CN103007957A - Method for preparing modified hollow glass beads with magnetism and photocatalytic activity - Google Patents

Method for preparing modified hollow glass beads with magnetism and photocatalytic activity Download PDF

Info

Publication number
CN103007957A
CN103007957A CN201210474638XA CN201210474638A CN103007957A CN 103007957 A CN103007957 A CN 103007957A CN 201210474638X A CN201210474638X A CN 201210474638XA CN 201210474638 A CN201210474638 A CN 201210474638A CN 103007957 A CN103007957 A CN 103007957A
Authority
CN
China
Prior art keywords
hollow glass
glass micropearl
deionized water
magnetic
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210474638XA
Other languages
Chinese (zh)
Other versions
CN103007957B (en
Inventor
詹建朝
张辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Nottingham Industrial Design Co.,Ltd.
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201210474638.XA priority Critical patent/CN103007957B/en
Publication of CN103007957A publication Critical patent/CN103007957A/en
Application granted granted Critical
Publication of CN103007957B publication Critical patent/CN103007957B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a method for preparing modified hollow glass beads with magnetism and photocatalytic activity, which comprises the following process steps of: I, firstly coating a magnetic nano ferroferric oxide film on a hollow glass bead by using a hydrothermal method; II, then coating an anatase-type nano titanium dioxide film on the magnetic nano ferroferric oxide film of the hollow glass bead; and III, finally carrying out silver ion modification on the hollow glass bead coated with the magnetic nano ferroferric oxide film and the anatase-type nano titanium dioxide film. A hollow glass bead modified by using the method disclosed by the invention has magnetism and photocatalytic activity, the binding strength of nanoparticles and hollow glass beads is better, and raw materials are saved; and the method has the advantages of simplicity and convenience in operation, and the like.

Description

A kind of method with the active Filled With Hollow Bead of magnetic photocatalytic for preparing
Technical field
The invention belongs to functional technical field of inorganic nonmetallic materials, relate to a kind of method of modifying of hollow glass micropearl, specifically a kind of employing hydro-thermal method is to the first coated magnetic nano ferriferrous oxide film in hollow glass micropearl surface, the clad nano titanium deoxid film carries out the method for modifying that Nano Silver is modified at last again.
Background technology
The magnetic iron ore tri-iron tetroxide is a kind of important spinels Ferrite Material, have many characteristics such as light, electricity, sound, heat and magnetic that are different from conventional material, it is one of soft magnetic material that is most widely used, be commonly used for recording materials, pigment, magnetic fluid material, catalyst, magnetic macromolecular microsphere and electronic material etc. also have good application prospect at biological technical field and medical domain.Anatase titanium dioxide is because having the characteristics such as shielding ultraviolet rays, photocatalysis and automatically cleaning, and is widely used in the fields such as solar cell, cosmetics, functional fibre, coating and fine ceramics.Nano Silver is nano level argent simple substance; grain size is generally about 25nm; has broad spectrum antibacterial; the tens of kinds of pathogenic microorganisms such as Escherichia coli, gonococcus and chlamydia trachomatis there are strong inhibition and killing action; nontoxic; drug resistance be can not produce, environmental protection, the fields such as weaving dress ornament, fruit freshness preserving and food hygiene can be applicable to.At present, preparation nano ferriferrous oxide, titanium dioxide granule method mainly contain chemical precipitation method, sol-gel process, microwave irradiation and hydro-thermal reaction method etc., and the method for preparing Nano Silver mainly contains chemical reduction method, photoreduction met hod, electrochemical process and electroless plating method etc.Adopt hydro-thermal method to prepare the nano ferriferrous oxide particle and have significant advantage, the one, relatively high temperature is conducive to the raising of product magnetic property; The 2nd, in closed container, produce relatively high pressure and avoided component volatilization, improved product purity.Under the hydrothermal condition, by conditions such as control reaction temperature, acid-base value and raw material proportionings, can access the product of different crystal structure, composition, pattern and particle size, uniform particles, favorable dispersibility need not high-temperature roasting, and process is polluted little, simple to operate, easily realize the advantages such as suitability for industrialized production.Hollow glass micropearl is the small hollow glass spheroid of a kind of size, having the advantages such as light weight, low heat conduction, resistance to compression, high dispersive, sound insulation, electrical insulating property and Heat stability is good, is the novel light material of a kind of of many uses, the excellent performance that gets up of development in recent years.Utilize the characteristics of hollow glass micropearl light weight, hollow, it is carried out surface modification treatment, can access and have property the new material of (as inhaling ripple, reflective and catalysis etc.).But the hollow glass micropearl of existing method of modifying does not have magnetic and photocatalytic activity, exists the relatively poor problem of nano particle and hollow glass micropearl binding strength.
Summary of the invention
The hollow glass micropearl that technical problem to be solved by this invention is to propose after a kind of modification has magnetic and photocatalytic activity, nano particle and hollow glass micropearl binding strength are better, conservation of raw material, preparation easy and simple to handle have the method for the active Filled With Hollow Bead of magnetic photocatalytic.
For solving the problems of the technologies described above, a kind of method with the active Filled With Hollow Bead of magnetic photocatalytic for preparing of the present invention comprises following processing step: I. adopt first hydro-thermal method to hollow glass micropearl coated magnetic nano ferriferrous oxide film; II. again at the magnetic Nano ferriferrous oxide film outer cladding anatase-type nanometer titanium dioxide film of hollow glass micropearl; III. at last the hollow glass micropearl that has coated magnetic Nano ferriferrous oxide film and anatase-type nanometer titanium dioxide film is carried out the silver ion modification.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing before adopting hydro-thermal method to hollow glass micropearl coated magnetic nano ferriferrous oxide film, is carried out preliminary treatment to hollow glass micropearl first.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing is describedly carried out pretreated technical process to hollow glass micropearl and is comprised and deoiling and two programs of alligatoring.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing, the technical process of the described program of deoiling is as follows: weighing sodium hydroxide, sodium carbonate and sodium metasilicate are dissolved in the deionized water, obtain degreasing fluid, described NaOH, sodium carbonate and the sodium metasilicate quality-volumetric concentration in described degreasing fluid is respectively 40g/L, 10g/L and 5g/L; Described degreasing fluid is heated to 80~100 ℃; Take by weighing hollow glass micropearl 5~10g, add in the described degreasing fluid of 1L, adopt the mechanical agitation method that cenosphere is fully disperseed in degreasing fluid, filtration behind reaction 40~60min, washing.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing, the technical process of described alligatoring program is as follows: with the upper step obtain deoil after hollow glass micropearl be immersed in the hydrofluoric acid solution of mass concentration 1~3%, volume 1L, under 40~60 ℃ of conditions, react 1~2h, wash respectively dry 1~2h under 80 ℃ of conditions after the filtration with acetone, absolute ethyl alcohol and deionized water.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing, the technical process of described step I is as follows: be 0.05~0.15mol/L according to total concentration of iron, ferrous sulfate and ferric nitrate mass ratio are Fe 2+: Fe 3+=1:2~3:2 takes by weighing ferrous sulfate and ferric nitrate, obtain ferrous iron and ferric mixed solution with deionized water dissolving, adding mass concentration is the NaOH of 15~30g/L, mass concentration is the ethylene glycol of 20~40g/L, mass concentration is the polyvinylpyrrolidone of 10~20g/L, add ethanol solution according to volume ratio 4:1~1:4, add hollow glass micropearl, change over to subsequently to the high pressure reaction cylinder, under 120~160 ℃ of conditions, 4~8h is processed in insulation, filters out cenosphere after question response is finished after the sealing, wash respectively vacuum drying 1~2h under 60 ℃ of conditions with absolute ethyl alcohol and deionized water.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing, the technical process of described step II is as follows: the titanium sulfate of 18~20g is dissolved in the deionized water of temperature 60 C, volume 400mL, then add the urea of 8~12g and the polyethylene glycol of 3~8g, and constantly stir; Hollow glass micropearl after the processing of step I is joined in the titanium sulfate urea mixed solution, mechanical agitation 5~10min, then replenish the deionized water of 200~400ml, and in solution, pass into nitrogen 10~20min, then change over to immediately in the reaction cylinder of volume 1L, sealing is placed in the homogeneous reactor, is warming up to 110~150 ℃, isothermal reaction 2~5h with the speed of 1~2 ℃/min; Question response filters after finishing, with absolute ethyl alcohol and washed with de-ionized water, 60 ℃ of vacuum drying 1~2h.
Above-mentioned a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing, the technical process of described step III is as follows: the hollow glass micropearl after the step II is processed adds volume 1L to, mass concentration is in the liquor argenti nitratis ophthalmicus of 1~4g/L, fully stir 5~10min, then slowly add volume 200mL, mass concentration is the glucose solution of 4~10g/L, and constantly stir, under 20~40 ℃ of conditions, react 10~30min, wash with absolute ethyl alcohol and deionized water respectively after the filtration, vacuum drying 30~50min under 80 conditions, namely finish at the first coated magnetic nano ferriferrous oxide in hollow glass micropearl surface, coat again anatase-type nanometer titanium dioxide, carry out at last the modified film that Nano Silver is modified.
The present invention is owing to adopted technique scheme, adopt hydro-thermal method at preparation magnetic Nano ferriferrous oxide particles, and when the anatase-type nanometer titanium dioxide particle, directly coat one deck magnetic Nano ferriferrous oxide film and titanium deoxid film on the hollow glass micropearl surface, give hollow glass micropearl magnetic property and photocatalytic activity, by control reaction temperature and time, the technological parameters such as the consumption of predecessor, precipitating reagent and surfactant, optimized modified technique, the method is saved raw material, and is easy and simple to handle.Intersperse decorated nanometer silver on the nano-titanium dioxide film surface on this basis, to strengthen the ability of photocatalysis degradation organic contaminant.Test result shows, the hollow glass micropearl that has coated behind magnetic Nano tri-iron tetroxide, titanium dioxide and the Nano Silver modification has good magnetic and high photocatalytic activity, can satisfy actual needs.
The specific embodiment
A kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing of the present invention adopts first hydro-thermal method to hollow glass micropearl coated magnetic nano ferriferrous oxide film, coats the anatase-type nanometer titanium dioxide film again, carries out at last the silver ion modification.It can directly coat the hollow glass micropearl surface when adopting hydro-thermal method to prepare magnetic Nano tri-iron tetroxide, anatase-type nanometer titanium dioxide crystal, carries out at last Nano Silver and modifies, and specifically implements according to following steps:
Step 1: hollow glass micropearl preliminary treatment:
A. deoil.Weighing sodium hydroxide, sodium carbonate and sodium metasilicate are dissolved in the deionized water, obtain degreasing fluid, and NaOH, sodium carbonate and the sodium metasilicate quality-volumetric concentration in degreasing fluid is respectively 40g/L, 10g/L and 5g/L; Degreasing fluid is heated to 80~100 ℃; Take by weighing hollow glass micropearl 5~10g, add in the described degreasing fluid of 1L, adopt the mechanical agitation method that cenosphere is fully disperseed in degreasing fluid, filtration behind reaction 40~60min, washing.
B. alligatoring.With the upper step obtain deoil after hollow glass micropearl be immersed in the hydrofluoric acid solution of mass concentration 1~3%, volume 1L, under 40~60 ℃ of conditions, react 1~2h, wash respectively dry 1~2h under 80 ℃ of conditions after the filtration with acetone, absolute ethyl alcohol and deionized water.
Step 2: hollow glass micropearl coated magnetic nano ferriferrous oxide film.Be 0.05~0.15mol/L according to total concentration of iron, ferrous sulfate and ferric nitrate mass ratio are Fe 2+: Fe 3+=1:2~3:2 takes by weighing ferrous sulfate and ferric nitrate, obtain ferrous iron and ferric mixed solution with deionized water dissolving, adding mass concentration is the NaOH of 15~30g/L, mass concentration is the ethylene glycol of 20~40g/L, mass concentration is the polyvinylpyrrolidone of 10~20g/L, add ethanol solution according to volume ratio 4:1~1:4, add the hollow glass micropearl after step 1 is processed, change over to subsequently to the high pressure reaction cylinder, under 120~160 ℃ of conditions, 4~8h is processed in insulation, filters out cenosphere after question response is finished after the sealing, wash respectively vacuum drying 1~2h under 60 ℃ of conditions with absolute ethyl alcohol and deionized water.The present invention is by the total concentration of iron of control, ferrous sulfate and ferric nitrate mass ratio, the selection of precipitating reagent and emulsifying agent and consumption, reaction temperature, in the reaction time, so that it is even, fine and close to be coated on the ferriferrous oxide film on hollow glass micropearl surface, particle diameter is nanoscale, good with the hollow glass micropearl binding strength, have certain magnetic.Because total concentration of iron, ferrous sulfate and ferric nitrate mass ratio, emulsifier, the factors such as reaction temperature and time all affect magnetic, purity, crystallization degree, pattern and the particle size of tri-iron tetroxide.When total concentration of iron during at 0.05~0.15mol/L, the hollow glass micropearl surface can coat certain thickness magnetic Nano ferriferrous oxide film, particle generation agglomeration is less, can not deposit too many nano particle in the solution simultaneously, is combined with hollow glass micropearl firmly; When less than 0.05mol/L, iron ion can not form continuous film very little in the solution, affects magnetic property; When greater than 0.15mol/L, iron concentration is excessive easily to cause waste, and the magnetic Nano ferriferrous oxide film of hollow glass micropearl surface adhesion is too thick, and attachment fastness is bad, and nano particle comes off easily in the use procedure.When ferrous sulfate and ferric nitrate mass ratio during at 1:2~3:2, the hollow glass micropearl surface can coat certain thickness film, and nano particle is combined with hollow glass micropearl firmly; When less than 1:2, the ferric ion consumption is too large, prepares to contain the more impurity of ferric iron, and magnetic property is very weak; When greater than 3:2, the ferric ion consumption is prepared and is contained the more impurity of ferrous iron very little, and magnetic property is also very weak.When precipitating reagent sodium hydroxide concentration during at 15~30g/L, can guarantee that chemical reaction normally carries out, tri-iron tetroxide crystal well-grown during less than 15g/L or greater than 30g/L, all can not impel tri-iron tetroxide synthetic smoothly.When the polyvinylpyrrolidone consumption at 10~20g/L, the ethylene glycol consumption can reduce the agglomeration of nano ferriferrous oxide when 20~40g/L, strengthen the dispersiveness of particle.Surpassing above-mentioned scope consumption nano ferriferrous oxide agglomeration obviously increases the weight of.When absolute ethyl alcohol and deionized water volume ratio are 4:1~1:4, can guarantee that the tri-iron tetroxide particle diameter that generates is less, surpass this scope, particle diameter increases.Crystallization degree, crystal morphology and the size of reaction temperature and reaction time major effect tri-iron tetroxide.When reaction temperature during at 120~160 ℃, the magnetite nano tri-iron tetroxide that can generate, when being lower than 120 ℃, the tri-iron tetroxide of generation does not have magnetic, when being higher than 160 ℃, wastes energy, and the instrument security reduces.When the reaction time is controlled at 4~8h, can be at hollow glass micropearl Surface Creation magnetic Nano ferriferrous oxide film; When being lower than 4h, nano ferriferrous oxide and hollow glass micropearl binding strength are relatively poor, also affect the crystallization degree of magnetic Nano tri-iron tetroxide, and magnetic property is bad; When greater than 8h, obvious reunion can occur in the magnetic Nano ferriferrous oxide particles of generation, and granularity obviously increases, and rough surface is uneven, and particle comes off easily.
Step 3: hollow glass micropearl coats the anatase-type nanometer titanium dioxide film.The titanium sulfate of 18~20g is dissolved in the deionized water of temperature 60 C, volume 400mL, then adds the urea of 8~12g and the polyethylene glycol of 3~8g, and constantly stir; Hollow glass micropearl after step 2 processing is joined in the titanium sulfate urea mixed solution, mechanical agitation 5~10min, then replenish the deionized water of 200~400ml, and in solution, pass into nitrogen 10~20min, then change over to immediately in the reaction cylinder of volume 1L, sealing is placed in the homogeneous reactor, is warming up to 110~150 ℃, isothermal reaction 2~5h with the speed of 1~2 ℃/min; Question response filters after finishing, with absolute ethyl alcohol and washed with de-ionized water, 60 ℃ of vacuum drying 1~2h.The present invention adopts hydro-thermal method in the preparation nano titanium dioxide crystal, directly at hollow glass micropearl surface clad nano titanium deoxid film.The usage ratio of titanium sulfate, urea and deionized water, the surfactant polyethylene consumption, reaction temperature and time etc. all affects crystalline phase, crystallization degree, pattern and the crystallite dimension of nano titanium oxide.When titanium sulfate and urea quality than for 2.5:1~1.5:1 the time, can generate anatase-type nanometer titanium dioxide, hollow glass micropearl surface clad nano film is comparatively complete; When titanium sulfate and amount of urea ratio were higher than 2.5:1, residual titanium sulfate was many; When titanium sulfate and amount of urea compared less than 1.5:1, urea can cause waste.When polyethylene glycol consumption during at 5~10g/L, can effectively control the speed of growth of nano titanium dioxide crystal, particle can not produce agglomeration, and crystal formation is intact, is combined with hollow glass micropearl firmly; When polyethylene glycol consumption during less than 5g/L, nanoparticle agglomerates is comparatively obvious; When polyethylene glycol consumption during greater than 10g/L, can affect the normal growth of nano titanium dioxide crystal.Pass into nitrogen and get rid of unnecessary courteously, can protect the magnetic of nano ferriferrous oxide in thermal and hydric environment, can not lose or descend.The vessel filling amount can generate the anatase-type nanometer titanium dioxide particle 60~80% the time; When less than 60% the time, the reaction cylinder internal pressure is on the low side, can affect the generation of nano titanium oxide; When the generation that is unfavorable for equally nano titanium oxide greater than 80% time, reaction cylinder is dangerous.When hydrothermal temperature is controlled at 110~150 ℃, can generate the anatase-type nanometer titanium dioxide particle; When being lower than 110 ℃, the anatase nano titanium dioxide crystal form of generation is imperfect; When being higher than 150 ℃, reaction cylinder security meeting is affected, and the titanium dioxide nanoparticle of generation easily produces reunion.The hydro-thermal reaction time is controlled in 2~5h scope, can be at hollow glass micropearl Surface Creation anatase-type nanometer titanium dioxide film; When less than 2h, can affect the crystallization degree of nano titanium oxide; When greater than 5h, secondary crystallization can occur in the titanium dioxide nanoparticle of generation, and binding strength descends.
Step 4: the hollow glass micropearl Nano Silver is modified.Add the hollow glass micropearl after step 3 processing to volume 1L, mass concentration is in the liquor argenti nitratis ophthalmicus of 1~4g/L, fully stir 5~10min, then slowly add volume 200mL, mass concentration is the glucose solution of 4~10g/L, and constantly stir, under 20~40 ℃ of conditions, react 10~30min, wash with absolute ethyl alcohol and deionized water respectively after the filtration, vacuum drying 30~50min under 80 conditions, namely finish at the first coated magnetic nano ferriferrous oxide in hollow glass micropearl surface, coat again anatase-type nanometer titanium dioxide, carry out at last the modified film that Nano Silver is modified.The present invention uses the liquor argenti nitratis ophthalmicus of low concentration to soak hollow glass micropearl, and glucose is as reducing agent reduced nano silver ion.When the silver nitrate consumption is 1~4g/L, the glucose consumption is 4~10g/L, during volume ratio 5:1, can intersperse nano-silver ionic on the nano-titanium dioxide film surface; When the silver nitrate consumption less than 1g/L, the glucose consumption is during less than 4g/L, the nano-silver ionic time of interspersing is very long and few; When the silver nitrate consumption greater than 4g/L, the glucose consumption is during greater than 10g/L, the Nano Silver of generation is too many again, and nano-titanium dioxide film is hidden fully.When reaction temperature at 20~40 ℃, during reaction time 10~30min, the Nano Silver of interspersing is relatively evenly, particle diameter is less, photocatalytic activity is high.
Embodiment 1
Get hollow glass micropearl 5g, add in the 1L degreasing fluid, filtering, washing behind the reaction 40min under 80 ℃ of conditions of temperature.Hollow glass micropearl after deoiling is immersed in the hydrofluoric acid solution of 1L, mass concentration 1%, under 40 ℃ of conditions, reacts 1h, filter, wash 80 ℃ of dry 1h.Take by weighing a certain amount of ferrous sulfate and ferric nitrate, use deionized water dissolving, controlling total concentration of iron is 0.05mol/L, ferrous sulfate and ferric nitrate mass ratio are 1:2, add the NaOH of 15g/L, the ethylene glycol of 20g/L, the polyvinylpyrrolidone of 10g/L, 1:4 adds absolute ethyl alcohol by volume again, adds until completely dissolved the hollow glass micropearl after the alligatoring, moving into immediately polytetrafluoroethylene (PTFE) is in the stainless steel reaction cylinder of substrate, insert after the sealing in the homogeneous reactor, under 120 ℃ of conditions, process 8h, filter out cenosphere after question response is finished, wash respectively vacuum drying 1h under 60 ℃ of conditions with absolute ethyl alcohol and deionized water.The 18g titanium sulfate is dissolved in 60 ℃, the deionized water of 400mL, add the urea of 8g and the polyethylene glycol of 3g, fully stir, the hollow glass micropearl of coated ferriferrous oxide is joined in the titanium sulfate urea mixed solution, stir 5min, add the deionized water of 200ml, in solution, pass into nitrogen 10min, change over to immediately in the reaction cylinder that is lined with polytetrafluoroethylene (PTFE) in the 1L, sealing is placed in the homogeneous reactor, is warming up to 110 ℃ with the speed of 1 ℃/min, isothermal reaction 5h, reaction is filtered after finishing, with absolute ethyl alcohol and deionized water washing, 60 ℃ of vacuum drying 1h.The hollow glass micropearl of clad nano tri-iron tetroxide, titanium deoxid film is added in the liquor argenti nitratis ophthalmicus of 1L, mass concentration 1g/L, stir 5min, slowly add the glucose solution of 200mL, mass concentration 4g/L, stirring reaction 10min under 20 ℃ of conditions, wash 80 dry 30min with absolute ethyl alcohol and deionized water respectively after the filtration.
The photo-catalytic degradation of methyl-orange dyestuff is the result show, the methyl orange solution of mass concentration 10mg/L, volume 500mL, add the hollow glass micropearl that 0.5g clad nano tri-iron tetroxide, titanium dioxide and Nano Silver are modified, through 100W ultraviolet lamp 1h irradiation, the methyl orange dye photocatalytic activity is 93.5%.The saturation magnetization that records the hollow glass micropearl of clad nano tri-iron tetroxide, titanium dioxide and Nano Silver modification is 12emu/g.Photo-catalytic degradation of methyl-orange dye activity assay method is as follows: the hollow glass micropearl behind 0.5g clad nano tri-iron tetroxide, titanium dioxide and the Nano Silver modification is put into the methyl orange solution of volume 500mL, mass concentration 10mg/L, and lucifuge leaves standstill behind the 2h with the absorbance of 720S type spectrophotometric determination solution at the 464nm place A 0 , then methyl orange solution is placed under the ultraviolet lamp of power 100W, dominant wavelength 254nm and carries out irradiation, liquid level is apart from ultraviolet lamp 15cm, behind the irradiation 1h with the absorbance of 720S type spectrophotometric determination solution at the 464nm place A 1 , by formula (1) calculates the methyl orange dye photocatalytic activity D
Figure 201210474638X100002DEST_PATH_IMAGE001
(1)
Embodiment 2
Get hollow glass micropearl 10g, add in the 1L degreasing fluid, filtering, washing behind the reaction 60min under 100 ℃ of conditions of temperature.Hollow glass micropearl after deoiling is immersed in the hydrofluoric acid solution of 1L, mass concentration 3%, under 60 ℃ of conditions, reacts 2h, filter, wash 80 ℃ of dry 2h.Take by weighing a certain amount of ferrous sulfate and ferric nitrate, use deionized water dissolving, controlling total concentration of iron is 0.15mol/L, ferrous sulfate and ferric nitrate mass ratio are 3:2, add the NaOH of 30g/L, the ethylene glycol of 40g/L, the polyvinylpyrrolidone of 20g/L, 4:1 adds absolute ethyl alcohol by volume again, adds until completely dissolved the hollow glass micropearl after the alligatoring, moving into immediately polytetrafluoroethylene (PTFE) is in the stainless steel reaction cylinder of substrate, insert after the sealing in the homogeneous reactor, under 160 ℃ of conditions, process 4h, filter out cenosphere after question response is finished, wash respectively vacuum drying 2h under 60 ℃ of conditions with absolute ethyl alcohol and deionized water.The 20g titanium sulfate is dissolved in 60 ℃, in the deionized water of 400mL, add the urea of 12g and the polyethylene glycol of 8g, fully stir, the hollow glass micropearl of coated ferriferrous oxide is joined in the titanium sulfate urea mixed solution, stir 10min, add the deionized water of 400ml, in solution, pass into nitrogen 20min, change over to immediately in the reaction cylinder that is lined with polytetrafluoroethylene (PTFE) in the 1L, sealing is placed in the homogeneous reactor, is warming up to 150 ℃ with the speed of 2 ℃/min, isothermal reaction 2h, reaction is filtered after finishing, with absolute ethyl alcohol and deionized water washing, 60 ℃ of vacuum drying 2h.The hollow glass micropearl of clad nano tri-iron tetroxide, titanium deoxid film is added in the liquor argenti nitratis ophthalmicus of 1L, mass concentration 4g/L, stir 10min, slowly add the glucose solution of 200mL, mass concentration 10g/L, stirring reaction 30min under 40 ℃ of conditions, wash 80 dry 50min with absolute ethyl alcohol and deionized water respectively after the filtration.
Photo-catalytic degradation of methyl-orange dyestuff result shows (assay method is the same), the methyl orange solution of mass concentration 10mg/L, volume 500mL, add the hollow glass micropearl that 0.5g clad nano tri-iron tetroxide, titanium dioxide and Nano Silver are modified, through 100W ultraviolet lamp 1h irradiation, the methyl orange dye photocatalytic activity is 99.6%.The saturation magnetization that records the hollow glass micropearl of clad nano tri-iron tetroxide, titanium dioxide and Nano Silver modification is 38emu/g.
Embodiment 3
Get hollow glass micropearl 7g, add in the 1L degreasing fluid, filtering, washing behind the reaction 50min under 90 ℃ of conditions of temperature.Hollow glass micropearl after deoiling is immersed in the hydrofluoric acid solution of 1L, mass concentration 2%, under 50 ℃ of conditions, reacts 1.5h, filter, wash 80 ℃ of dry 1.5h.Take by weighing a certain amount of ferrous sulfate and ferric nitrate, use deionized water dissolving, controlling total concentration of iron is 0.1mol/L, ferrous sulfate and ferric nitrate mass ratio are 2:3, add the NaOH of 20g/L, the ethylene glycol of 30g/L, the polyvinylpyrrolidone of 15g/L, 2:1 adds absolute ethyl alcohol by volume again, adds until completely dissolved the hollow glass micropearl after the alligatoring, moving into immediately polytetrafluoroethylene (PTFE) is in the stainless steel reaction cylinder of substrate, insert after the sealing in the homogeneous reactor, under 140 ℃ of conditions, process 6h, filter out cenosphere after question response is finished, wash respectively vacuum drying 1h under 60 ℃ of conditions with absolute ethyl alcohol and deionized water.The 19g titanium sulfate is dissolved in 60 ℃, in the deionized water of 400mL, add the urea of 10g and the polyethylene glycol of 5g, fully stir, the hollow glass micropearl of coated ferriferrous oxide is joined in the titanium sulfate urea mixed solution, stir 8min, add the deionized water of 300ml, in solution, pass into nitrogen 15min, change over to immediately in the reaction cylinder that is lined with polytetrafluoroethylene (PTFE) in the 1L, sealing is placed in the homogeneous reactor, is warming up to 140 ℃ with the speed of 2 ℃/min, isothermal reaction 3h, reaction is filtered after finishing, with absolute ethyl alcohol and deionized water washing, 60 ℃ of vacuum drying 1.5h.The hollow glass micropearl of clad nano tri-iron tetroxide, titanium deoxid film is added in the liquor argenti nitratis ophthalmicus of 1L, mass concentration 2g/L, stir 8min, slowly add the glucose solution of 200mL, mass concentration 7g/L, stirring reaction 20min under 30 ℃ of conditions, wash 80 dry 40min with absolute ethyl alcohol and deionized water respectively after the filtration.
Photo-catalytic degradation of methyl-orange dyestuff result shows (assay method is the same), the methyl orange solution of mass concentration 10mg/L, volume 500mL, add the hollow glass micropearl that 0.5g clad nano tri-iron tetroxide, titanium dioxide and Nano Silver are modified, through 100W ultraviolet lamp 1h irradiation, the methyl orange dye photocatalytic activity is 95.8%.The saturation magnetization that records the hollow glass micropearl of clad nano tri-iron tetroxide, titanium dioxide and Nano Silver modification is 26emu/g.

Claims (8)

1. one kind prepares the method with the active hollow glass micropearl of magnetic photocatalytic, it is characterized in that it comprises following processing step: I. and adopt first hydro-thermal method to hollow glass micropearl coated magnetic nano ferriferrous oxide film; II. again at the magnetic Nano ferriferrous oxide film outer cladding anatase-type nanometer titanium dioxide film of hollow glass micropearl; III. at last the hollow glass micropearl that has coated magnetic Nano ferriferrous oxide film and anatase-type nanometer titanium dioxide film is carried out the silver ion modification.
2. a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing as claimed in claim 1 is characterized in that, before adopting hydro-thermal method to hollow glass micropearl coated magnetic nano ferriferrous oxide film, first hollow glass micropearl is carried out preliminary treatment.
3. a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing as claimed in claim 2 is characterized in that, describedly hollow glass micropearl is carried out pretreated technical process comprises and deoiling and two programs of alligatoring.
4. a kind of method with the active hollow glass micropearl of magnetic photocatalytic for preparing as claimed in claim 3, it is characterized in that, the technical process of the described program of deoiling is as follows: weighing sodium hydroxide, sodium carbonate and sodium metasilicate are dissolved in the deionized water, obtain degreasing fluid, described NaOH, sodium carbonate and the sodium metasilicate quality-volumetric concentration in described degreasing fluid is respectively 40g/L, 10g/L and 5g/L; Described degreasing fluid is heated to 80~100 ℃; Take by weighing hollow glass micropearl 5~10g, add in the described degreasing fluid of 1L, adopt the mechanical agitation method that cenosphere is fully disperseed in degreasing fluid, filtration behind reaction 40~60min, washing.
5. such as claim 3 or 4 described a kind of methods with the active hollow glass micropearl of magnetic photocatalytic that prepare, it is characterized in that, the technical process of described alligatoring program is as follows: with the upper step obtain deoil after hollow glass micropearl be immersed in the hydrofluoric acid solution of mass concentration 1~3%, volume 1L, under 40~60 ℃ of conditions, react 1~2h, wash respectively dry 1~2h under 80 ℃ of conditions after the filtration with acetone, absolute ethyl alcohol and deionized water.
6. such as claim 1,2 or 3 described a kind of methods with the active hollow glass micropearl of magnetic photocatalytic that prepare, it is characterized in that, the technical process of described step I is as follows: be 0.05~0.15mol/L according to total concentration of iron, ferrous sulfate and ferric nitrate mass ratio are Fe 2+: Fe 3+=1:2~3:2 takes by weighing ferrous sulfate and ferric nitrate, obtain ferrous iron and ferric mixed solution with deionized water dissolving, adding mass concentration is the NaOH of 15~30g/L, mass concentration is the ethylene glycol of 20~40g/L, mass concentration is the polyvinylpyrrolidone of 10~20g/L, add ethanol solution according to volume ratio 4:1~1:4, add hollow glass micropearl, change over to subsequently to the high pressure reaction cylinder, under 120~160 ℃ of conditions, 4~8h is processed in insulation, filters out cenosphere after question response is finished after the sealing, wash respectively vacuum drying 1~2h under 60 ℃ of conditions with absolute ethyl alcohol and deionized water.
7. such as claim 1,2 or 3 described a kind of methods with the active hollow glass micropearl of magnetic photocatalytic that prepare, it is characterized in that, the technical process of described step II is as follows: the titanium sulfate of 18~20g is dissolved in the deionized water of temperature 60 C, volume 400mL, then add the urea of 8~12g and the polyethylene glycol of 3~8g, and constantly stir; Hollow glass micropearl after the processing of step I is joined in the titanium sulfate urea mixed solution, mechanical agitation 5~10min, then replenish the deionized water of 200~400ml, and in solution, pass into nitrogen 10~20min, then change over to immediately in the reaction cylinder of volume 1L, sealing is placed in the homogeneous reactor, is warming up to 110~150 ℃, isothermal reaction 2~5h with the speed of 1~2 ℃/min; Question response filters after finishing, with absolute ethyl alcohol and washed with de-ionized water, 60 ℃ of vacuum drying 1~2h.
8. such as claim 1,2 or 3 described a kind of methods with the active hollow glass micropearl of magnetic photocatalytic that prepare, it is characterized in that, the technical process of described step III is as follows: the hollow glass micropearl after the step II is processed adds volume 1L to, mass concentration is in the liquor argenti nitratis ophthalmicus of 1~4g/L, fully stir 5~10min, then slowly add volume 200mL, mass concentration is the glucose solution of 4~10g/L, and constantly stir, under 20~40 ℃ of conditions, react 10~30min, wash with absolute ethyl alcohol and deionized water respectively after the filtration, vacuum drying 30~50min under 80 conditions, namely finish at the first coated magnetic nano ferriferrous oxide in hollow glass micropearl surface, coat again anatase-type nanometer titanium dioxide, carry out at last the modified film that Nano Silver is modified.
CN201210474638.XA 2012-11-21 2012-11-21 Method for preparing modified hollow glass beads with magnetism and photocatalytic activity Active CN103007957B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210474638.XA CN103007957B (en) 2012-11-21 2012-11-21 Method for preparing modified hollow glass beads with magnetism and photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210474638.XA CN103007957B (en) 2012-11-21 2012-11-21 Method for preparing modified hollow glass beads with magnetism and photocatalytic activity

Publications (2)

Publication Number Publication Date
CN103007957A true CN103007957A (en) 2013-04-03
CN103007957B CN103007957B (en) 2014-11-05

Family

ID=47957389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210474638.XA Active CN103007957B (en) 2012-11-21 2012-11-21 Method for preparing modified hollow glass beads with magnetism and photocatalytic activity

Country Status (1)

Country Link
CN (1) CN103007957B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772166A (en) * 2015-03-31 2015-07-15 嘉兴学院 Composite floating bead photocatalyst as well as preparation method and application thereof
CN105273689A (en) * 2014-07-18 2016-01-27 广东工业大学 Novel multi-element structure composite conductive filling material
CN106833215A (en) * 2017-03-16 2017-06-13 上海琛岫自控科技有限公司 A kind of unmanned plane that can reduce electromagnetic interference
CN106864292A (en) * 2017-03-16 2017-06-20 上海源紊新能源科技有限公司 A kind of charging station based on efficient absorbent structure
CN107365084A (en) * 2017-07-18 2017-11-21 合肥鼎亮光学科技有限公司 A kind of sol-gal process prepares the process of magnetic reflective glass beads
CN108927124A (en) * 2018-06-26 2018-12-04 华东理工大学 It is a kind of easily to recycle reusable nanocrystalline TiO2Coated hollow glass bead photochemical catalyst and preparation method thereof
CN108940249A (en) * 2018-06-29 2018-12-07 西安建筑科技大学 A kind of composite photo-catalyst, preparation method and applications
CN109529823A (en) * 2018-12-07 2019-03-29 武汉工程大学 A kind of silver carried titanium dioxide hollow sphere and preparation method thereof
CN112216465A (en) * 2020-10-22 2021-01-12 南昌师范学院 Magnetic composite material based on chitosan and preparation method and application thereof
CN113845880A (en) * 2021-09-29 2021-12-28 西安热工研究院有限公司 Silver nanowire @ polypyrrole-ferroferric oxide composite wave-absorbing material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350477A (en) * 1999-04-13 2002-05-22 尤尼瑟奇有限公司 A photocatalyst
CN1381308A (en) * 2002-03-28 2002-11-27 武汉理工大学 Photocatalyzing magnetic float microbead and its preparing process
CN1974460A (en) * 2006-12-01 2007-06-06 广东工业大学 Silver plated hollow glass micro bead and its surface silver plating process
CN101293755A (en) * 2008-06-25 2008-10-29 陈建华 Surface modification method for hollow glass tiny bead and uses thereof
CN101439935A (en) * 2008-12-22 2009-05-27 北京航空航天大学 Preparation of hollow glass microsphere / ferrite composite material
CN102002263A (en) * 2010-11-01 2011-04-06 上海大学 Method for preparing hollow glass microsphere coating titanium dioxide
CN102381844A (en) * 2011-07-26 2012-03-21 西安工程大学 Method for modifying hollow glass microspheres by chemical precipitation process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350477A (en) * 1999-04-13 2002-05-22 尤尼瑟奇有限公司 A photocatalyst
CN1381308A (en) * 2002-03-28 2002-11-27 武汉理工大学 Photocatalyzing magnetic float microbead and its preparing process
CN1974460A (en) * 2006-12-01 2007-06-06 广东工业大学 Silver plated hollow glass micro bead and its surface silver plating process
CN101293755A (en) * 2008-06-25 2008-10-29 陈建华 Surface modification method for hollow glass tiny bead and uses thereof
CN101439935A (en) * 2008-12-22 2009-05-27 北京航空航天大学 Preparation of hollow glass microsphere / ferrite composite material
CN102002263A (en) * 2010-11-01 2011-04-06 上海大学 Method for preparing hollow glass microsphere coating titanium dioxide
CN102381844A (en) * 2011-07-26 2012-03-21 西安工程大学 Method for modifying hollow glass microspheres by chemical precipitation process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘为等: "纳米α-Fe包覆空心玻璃微珠复合微球的制备及磁性能研究", 《稀有金属材料与工程》 *
张云等: "二氧化钛高效包覆空心玻璃微珠的研究", 《现代化工》 *
徐长伟等: "双包覆空心玻璃微珠制备金色隔热涂料", 《沈阳建筑大学学报(自然科学版)》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273689A (en) * 2014-07-18 2016-01-27 广东工业大学 Novel multi-element structure composite conductive filling material
CN104772166A (en) * 2015-03-31 2015-07-15 嘉兴学院 Composite floating bead photocatalyst as well as preparation method and application thereof
CN106833215A (en) * 2017-03-16 2017-06-13 上海琛岫自控科技有限公司 A kind of unmanned plane that can reduce electromagnetic interference
CN106864292A (en) * 2017-03-16 2017-06-20 上海源紊新能源科技有限公司 A kind of charging station based on efficient absorbent structure
CN107365084A (en) * 2017-07-18 2017-11-21 合肥鼎亮光学科技有限公司 A kind of sol-gal process prepares the process of magnetic reflective glass beads
CN108927124A (en) * 2018-06-26 2018-12-04 华东理工大学 It is a kind of easily to recycle reusable nanocrystalline TiO2Coated hollow glass bead photochemical catalyst and preparation method thereof
CN108940249A (en) * 2018-06-29 2018-12-07 西安建筑科技大学 A kind of composite photo-catalyst, preparation method and applications
CN109529823A (en) * 2018-12-07 2019-03-29 武汉工程大学 A kind of silver carried titanium dioxide hollow sphere and preparation method thereof
CN112216465A (en) * 2020-10-22 2021-01-12 南昌师范学院 Magnetic composite material based on chitosan and preparation method and application thereof
CN113845880A (en) * 2021-09-29 2021-12-28 西安热工研究院有限公司 Silver nanowire @ polypyrrole-ferroferric oxide composite wave-absorbing material and preparation method thereof

Also Published As

Publication number Publication date
CN103007957B (en) 2014-11-05

Similar Documents

Publication Publication Date Title
CN103007957B (en) Method for preparing modified hollow glass beads with magnetism and photocatalytic activity
CN103007931B (en) Method for preparing nano silver and titanium dioxide thin films on surfaces of hollow glass beads
CN105502503B (en) A kind of hexagonal crystal tungsten bronze nanometer stub particle and preparation method thereof
CN102993781B (en) Preparation method of magnetic nano ferroferric oxide modified hollow glass microsphere
WO2021169196A1 (en) Bismuth tungstate/bismuth sulfide/molybdenum disulfide ternary heterojunction composite material, preparation method therefor, and application thereof
CN104028272B (en) Graphene-supported copper-nickel compound nanometer photocatalyst, preparation method and application
CN100406117C (en) Magnetic photocatalyst and its preparing method
CN103642278B (en) There is titanium system environmental-friendly pigment and the preparation method of composite mineralizer
CN107098381B (en) The preparation method of the zinc titanate catalysis material of special appearance
CN103008675B (en) A kind of preparation method of nickel coated copper composite powder
CN103599737A (en) Magnetic nano material with carbon shell layer and preparation method thereof
CN104525233B (en) G-carbon nitride-titanium dioxide-silver nanosheet composite, biomimetic synthesis method and application thereof
CN103992660B (en) A kind of ZrO 2coated γ-Ce 2s 3the preparation method of red stain
CN102703024A (en) Method for preparing multi-layer composite nanometer wave-absorbing materials
CN102277723A (en) Method for preparing nano titanium dioxide thin film on surface of dacron
CN103007912A (en) One-dimensional nanometer titania photocatalyst with mica serving as support and preparation method thereof
CN102962470B (en) Method for preparing spherical ultrafine nickel powder at room temperature
CN105197967B (en) A kind of preparation method of the flower-shaped magnesium oxide of carrying transition metal oxide
CN104741112B (en) A kind of TiO2/WO3The preparation method of composite granule
CN108654632A (en) A kind of Bi for degrading microcystic toxins2WO6/Fe3O4The preparation method of photochemical catalyst
CN105817241A (en) Method for preparing copper phosphotungstate@titanium dioxide core-shell structured nanomaterial
CN101249430A (en) Method of magnetic nano photochemical catalyst material preparation
CN105879890B (en) Magnetic composite photocatalyst and its preparation method and application
CN102441667B (en) La (Lanthanum) doped TiO2 powder body of coreshell structure and preparation method thereof
CN115155614A (en) Preparation method and application of flower-shaped magnetic nano gold catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200702

Address after: 314000 No. 14 201-5, No. 1509, Jiachuang Road, Xiuzhou District, Jiaxing City, Zhejiang Province

Patentee after: Jiaxing Nottingham Industrial Design Co.,Ltd.

Address before: 314001 No. 56, Yuexiu Road, Jiaxing, Zhejiang

Patentee before: JIAXING University

TR01 Transfer of patent right