购自全虹)。将上述混合物于超音波振荡器震荡30分钟,再持续搅拌约18小时,使之均匀混合,即可得到混成浆料。
依上述方法配制成具有三种不同柱状纳米氧化铁含量的混成浆料,其中柱状纳米氧化铁的含量分别为1.2wt%(B1)、6wt%(B2)、12wt%(B3)。
以导电度计分别测量各浆料的导电度(Conductivity),分别为1040(B1)、910(B2)和715μS/cm(B3),如表1所示。
另外,将浆料以烘干方式干燥后,使用振动试品磁强计(VSM)测量其饱和磁化量,分别为2.32(B1)、2.03(B2)和5.14emu/g(B3)。若依浆料中柱状氧化铁的含量将其饱和磁量标准化(Normalization)之后,则分别为193.02(B1)、33.87(B2)和21.42emu/g(B3)。参照表1,单纯使用柱状纳米氧化铁时,虽可具有较佳的矫顽磁力,但其导电度差。然而,实施例1合成制得的柱状纳米氧化铁所形成的混成浆料(B1、B2、B3)则可同时兼具磁性及导电性。
表1
样品名称 柱状纳米氧化铁 B1 B2 B3
纳米氧化铁含量(%) 100% 1.20% 6% 12%
矫顽磁力Hc(G) 122.5 24.99 67.07 112.85
测得饱和磁化量(emu/g) 62.9 2.32 2.03 5.14
正规化饱和磁化量(emu/g) 62.9 193.02 33.87 21.42
导电度(μS/cm) 22.9 1040 910 715
【实施例4】配制混成浆料-C
将实施例2合成制得且已分散于水中的Fe3O4/PANi核壳结构微粒与适当比例的PEDOT:PSS(购自全虹)和聚乙烯醇(1wt%)混合,于超音波振荡器震荡30分钟,再持续搅拌(约18小时)使之均匀混合,即可得到混成浆料-C。以不同含量的Fe3O4/PANi核壳结构微粒依上述方法配制成三种各含1.2%(C1)、6%(C2)、12%(C3)的混成浆料。
以导电度计测量浆料的导电度,分别为1280、1150和990μS/cm,如表2所示。将浆料干燥后,使用(振动试品磁强计)VSM测量其饱和磁化量,分别为3.805(C1)、4.795(C2)和3.965emu/g(C3)。依浆料中的核壳结构氧化铁的含量,将其饱和磁量标准化之后,则分别为317.08(C1)、79.92(C2)和33.04emu/g(C3)。参照表2,若仅在柱状纳米氧化铁外包覆导电性高分子外壳时,也只能略为提升其导电度,仍无法同时兼具良好的磁性及导电性。然而,以具有核壳结构的柱状纳米氧化铁所形成的混成浆料,不仅可提升导电性(壳核结构可增加导电的连续性),其饱和磁化量更可大幅提升。推测饱和磁化量提升的原因可能是因为当导电性高分子外壳包覆在柱状纳米氧化铁表面上时,会使得原本在柱状纳米氧化铁表面的不具磁性的α-Fe2O3转变为具磁性的Fe3O4,故可增加整体结构的磁性。
表2
【比较例1】配制混成浆料-S1
将4ml的氯化铁(1M;FeCl3)以及1ml的氯化亚铁(2M;FeCl2)置于烧杯中,再慢慢滴入氢氧化钠(1M;NaOH)直到pH值达到12为止。加水清洗并加入溴化鲸蜡基三甲基铵(CTAB;cetyltrimethylammoniumbromide)作为保护剂,回溶于50ml的纯水中,于超音波振荡30分钟,加入70g的导电性高分子和1wt%聚乙烯醇(PVA;polyvinylalcohol)混合。其中,所使用的导电性高分子为聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS;购自全虹)。将上述混合物于超音波振荡器震荡30分钟,再持续搅拌约18小时,使之均匀混合,即可得到混成浆料。
【实施例5】混成浆料在EMI遮蔽的应用
取适当量的混成浆料B1、B2、B3(实施例3)装于圆底瓶中,在超音波震荡下真空除泡。待泡沫除尽后,将之倒入模具中,并于50℃下烘干,可制得15cm×15cm×40μm的薄膜。将此膜送测EMI,可测得其电磁波遮蔽效果(图6)。参照图6,相较于单纯使用导电性高分子,以导电性高分子及柱状纳米氧化铁所形成的混成浆料可具有良好的电磁波遮蔽效果。
另外,依照上述方法将混成浆料C1、C2、C3(实施例4)制成15cm×15cm×40μm的薄膜。将此膜送测EMI,可测得其电磁波遮蔽效果(图7)。参照图7,相较于单纯使用导电性高分子,以导电性高分子及具壳核结构的柱状纳米氧化铁所形成的混成浆料可具有良好的电磁波遮蔽效果。
最后,将实施例3的混成浆料B1(包括柱状纳米氧化铁及导电性高分子)、实施例4的混成浆料C1(包括具壳核结构的柱状纳米氧化铁及导电性高分子)、比较例1的混成浆料S1(包括球形纳米氧化铁及导电性高分子)及纯PEDOT:PSS分别依前述方法制成薄膜,并测量其电磁波遮蔽效果(图8)。参照图8,具核壳结构的柱状纳米氧化铁及导电性高分子所形成的混成浆料C1具有最佳的电磁波遮蔽效果,而以柱状纳米氧化铁及导电性高分子所形成的混成浆料B1的电磁波遮蔽效果居次,以球形纳米氧化铁及导电性高分子所形成的混成浆料S1及单纯使用导电性高分子PEDOT:PSS的电磁波遮蔽效果最差。
虽然本发明已以数个较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视后附的权利要求书所界定的范围为准。

Claims (20)

1.一种具有导电性与铁磁性的复合材料,包括:
5至90重量份的导电性高分子基质,其中所述导电性高分子基质是聚3,4-二氧乙烯噻吩-聚苯乙烯磺酸;以及
0.1至40重量份的柱状纳米氧化铁,其是具有铁磁性的氧化铁,且该柱状纳米氧化铁的长径比大于3。
2.如权利要求1所述的具有导电性与铁磁性的复合材料,其中所述柱状纳米氧化铁为Fe3O4、γ-Fe2O3、或前述的组合。
3.如权利要求1所述的具有导电性与铁磁性的复合材料,其中所述柱状纳米氧化铁的长径比是介于5至10,且所述柱状纳米氧化铁的直径介于10至100nm。
4.如权利要求1所述的具有导电性与铁磁性的复合材料,其中所述柱状纳米氧化铁的饱和磁化量介于2至90emu/g,矫顽磁力介于0.5至200G。
5.如权利要求1所述的具有导电性与铁磁性的复合材料,还包括一导电性高分子外壳包覆在所述柱状纳米氧化铁表面以形成一核壳结构。
6.如权利要求5所述的具有导电性与铁磁性的复合材料,其中所述导电性高分子外壳的厚度介于5至50nm。
7.如权利要求5所述的具有导电性与铁磁性的复合材料,其中所述导电性高分子是具有共轭双键的高分子聚合物,其为聚乙炔、聚吡咯、聚噻吩、聚苯胺、聚对苯硫醚、聚对位苯基乙烯、聚3,4-二氧乙烯噻吩、聚3,4-二氧乙烯噻吩-聚苯乙烯磺酸、或前述的组合。
8.如权利要求5所述的具有导电性与铁磁性的复合材料,其中所述导电性高分子外壳是聚苯胺。
9.如权利要求1所述的具有导电性与铁磁性的复合材料,其中所述具有导电性与铁磁性的复合材料为一薄膜。
10.如权利要求9所述的具有导电性与铁磁性的复合材料,其中所述薄膜的表面电阻介于1至1000Ω/□。
11.如权利要求1所述的具有导电性与铁磁性的复合材料,还包括0.5至85重量份的接着剂。
12.如权利要求11所述的具有导电性与铁磁性的复合材料,其中所述接着剂为聚乙烯醇、聚丙烯酸、聚氨酯、环氧树脂、聚甲基丙烯酸甲酯、丙烯晴-丁二烯-苯乙烯共聚物、或前述的组合。
13.如权利要求1所述的具有导电性与铁磁性的复合材料,其中所述具有导电性与铁磁性的复合材料应用于电磁波遮蔽、雷达/微波吸收、或静电防护。
14.一种混成浆料,包括:
一导电性高分子,其中所述导电性高分子是聚3,4-二氧乙烯噻吩-聚苯乙烯磺酸;
一柱状纳米氧化铁,其是具有铁磁性的氧化铁,且该柱状纳米氧化铁的长径比大于3;以及
一溶剂。
15.如权利要求14所述的混成浆料,还包括一接着剂。
16.如权利要求15所述的混成浆料,其中所述柱状纳米氧化铁:所述导电性高分子:所述接着剂:所述溶剂的重量比为0.01-0.5:1-3:0.5-1.5:90-98。
17.如权利要求14所述的混成浆料,还包括一导电性高分子外壳包覆在所述柱状纳米氧化铁表面以形成一核壳结构。
18.如权利要求14所述的混成浆料,其中所述溶剂为一水性溶剂,其包括以水为主要成份的溶剂或水。
19.如权利要求14所述的混成浆料,其中所述混成浆料的固含量介于0.5至90%。
20.如权利要求14所述的混成浆料,其中所述混成浆料的导电度介于20至2000μS。
CN201110461182.9A 2011-12-09 2011-12-29 具有导电性与铁磁性的复合材料及其混成浆料 Active CN103160054B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100145512 2011-12-09
TW100145512A TWI485210B (zh) 2011-12-09 2011-12-09 具有導電性與鐵磁性之複合材料及其混成漿料

Publications (2)

Publication Number Publication Date
CN103160054A CN103160054A (zh) 2013-06-19
CN103160054B true CN103160054B (zh) 2016-01-20

Family

ID=48571123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110461182.9A Active CN103160054B (zh) 2011-12-09 2011-12-29 具有导电性与铁磁性的复合材料及其混成浆料

Country Status (3)

Country Link
US (1) US9469743B2 (zh)
CN (1) CN103160054B (zh)
TW (1) TWI485210B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104861146B (zh) * 2015-05-08 2017-07-14 中北大学 高性能磁性Fe3O4/聚氨酯弹性体复合材料制备方法
CN104893289A (zh) * 2015-05-25 2015-09-09 牡丹江师范学院 一种高导电率和高导磁的新型材料
DE102015115549A1 (de) * 2015-09-15 2017-03-16 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Leitfähige Nanokomposite
CN105199383B (zh) * 2015-10-27 2017-11-17 苏州宽温电子科技有限公司 聚苯胺磁性复合材料及其制备方法
CN106410126B (zh) * 2016-07-12 2018-01-12 福建师范大学 一种聚(3,4‑乙烯二氧噻吩)包覆的氧化铁中空纳米棒及其制备方法与应用
CN107148207A (zh) * 2017-06-14 2017-09-08 深圳市西陆光电技术有限公司 一种复合微球颗粒电磁吸波填料以及具有该电磁吸波填料的电磁屏蔽材料
CN107619603B (zh) * 2017-11-08 2020-12-01 绵阳美胜邦科技有限公司 一种耐腐蚀高韧性聚苯硫醚稀土复合材料及其制备方法
CN110571004A (zh) * 2019-09-10 2019-12-13 佛山市亿强电子有限公司 超顺磁性电磁复合材料、其制备方法与高灵敏度电磁阀
TWI776637B (zh) * 2021-08-12 2022-09-01 蔡崇斌 多層核殼複合奈米材料及其紗線製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243849A (zh) * 1999-07-12 2000-02-09 武汉工业大学 聚苯胺-Fe3O4纳米复合材料及其制备方法
CN1515629A (zh) * 2003-01-10 2004-07-28 中国科学院成都有机化学研究所 具有导电性和磁性的纳米高分子微球及制备方法
CN101282635A (zh) * 2008-05-28 2008-10-08 北京科技大学 低二次污染复合电磁屏蔽材料及其制备方法
CN101525436A (zh) * 2009-03-20 2009-09-09 西北师范大学 聚吡咯/Fe3O4/纳米石墨薄片复合材料及其制备
CN101605447A (zh) * 2008-06-13 2009-12-16 张仁鸿 抗电磁波微粒材料

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029203A1 (de) 1980-08-01 1982-04-01 Basf Ag, 6700 Ludwigshafen Nadelfoermiges magnetisches eisenoxid und verfahren zu seiner herstellung
DE3729566A1 (de) * 1987-09-04 1989-03-16 Zipperling Kessler & Co Intrinsisch leitfaehiges polymer in form eines dispergierbaren feststoffes, dessen herstellung und dessen verwendung
US6967236B1 (en) 1998-03-06 2005-11-22 International Business Machines Corporation Methods of processing and synthesizing electrically conductive polymers and precursors thereof to form electrically conductive polymers having high electrical conductivity
US5175056A (en) 1990-06-08 1992-12-29 Potters Industries, Inc. Galvanically compatible conductive filler
FR2666443A1 (fr) * 1990-08-31 1992-03-06 Commissariat Energie Atomique Materiau a base de polymere conducteur electronique comprenant des particules magnetiques et son procede de fabrication.
US5938979A (en) * 1997-10-31 1999-08-17 Nanogram Corporation Electromagnetic shielding
US6764617B1 (en) * 2000-11-17 2004-07-20 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Ferromagnetic conducting lignosulfonic acid-doped polyaniline nanocomposites
US7014971B2 (en) 2003-03-07 2006-03-21 Xerox Corporation Carrier compositions
KR100528688B1 (ko) 2003-05-12 2005-11-16 국방과학연구소 전기전도성 고분자, 자기특성 산화철 나노입자와전기전도성 고분자의 나노복합체 및 그 제조방법
WO2005050672A1 (en) 2003-11-14 2005-06-02 Polyone Corporation Dispersions of inherently conductive polymer in non-ionic waterborne polymers
US20060141149A1 (en) 2004-12-29 2006-06-29 Industrial Technology Research Institute Method for forming superparamagnetic nanoparticles
TWI271876B (en) 2005-05-27 2007-01-21 Univ Nat Taiwan Block copolymer containing nano-particles, electron transporting material and photoelectric device employing the same
US20070029195A1 (en) 2005-08-03 2007-02-08 Changming Li Polymer/nanoparticle composites, film and molecular detection device
CN101309959A (zh) 2005-10-24 2008-11-19 Ocv智识资本有限责任公司 用于传导复合材料的长纤维热塑性工艺和由其形成的复合材料
US7829140B1 (en) 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
US20110104073A1 (en) 2007-01-18 2011-05-05 Qi Zeng Iron/Iron Oxide Nanoparticle and Use Thereof
US8409463B1 (en) * 2007-07-16 2013-04-02 University Of Central Florida Research Foundation, Inc. Aqueous method for making magnetic iron oxide nanoparticles
US8277690B2 (en) * 2008-06-09 2012-10-02 Council Of Scientific & Industrial Research Conducting copolymer ferromagnetic composite and a process for the preparation thereof
JP2010147079A (ja) * 2008-12-16 2010-07-01 Hitachi Maxell Ltd 窒化鉄系磁性粉末の製造方法と窒化鉄系磁性粉末。
CN101514282B (zh) 2009-03-31 2011-11-16 哈尔滨工程大学 吸收高频电磁波的多孔Fe3O4/Fe/SiO2核壳纳米棒及制备方法
KR100946598B1 (ko) 2009-04-24 2010-03-09 주식회사 엘파니 플라스마 처리를 이용한 전도성 고분자용 고체 도판트, 그의 제조 방법 및 장치, 및 전도성 고분자의 고상 도핑 방법
CN101664668A (zh) 2009-09-29 2010-03-10 中国科学院生态环境研究中心 核壳式Fe3O4/C磁性纳米固相萃取剂的制备及应用
US20110291032A1 (en) * 2010-05-27 2011-12-01 Industrial Technology Research Institute Electromagnetic shielding composition, electromagnetic shielding device, anti-electrostatic device and method of manufacturing electromagnetic shielding structure
CN102110508B (zh) * 2010-12-31 2012-08-15 深圳大学 一种铁基磁性材料碳复合粉体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243849A (zh) * 1999-07-12 2000-02-09 武汉工业大学 聚苯胺-Fe3O4纳米复合材料及其制备方法
CN1515629A (zh) * 2003-01-10 2004-07-28 中国科学院成都有机化学研究所 具有导电性和磁性的纳米高分子微球及制备方法
CN101282635A (zh) * 2008-05-28 2008-10-08 北京科技大学 低二次污染复合电磁屏蔽材料及其制备方法
CN101605447A (zh) * 2008-06-13 2009-12-16 张仁鸿 抗电磁波微粒材料
CN101525436A (zh) * 2009-03-20 2009-09-09 西北师范大学 聚吡咯/Fe3O4/纳米石墨薄片复合材料及其制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fe3O4基磁性材料的制备及其复合薄膜电磁性能研究;李雪爱;《中国博士学文论文全文数据库 工程科技I辑(月刊)》;20110715(第07期);摘要第1页第3段,说明书第38页倒数第2段,第40页第1,2段 *

Also Published As

Publication number Publication date
TW201323544A (zh) 2013-06-16
US20130146801A1 (en) 2013-06-13
US9469743B2 (en) 2016-10-18
CN103160054A (zh) 2013-06-19
TWI485210B (zh) 2015-05-21

Similar Documents

Publication Publication Date Title
CN103160054B (zh) 具有导电性与铁磁性的复合材料及其混成浆料
Gass et al. Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions
Ma et al. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption
Chen et al. Remarkable microwave absorption performance of graphene at a very low loading ratio
Lan et al. Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites
Saini et al. Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites
Ren et al. Hierarchical CoFe2O4@ PPy hollow nanocubes with enhanced microwave absorption
Mishra et al. Conducting ferrofluid: a high-performance microwave shielding material
Shu et al. Fabrication of nitrogen-doped reduced graphene oxide/porous magnesium ferrite@ silica dioxide composite with excellent dual-band electromagnetic absorption performance
Jafarian et al. New insights on microwave absorption characteristics of magnetodielectric powders: effect of matrix chemical nature and loading percentage
Shukla Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites
Velhal et al. Electromagnetic shielding, magnetic and microwave absorbing properties of Polypyrrole/Ba0. 6Sr0. 4Fe12O19 composite synthesized via in-situ polymerization technique
Hekmatara et al. Microwave absorption property of aligned MWCNT/Fe3O4
Hong et al. A novel ternary hybrid electromagnetic wave-absorbing composite based on BaFe11. 92 (LaNd) 0.04 O19-titanium dioxide/multiwalled carbon nanotubes/polythiophene
Hekmatara et al. Synthesis and microwave absorption characterization of SiO 2 coated Fe 3 O 4–MWCNT composites
Qi et al. Interfacial polymerization preparation of polyaniline fibers/Co0. 2Ni0. 4Zn0. 4Fe2O4 urchin-like composite with superior microwave absorption performance
Sozeri et al. Polyaniline (PANI)–Co0. 5Mn0. 5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation
Varshney et al. Synthesis, characterization and surface properties of Fe2O3 decorated ferromagnetic polypyrrole nanocomposites
Wang et al. A Polypyrrole/CoFe 2 O 4/Hollow Glass Microspheres three-layer sandwich structure microwave absorbing material with wide absorbing bandwidth and strong absorbing capacity
Ge et al. ZnFe2O4@ SiO2@ Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions
CN101902899A (zh) 电磁波抑制片、装置和电子设备
Ayub et al. Optimization of magnetite with modified graphene for microwave absorption properties
Tran et al. Thickness independent microwave absorption performance of La-doped BaFe12O19 and polyaniline composites
Zhang et al. Microwave absorbing property and preparation of CoNi@ SiO 2@ PPy composite in X-band
Li et al. Synthesis and enhancement of microwave absorption property by coating silicon dioxide and polyaniline for Fe-Co alloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant