CN103151088A - 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法 - Google Patents

一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法 Download PDF

Info

Publication number
CN103151088A
CN103151088A CN2013101056175A CN201310105617A CN103151088A CN 103151088 A CN103151088 A CN 103151088A CN 2013101056175 A CN2013101056175 A CN 2013101056175A CN 201310105617 A CN201310105617 A CN 201310105617A CN 103151088 A CN103151088 A CN 103151088A
Authority
CN
China
Prior art keywords
waste water
manganese
cobalt
silver
radioelement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101056175A
Other languages
English (en)
Inventor
王庆
丁原红
任洪强
王艳茹
任鑫坤
刘敏敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YIXING ENVIRONMENTAL PROTECTION RESEARCH INSTITUTE NANJING UNIVERSITY
Original Assignee
YIXING ENVIRONMENTAL PROTECTION RESEARCH INSTITUTE NANJING UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YIXING ENVIRONMENTAL PROTECTION RESEARCH INSTITUTE NANJING UNIVERSITY filed Critical YIXING ENVIRONMENTAL PROTECTION RESEARCH INSTITUTE NANJING UNIVERSITY
Priority to CN2013101056175A priority Critical patent/CN103151088A/zh
Publication of CN103151088A publication Critical patent/CN103151088A/zh
Priority to PCT/CN2013/087185 priority patent/WO2014153965A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

本发明公开了一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法,属于核电废水处理技术领域。该复合絮凝剂由化学沉淀剂与有机高分子絮凝剂组成,所述的化学沉淀剂为高锰酸钾、硫化钠、碳酸钠和氢氧化钠中的一种或其中任意几种的组合;所述的有机高分子絮凝剂为聚丙烯酰胺和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵;该处理方法的处理步骤包括:配置复合絮凝剂、投加复合絮凝剂、调节溶液的pH、搅拌、絮凝和过滤。本发明能有效去除核电废水中处于超低痕量浓度水平的多种放射性元素离子,具有反应过程快速高效、单步投加和产生危险化学污泥量少的优点。

Description

一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
技术领域
本发明属于核电废水处理技术领域,具体地说,涉及一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法,更具体地说,涉及一种处理核电废水中超低痕量的放射性元素铁、钴、锰和银离子的复合絮凝剂及处理方法。
背景技术
核矿开***炼、核燃料制造和核燃料后处理等过程,以及应用放射性同位素的大型分析仪器、研究机构和医院都会排出含放射性元素的废水。放射性废水中所含放射性元素通常以金属离子、氧化物胶体形式存在,对环境中生物具有很强的致癌、致畸作用,在排放到受纳水体前,必须将其从废水体系中有效地去除,并将含放射性元素的污泥转移至安全存储地点。现有技术对此类废水中放射性元素主要处理工艺有:蒸发、离子交换、化学沉淀、生物化学、膜分离、电化学等方法。
然而任何水处理方法都不能改变核电废水中放射性元素固有的放射性衰变特性,因此通常处理后的核电废水排放途径基本为:对于痕量浓度水平低的放射性元素,可将其处理后排入水域(如海洋、湖泊、河流、地下水),通过稀释和扩散达到无害水平;对中高浓度水平的放射性元素处理后的浓缩物进行长期封闭隔离,任其自然衰变。
其中,蒸发法处理含有放射性元素的核电废水可以获得很高而稳定的去污系数和浓缩系数,但需要耗用大量蒸发热能,主要用于处理一些高、中浓度水平的放射性废液。还要考虑起沫、腐蚀、结垢、***等潜在危险和辐射防护问题。因此,蒸发法虽然具有较高的浓缩系数,但耗能较大,而且蒸发设备的辐射防护问题也很突出。
离子交换法基于放射性元素在废水水中主要以离子形态存在,而通过特性离子交换树脂从核电废水中富集浓缩放射性元素的阴阳离子,其中大多数为阳离子,只有少数放射性元素如碘、磷、碲、钼、锝、氟等通常呈阴离子形式,大多数阳离子交换树脂对放射性元素锶有较高的去除能力和交换容量;酚醛型阳离子交换树脂能有效地除去放射性铯,大孔型阳离子交换树脂不仅能去除放射性阳离子,还能通过吸附去除以胶体形式存在的锆、铌、钴和以络合物形式存在的钌等。无机离子交换法具有耐高温、耐辐射的优点,并且对铯、锶等长寿命裂变产物有高度的选择性。常用的无机离子交换剂有蛭石、沸石(特别是斜发沸石)、凝灰岩、锰矿石、某些经加热处理的铁矿石、铝矿石以及合成沸石、铝硅酸盐凝胶、磷酸锆等。综上所述,离子交换法可有效浓缩脱除废水中的放射性元素离子态,也具有较高的去除效率,但吸附富集在树脂等离子交换介质上的放射性元素,通常还需要通过化学洗脱和清洗等过程进行转移,运行成本较高,元素在介质之间的转移过程较为复杂。
而生物化学一般采用活性污泥方法,产生大量的剩余污泥,并具有放射性;膜分离方法则面临膜污染、分离效果低等缺陷;电化学方法能耗较高,药剂投入量也较大。因此,生物化学、膜分离、电化学等方法,在核电废水处理中都面临一定的局限性。
化学沉淀法具有对产生的污泥仅仅需要快速分离、浓缩和固化,一般常温常压、操作简单易行,而且运行成本低廉的特点,因而常常作为处理核电废水的优选工艺。现有应用于核电废水的化学沉淀工艺,较多采用铁盐、铝盐、磷酸盐、高锰酸盐、石灰、苏打等高分子絮凝剂,与核电废水中微量的放射性元素如铁、钴、锰等发生化学沉淀而将其去除。对铯、碘等几种难以去除的放射性元素则使用亚铁氰化铁、亚铁氰化铜或亚铁氰化镍通过共沉淀法予以去除;放射性钌则用硫化亚铁、仲高碘酸铅等共沉淀法去除;放射性碘还可用磺化钠和硝酸银反应形成碘化银沉淀的方法予以去除。上述化学沉淀法都是通过能与核电废水中的放射性元素离子或胶体发生化学沉淀反应的沉淀剂,使之形成不溶性的化学沉淀物而将其从核电废水中分离除去。
但通常由于核电废水中放射性元素的离子或胶体浓度处于ppb-ppt级超痕量浓度水平,处于超衡量浓度水平的离子间的布朗运动导致碰撞和反应几率大大下降,影响了化学沉淀效果;其次,使用化学沉淀剂所产生的颗粒粒径大都处于极为细小的1~10um范围,以致难以形成明显的胶体聚沉效果;而对多种放射性元素离子共存的废水体系,单一或复合化学沉淀剂对绝大多数组分难以同时达到较好的去除效果。这些均导致实际化学沉淀处理去除效果明显低于设计理论值。常规化学沉淀法成的化学污泥量大,造成二次污染较大,从而增加了污泥处理量。而高分子絮凝剂,又不能对完全以离子态或完全溶解态的核电元素离子通过架桥聚沉等作用予以有效化学沉淀。因此,常规的化学沉淀法在核电废水的处理中也具有一定的局限性。
中国专利号200910062373.0,公开日2009年12月28日,公开的名称为核废水的处理方法及装置的专利文件,其采用的方法是将与核电废水质量比为1%-5%高吸水性树脂加入到用化学沉淀法浓缩后核废水中,然后搅拌下使核废水凝胶化,再将核电废水凝胶与前面用化学沉淀法浓缩后过滤出来的疏松绒粒和化学絮凝剂一并转移到防渗、防辐射水泥槽中,加压使凝胶变形为水泥槽内腔形状,在其表面铺设一层水泥粉,再次加压,使凝胶中部分水渗出进入水泥粉层使水泥粉固化,然后先涂一层防水防渗防漏涂料,再涂一层防辐射涂料,之后在水泥槽顶端加上水泥盖,得到水泥密封槽,核废水以凝胶形式存在于槽内,最终将密封槽掩埋或沉于海底。上述采用固化法处理核废水,存在泥量产生较大、后续处理工作量大和处理成本高的问题。
中国专利号201010198289.4,公开日2010年11月24日,公开了一份名称为一种放射性废水的预处理方法的专利文件,该专利申请对放射性废水的预处理方法是将质量比为1∶2~4∶0.5~1.5的活性炭、硅藻土和干酵母混合物投加到放射性废水中,其中,混合物与放射性废水的质量百分比为0.3%~1%,搅拌1~3小时后,将放射性废水经硅藻土过滤器过滤去除投加混合物。此法不仅反应时间长,动力消耗大,材料耗损大,而且产泥量大的缺点仍然未得到克服。
中国专利号92115144.6,公开日1994年06月15日,公开了一份名称为高效除放射性和重金属的净水方法的专利文件,涉及去除放射性和重金属的净水方法,去除地下水、尾矿水中的放射性离子和铁、锰离子时,选活性炭或活化煤为基质,先用2%~10%H2SO4(或HCl)进行酸化处理,然后用2%~10%KMnO4进行氧化处理,在活性炭或活化煤表面形成二氧化锰薄膜,有效地去除镭(Ra)、钍(Th)、铀(U)、铁(Fe)、锰(Mn),该专利所使用的活性炭或活化煤达到饱合失效后,需用盐酸等不断进行再生处理或者直接作为放射性废料进行处置,二次污染较大。
中国专利号200410042589.8,公开日2005年12月07日,公开了一份名称为放射性废水处理方法及其所使用的处理***的专利文件,放射性废水处理方法及其所使用的处理***包括依次进行的预处理、膜分离和后处理三个步骤。其中预处理可以去除水中的悬浮颗粒和杂质;可吸附水中部分低分子放射性物质;去除水中的胶体和各类大分子。但本专利仅仅依靠膜分离的纳滤膜元件只可去除直径较大的溶质粒子,吸附放射性元素的阴阳粒子交换树脂和膜组件将共同成为放射性废料,运行成本和二次污染较大。
发明内容
1、要解决的问题
为了克服现有技术的不足,尤其是对于核电废水中放射性元素的离子或胶体浓度处于ppb-ppt级超痕量浓度水平的放射性元素铁、钴、锰和银没有良好的清理办法的问题,本发明提供一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法,其是一种能高效分离多种共存核素的复合絮凝剂,实现对核电废水中浓度水平处于ppb-ppt级超痕量的放射性元素铁、钴、锰和银实现有效去除。
2、技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂,由化学沉淀剂与有机高分子絮凝剂组成,所述的化学沉淀剂为高锰酸钾、硫化钠、碳酸钠和氢氧化钠中的一种或其中任意几种的组合;所述的有机高分子絮凝剂为聚丙烯酰胺(PAM)和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵(DADMAC);所述的化学沉淀剂与有机高分子絮凝剂的重量比为1~10:1。
一种处理核电废水中放射性元素铁、钴、锰和银的方法,其步骤为:
A)采用化学沉淀剂与有机高分子絮凝剂配置复合絮凝剂,所述的化学沉淀剂为高锰酸钾、硫化钠、碳酸钠和氢氧化钠中的一种或其中任意几种的组合;所述的有机高分子絮凝剂为聚丙烯酰胺(PAM)和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵(DADMAC);所述的化学沉淀剂与有机高分子絮凝剂的重量比为1~10:1;
B)向含有放射性元素铁、钴、锰和银的废水中投加步骤A)中的复合絮凝剂,投加量为有机高分子絮凝剂添加到废水体系中的浓度水平为2~10ppm;过低的投加量不能起到应有的絮凝效果,而过高的投加量对去除率的提升没有明显的帮助,同时也将导致较高的絮凝剂消耗量;
C)调节溶液的pH,使溶液pH值为8.5~11;较低的pH容易分解絮凝剂,过高的pH将导致较高的碱液消耗,同时增加了出水pH调控的难度;溶液温度控制在10~40℃;过低的温度将不利于絮凝体的形成;
D)搅拌和絮凝,搅拌转速为100~400r/min;
E)过滤。
优选地,所述的步骤D)中的搅拌时间为10~60s。
优选地,所述的步骤E)的过滤是采用微孔滤膜或活性炭柱对絮凝后的核电废水进行过滤。
优选地,所述的步骤E)中的过滤采用的微孔滤膜的孔直径为0.45um~3um。
优选地,所述的含有放射性元素铁、钴、锰和银的废水中放射性元素铁、钴、锰和银的浓度处于ppb-ppt级的超低痕量水平,为多种金属离子或胶体共存体系状态。
3、有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明由化学沉淀剂与有机高分子絮凝剂组成,能与离子浓度处于ppb-ppt级的超痕量浓度水平的放射性元素铁、钴、锰和银离子发生反应,化学沉淀剂与废水中的金属离子结合成不溶性的颗粒或沉淀,絮凝剂起絮凝作用,与已经形成的沉淀形成胶体或絮凝沉淀,加速固液两相的分离过程,最终实现金属离子从水体中的快速和有效去除,离子去除的效果好;
(2)本发明化学沉淀剂为高锰酸钾、硫化钠、碳酸钠、氢氧化钠中的一种或其中的任意几种,有机高分子絮凝剂为聚丙烯酸铵(PAM)和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵(DADMAC),原料来源便宜,处理成本低;
(3)本发明化学沉淀剂与有机高分子絮凝剂的重量比为1~10:1,化学沉淀剂与有机高分子絮凝剂形成的复合絮凝剂,对核电废水中的主要目标放射性元素铁、钴、锰和银最大能实现99%的去除效果;本发明凝絮后的溶液使用孔直径为0.45um~3um之间的过滤介质对絮凝后的核电废水进行过滤,对化学絮凝过程中所产生的颗粒处于1~10um的范围内的细小颗粒,能进行有效截留,处理成本低、效果好;
(4)本发明采用的化学沉淀剂与有机高分子絮凝剂组合以及微孔滤膜或活性炭柱对絮凝后的核电废水进行过滤的技术方案,具有反应过程快速高效、单步投加和产生危险化学污泥量少的优点;
(5)本发明处理核电废水中放射性元素铁、钴、锰和银的方法中,通过控制合理的pH值以及反应温度,处理效果好。
具体实施方式
下面结合具体实施例对本发明进行详细描述。
实施例1
处理核电废水中放射性元素铁、钴、锰和银的方法,待处理的废水中主要核素的含量如表1所示。
表1某核电废水中主要核素平均浓度水平
主要核素 浓度(单位ppt)
7.74×10-5
4.78×10-4
3.95×10-4
1.52×10-4
1.13×10-4
8.54×10-4
其处理步骤为:
A)采用化学沉淀剂与有机高分子絮凝剂配置复合絮凝剂,化学沉淀剂为高锰酸钾、硫化钠、碳酸钠和氢氧化钠中的一种或其中任意几种的组合;有机高分子絮凝剂为聚丙烯酰胺(PAM)和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵(DADMAC);化学沉淀剂与有机高分子絮凝剂的重量比为1~10:1;上述化学沉淀剂与有机高分子絮凝剂的组合都可以,本实施中化学沉淀剂与有机高分子絮凝剂的选择如表2所示。
B)向含有放射性元素铁、钴、锰和银的废水中投加步骤A)中的复合絮凝剂,投加量为有机高分子絮凝剂添加到废水体系中的浓度水平为2~10ppm;过低的投加量不能起到应有的絮凝效果,而过高的投加量对去除率的提升没有明显的帮助,同时也将导致较高的絮凝剂消耗量。
C)调节溶液的pH,使溶液pH值为8.5~11;较低的pH容易分解絮凝剂,过高的pH将导致较高的碱液消耗,同时增加了出水pH调控的难度;调节溶液的温度,使溶液温度控制在10~40℃,过低的温度将不利于絮凝体的形成。
D)搅拌和絮凝;搅拌时间为10~60s,搅拌转速为100~400r/min。本实施例优选的是电动搅拌器,方案一和二的搅拌速度为400r/min,方案三和四的搅拌速度为250r/min,方案五和六的搅拌速度为100r/min。
E)过滤,过滤是采用微孔滤膜或活性炭柱对絮凝后的核电废水进行过滤。
分为六个实施方案进行实施,每个实施方案的数据如表2所示。
表2各个实施方案中的成分组成以及实验参数
Figure BDA00002980410800071
以上实施方案中,有机高分子絮凝剂,可对絮凝后的细小胶体颗粒起到架桥、捕集和聚沉的作用。化学沉淀剂主要与废水中的金属离子结合成不溶性的颗粒或沉淀,有机高分子絮凝剂起絮凝作用,主要与已经形成的沉淀形成胶体或絮凝沉淀,加速固液两相的分离过程,最终实现金属离子从水体中的快速和有效去除。化学沉淀剂与有机高分子絮凝剂形成的复合絮凝剂,对核电废水中的主要目标放射性元素铁、钴、锰和银能实现良好的去除效果,同时靠絮凝胶体的吸附聚沉作用,对于其他的小颗粒离子也能实现20%以上的去除效果。以上实施方案中,实施方案一到六对铁离子的去除率分别为98%、97%、99%、97%、98%和99%;实施方案一到六对钴离子的去除率分别为99%、98%、99%、98%、97%和98%;实施方案一到六对锰离子的去除率分别为99%、99%、99%、99%、98%和99%;实施方案一到六对银离子的去除率分别为97%、96%、94%、98%、93%和96%。
实施例2
不同的沉淀剂会产生不同的效果。本发明对铁离子的去除效果如表3所示。本发明不同的沉淀剂对锰离子的去除效果如表4所示。本发明不同的沉淀剂对银离子的去除效果如表5所示。本发明不同的沉淀剂对钴离子的去除效果如表6所示。
表3本发明对铁离子的去除效果
Figure BDA00002980410800072
表4本发明对锰离子的去除效果
Figure BDA00002980410800073
表5本发明对银离子的去除效果
Figure BDA00002980410800081
表6本发明对钴离子的去除效果
Figure BDA00002980410800082
实施例3
本发明实际使用时,不同的沉淀剂组合能产生不同的效果,其参数对应的效果如图7、8、9、10和11所示。
表7本发明对铁离子的去除效果
表8本发明对锰离子的去除效果
Figure BDA00002980410800084
Figure BDA00002980410800091
表9本发明对银离子的去除效果
Figure BDA00002980410800092
表10本发明对钴离子的去除效果
Figure BDA00002980410800093
Figure BDA00002980410800101

Claims (6)

1.一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂,其特征在于:由化学沉淀剂与有机高分子絮凝剂组成,所述的化学沉淀剂为高锰酸钾、硫化钠、碳酸钠和氢氧化钠中的一种或其中任意几种的组合;所述的有机高分子絮凝剂为聚丙烯酰胺和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵;所述的化学沉淀剂与有机高分子絮凝剂的重量比为1~10:1。
2.一种处理核电废水中放射性元素铁、钴、锰和银的方法,其步骤为:
A)采用化学沉淀剂与有机高分子絮凝剂配置复合絮凝剂,所述的化学沉淀剂为高锰酸钾、硫化钠、碳酸钠和氢氧化钠中的一种或其中任意几种的组合;所述的有机高分子絮凝剂为聚丙烯酰胺和/或聚丙烯酸钠和/或二甲基二烯丙基氯化铵;所述的化学沉淀剂与有机高分子絮凝剂的重量比为1~10:1;
B)向含有放射性元素铁、钴、锰和银的废水中投加步骤A)中的复合絮凝剂,投加量为有机高分子絮凝剂添加到废水体系中的浓度水平为2~10 ppm;
C)调节溶液的pH,使溶液pH值为8.5~11;溶液温度控制在10~40℃;
D)搅拌和絮凝,搅拌转速为100~400r/min;
E)过滤。
3.根据权利要求2所述的一种处理核电废水中放射性元素铁、钴、锰和银的方法,其特征在于,所述的步骤D)中的搅拌时间为10~60s。
4.根据权利要求2所述的一种处理核电废水中放射性元素铁、钴、锰和银的方法,其特征在于,所述的步骤E)的过滤是采用微孔滤膜或活性炭柱对絮凝后的核电废水进行过滤。
5.根据权利要求4所述的一种处理核电废水中放射性元素铁、钴、锰和银的方法,其特征在于,所述的步骤E)中的过滤采用的微孔滤膜的孔直径为0.45um~3um。
6. 根据权利要求2-5的任意一项中所述的一种处理核电废水中放射性元素铁、钴、锰和银的方法,其特征在于:所述的含有放射性元素铁、钴、锰和银的废水中放射性元素铁、钴、锰和银的浓度处于ppb-ppt级的超低痕量水平,为多种金属离子或胶体共存体系状态。
CN2013101056175A 2013-03-28 2013-03-28 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法 Pending CN103151088A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2013101056175A CN103151088A (zh) 2013-03-28 2013-03-28 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
PCT/CN2013/087185 WO2014153965A1 (zh) 2013-03-28 2013-11-15 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101056175A CN103151088A (zh) 2013-03-28 2013-03-28 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法

Publications (1)

Publication Number Publication Date
CN103151088A true CN103151088A (zh) 2013-06-12

Family

ID=48549095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101056175A Pending CN103151088A (zh) 2013-03-28 2013-03-28 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法

Country Status (2)

Country Link
CN (1) CN103151088A (zh)
WO (1) WO2014153965A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714875A (zh) * 2013-12-30 2014-04-09 中国原子能科学研究院 一种核电废水中Ag胶体去除装置
WO2014153965A1 (zh) * 2013-03-28 2014-10-02 南京大学宜兴环保研究院 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
CN104225969A (zh) * 2014-09-22 2014-12-24 云南科力新材料有限公司 一种钼矿浮选尾矿浆的浓缩方法及其浓缩装置
CN104291489A (zh) * 2014-10-15 2015-01-21 清华大学 高温气冷堆元件核芯制备工艺废水的处理方法
CN104445496A (zh) * 2014-11-13 2015-03-25 无锡伊佩克科技有限公司 一种废水处理药剂的制备方法
CN104538077A (zh) * 2013-12-06 2015-04-22 东华理工大学 一种利用骨基质吸附剂处理酸性含铀废水的方法
CN104882185A (zh) * 2015-04-08 2015-09-02 武汉网绿环境技术咨询有限公司 一种处理污水中放射性元素的絮凝剂及其使用方法
CN105129935A (zh) * 2015-07-15 2015-12-09 济南大学 一种多相多功能聚合钛铁复合药剂及其合成技术
CN105355250A (zh) * 2015-10-16 2016-02-24 华东理工大学 基于原位生成水钠锰矿处理核电厂放射性废液的方法
CN108231233A (zh) * 2018-02-01 2018-06-29 上海场域环保科技有限公司 一种核电厂放射性废液处理方法
TWI643208B (zh) * 2017-07-27 2018-12-01 行政院原子能委員會核能研究所 Mo-99放射性廢液處理系統
CN109133286A (zh) * 2018-09-14 2019-01-04 清华大学 一种用于污水处理的氧化石墨烯复合絮凝剂及其制备方法
CN109256230A (zh) * 2018-09-30 2019-01-22 中核四川环保工程有限责任公司 一种60Co污染放射性废液的去污方法
CN109741849A (zh) * 2018-12-27 2019-05-10 中核四0四有限公司 一种铀纯化转化含铀含氟废液的深度净化方法
CN112661227A (zh) * 2019-10-15 2021-04-16 韩国原子力研究院 放射性化学废物处理装置以及放射性化学废物处理方法
CN112919673A (zh) * 2021-01-26 2021-06-08 北京师范大学 重金属微污染水的处理方法
CN113413643A (zh) * 2021-07-26 2021-09-21 中建西部建设建材科学研究院有限公司 一种混凝土搅拌站废浆高效沉降方法
WO2023093126A1 (zh) * 2021-11-29 2023-06-01 江苏超敏科技有限公司 一种医院放射性废水衰变池***及其处理方法
CN117059292A (zh) * 2023-08-16 2023-11-14 西南科技大学 核医疗放射性废水固液分离的预处理***及应用方法
CN117732423A (zh) * 2023-12-27 2024-03-22 中国人民解放军海军工程大学 一种钴、锶选择性吸附试剂材料的制备方法、应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657622B (zh) * 2017-09-05 2021-02-05 广州医科大学附属肿瘤医院 放射性核素断层影像与放射性浓集水平关系的分析方法
CN110510776B (zh) * 2019-09-04 2022-03-22 中国地质科学院水文地质环境地质研究所 一种重金属污水处理方法
CN114177887B (zh) * 2021-12-02 2023-01-03 中国环境科学研究院 一种包裹生物炭的生物炭-锰复合材料及制法和应用
CN114957546B (zh) * 2022-06-21 2023-04-28 南京理工大学 活性染料印染废水处理用甲基芳基二烯丙基季铵盐共聚物絮凝剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956117A (en) * 1974-11-29 1976-05-11 Nalco Chemical Company Cationic polymers for breaking oil-in-water emulsions
US5336704A (en) * 1991-12-18 1994-08-09 Rainer Norman B Process for insolubilizing absorbed metal ions
US6274045B1 (en) * 1995-05-19 2001-08-14 Lawrence Kreisler Method for recovering and separating metals from waste streams
US6383398B2 (en) * 1998-12-12 2002-05-07 Sultan I. Amer Composition and process for remediation of waste streams
CN101567227B (zh) * 2009-06-02 2011-12-07 武汉工程大学 核废水的处理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330658A (en) * 1993-03-17 1994-07-19 Westinghouse Electric Corporation Solution decontamination method using precipitation and flocculation techniques
ES2159229B1 (es) * 1999-03-05 2002-04-16 Transformacion Agraria S A Tra Metodo para el tratamiento de aguas que contienen materia organica y/o inorganica suspendida y/o disuelta por precipitacion in situ de compuestos oxigenados de titanio.
CN101691261A (zh) * 2009-09-15 2010-04-07 西部金属材料股份有限公司 一种处理银铟镉合金回收过程中含镉废液的方法
CN102923874B (zh) * 2011-08-12 2014-05-28 中国石油化工股份有限公司 一种处理含重金属离子废水的方法
CN102915783B (zh) * 2012-10-24 2015-06-03 上海核工程研究设计院 一种核电厂废液的絮凝吸附处理方法及絮凝剂
CN103151088A (zh) * 2013-03-28 2013-06-12 南京大学宜兴环保研究院 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956117A (en) * 1974-11-29 1976-05-11 Nalco Chemical Company Cationic polymers for breaking oil-in-water emulsions
US5336704A (en) * 1991-12-18 1994-08-09 Rainer Norman B Process for insolubilizing absorbed metal ions
US6274045B1 (en) * 1995-05-19 2001-08-14 Lawrence Kreisler Method for recovering and separating metals from waste streams
US6383398B2 (en) * 1998-12-12 2002-05-07 Sultan I. Amer Composition and process for remediation of waste streams
CN101567227B (zh) * 2009-06-02 2011-12-07 武汉工程大学 核废水的处理方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153965A1 (zh) * 2013-03-28 2014-10-02 南京大学宜兴环保研究院 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
CN104538077A (zh) * 2013-12-06 2015-04-22 东华理工大学 一种利用骨基质吸附剂处理酸性含铀废水的方法
CN103714875B (zh) * 2013-12-30 2016-06-22 中国原子能科学研究院 一种核电废水中Ag胶体去除装置
CN103714875A (zh) * 2013-12-30 2014-04-09 中国原子能科学研究院 一种核电废水中Ag胶体去除装置
CN104225969A (zh) * 2014-09-22 2014-12-24 云南科力新材料有限公司 一种钼矿浮选尾矿浆的浓缩方法及其浓缩装置
CN104291489A (zh) * 2014-10-15 2015-01-21 清华大学 高温气冷堆元件核芯制备工艺废水的处理方法
CN104291489B (zh) * 2014-10-15 2015-12-02 清华大学 高温气冷堆元件核芯制备工艺废水的处理方法
CN104445496A (zh) * 2014-11-13 2015-03-25 无锡伊佩克科技有限公司 一种废水处理药剂的制备方法
CN104882185A (zh) * 2015-04-08 2015-09-02 武汉网绿环境技术咨询有限公司 一种处理污水中放射性元素的絮凝剂及其使用方法
CN104882185B (zh) * 2015-04-08 2017-06-30 武汉网绿环境技术咨询有限公司 一种处理污水中放射性元素的絮凝剂及其使用方法
CN105129935A (zh) * 2015-07-15 2015-12-09 济南大学 一种多相多功能聚合钛铁复合药剂及其合成技术
CN105355250A (zh) * 2015-10-16 2016-02-24 华东理工大学 基于原位生成水钠锰矿处理核电厂放射性废液的方法
TWI643208B (zh) * 2017-07-27 2018-12-01 行政院原子能委員會核能研究所 Mo-99放射性廢液處理系統
CN108231233A (zh) * 2018-02-01 2018-06-29 上海场域环保科技有限公司 一种核电厂放射性废液处理方法
CN109133286A (zh) * 2018-09-14 2019-01-04 清华大学 一种用于污水处理的氧化石墨烯复合絮凝剂及其制备方法
CN109133286B (zh) * 2018-09-14 2021-06-08 清华大学 一种用于污水处理的氧化石墨烯复合絮凝剂及其制备方法
CN109256230A (zh) * 2018-09-30 2019-01-22 中核四川环保工程有限责任公司 一种60Co污染放射性废液的去污方法
CN109741849B (zh) * 2018-12-27 2023-06-16 中核四0四有限公司 一种铀纯化转化含铀含氟废液的深度净化方法
CN109741849A (zh) * 2018-12-27 2019-05-10 中核四0四有限公司 一种铀纯化转化含铀含氟废液的深度净化方法
US11735329B2 (en) 2019-10-15 2023-08-22 Korea Atomic Energy Research Institute Radioactive chemical waste treatment apparatus
CN112661227B (zh) * 2019-10-15 2023-08-18 韩国原子力研究院 放射性化学废物处理装置以及放射性化学废物处理方法
CN112661227A (zh) * 2019-10-15 2021-04-16 韩国原子力研究院 放射性化学废物处理装置以及放射性化学废物处理方法
CN112919673A (zh) * 2021-01-26 2021-06-08 北京师范大学 重金属微污染水的处理方法
CN113413643A (zh) * 2021-07-26 2021-09-21 中建西部建设建材科学研究院有限公司 一种混凝土搅拌站废浆高效沉降方法
WO2023093126A1 (zh) * 2021-11-29 2023-06-01 江苏超敏科技有限公司 一种医院放射性废水衰变池***及其处理方法
CN117059292A (zh) * 2023-08-16 2023-11-14 西南科技大学 核医疗放射性废水固液分离的预处理***及应用方法
CN117059292B (zh) * 2023-08-16 2024-03-29 西南科技大学 核医疗放射性废水固液分离的预处理***及应用方法
CN117732423A (zh) * 2023-12-27 2024-03-22 中国人民解放军海军工程大学 一种钴、锶选择性吸附试剂材料的制备方法、应用

Also Published As

Publication number Publication date
WO2014153965A1 (zh) 2014-10-02

Similar Documents

Publication Publication Date Title
CN103151088A (zh) 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
CN105084591B (zh) 一种氟化工高含氟废水处理工艺
Tsezos et al. Adsorption of radium‐226 by biological origin absorbents
CN101570372B (zh) 一种电镀废水净化、资源综合利用的方法
CN102372377B (zh) 一种深度处理含汞废水的方法
CN101597113A (zh) 一种含铀废水的处理方法
CN103553249B (zh) 电镀废液中酸分离与重金属回收方法
Rahman et al. Overview on recent trends and developments in radioactive liquid waste treatment part 1: sorption/ion exchange technique
CN102786171A (zh) 一种含Cr6+、Cu2+、Ni2+重金属离子的电镀废水的综合处理工艺及其设备
CN104291489A (zh) 高温气冷堆元件核芯制备工艺废水的处理方法
Al Radi et al. Recent progress, economic potential, and environmental benefits of mineral recovery geothermal brine treatment systems
JP4693128B2 (ja) リン回収方法及びリン回収システム
CN203715400U (zh) 低浓度含铅废水的处理设备
CN104030500B (zh) 一种去除铝型材废水中镍离子的工艺及设备
Jin et al. Removal of nickel and strontium from simulated radioactive wastewater via a pellet coprecipitation-microfiltration process
KR101551233B1 (ko) 원전 중대사고 시 발생하는 방사성 폐액 처리방법
CN104379510A (zh) 用于从废水去除放射性污染的方法
CN103043834A (zh) 稀土冶炼废水处理工艺
CN102930914A (zh) 一种含铀放射性废液的处理方法
CN108269637A (zh) 一种球形核燃料元件生产线含有机物废液处理装置
CN110106356B (zh) 一种粉末型钛系离子交换剂分离盐湖卤水中锂的方法
CN207079100U (zh) 一种含多种重金属废水组合处理工艺***
CN104973710A (zh) 颗粒二氧化钛处理酸性废水中高浓度砷与镉的方法
CN104860439A (zh) 移动式放射性废液处理装置及处理方法
CN202762165U (zh) 一种核废水预处理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130612