CN100406117C - A kind of magnetic photocatalyst and preparation method thereof - Google Patents
A kind of magnetic photocatalyst and preparation method thereof Download PDFInfo
- Publication number
- CN100406117C CN100406117C CNB2006101247399A CN200610124739A CN100406117C CN 100406117 C CN100406117 C CN 100406117C CN B2006101247399 A CNB2006101247399 A CN B2006101247399A CN 200610124739 A CN200610124739 A CN 200610124739A CN 100406117 C CN100406117 C CN 100406117C
- Authority
- CN
- China
- Prior art keywords
- nife
- add
- hours
- preparation
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 84
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000002105 nanoparticle Substances 0.000 claims abstract description 20
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 17
- 239000000243 solution Substances 0.000 claims description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 30
- 239000012153 distilled water Substances 0.000 claims description 29
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- 239000004202 carbamide Substances 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 10
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000002270 dispersing agent Substances 0.000 claims description 8
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 claims description 8
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910000348 titanium sulfate Inorganic materials 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 5
- 150000002815 nickel Chemical class 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 3
- 229960000583 acetic acid Drugs 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 239000001632 sodium acetate Substances 0.000 claims description 3
- 235000017281 sodium acetate Nutrition 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 125000004494 ethyl ester group Chemical group 0.000 claims description 2
- 239000012362 glacial acetic acid Substances 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- 235000011056 potassium acetate Nutrition 0.000 claims description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 150000002009 diols Chemical class 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- -1 phosphate ester Chemical class 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 21
- 238000010521 absorption reaction Methods 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 16
- 230000001699 photocatalysis Effects 0.000 abstract description 14
- 239000002131 composite material Substances 0.000 abstract description 7
- 238000001556 precipitation Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000011068 loading method Methods 0.000 abstract description 3
- 238000004065 wastewater treatment Methods 0.000 abstract description 3
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 abstract description 2
- 239000008400 supply water Substances 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- NQNBVCBUOCNRFZ-UHFFFAOYSA-N nickel ferrite Chemical compound [Ni]=O.O=[Fe]O[Fe]=O NQNBVCBUOCNRFZ-UHFFFAOYSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000000985 reflectance spectrum Methods 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241000080590 Niso Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明涉及一种可以利用日光并且可磁分离的复合光催化剂及其制备方法。该磁性光催化剂的制备方法是:先用水热法合成NiFe2O4纳米颗粒,然后利用均匀沉淀法在NiFe2O4磁核表面直接包覆或者添加非晶态SiO2中间层后包覆无定形TiO2外壳,再经过一定温度热处理使无定形TiO2外壳转变成具有较高光催化活性的锐钛矿相,同时微量的Fe3+、Ni2+通过热运动渗入TiO2外壳,使得吸收波长范围可扩展至可见光区域。该光催化剂具有在水处理过程中良好的可磁分离性、比负载体系更高的光催化活性及其吸收波长范围可扩展至可见光区域等优点,解决了光催化技术在给水处理与废水处理上难以工业化的问题。
The invention relates to a composite photocatalyst which can utilize sunlight and can be magnetically separated and a preparation method thereof. The preparation method of the magnetic photocatalyst is: first synthesize NiFe 2 O 4 nanoparticles by hydrothermal method, and then use the uniform precipitation method to directly coat the surface of the NiFe 2 O 4 magnetic core or add an amorphous SiO 2 intermediate layer to coat Amorphous TiO 2 shell, after heat treatment at a certain temperature, transforms the amorphous TiO 2 shell into an anatase phase with high photocatalytic activity, and at the same time traces of Fe 3+ and Ni 2+ penetrate into the TiO 2 shell through thermal motion, making the absorption The wavelength range can be extended to the visible region. The photocatalyst has the advantages of good magnetic separability in the water treatment process, higher photocatalytic activity than the loading system, and its absorption wavelength range can be extended to the visible light region, which solves the problem of photocatalytic technology in water supply and wastewater treatment. Difficult to industrialize.
Description
技术领域 technical field
本发明属于纳米光催化剂的制备技术领域。尤其涉及一种可以利用日光并且可磁分离的复合光催化剂及其制备方法。The invention belongs to the technical field of preparation of nanometer photocatalysts. In particular, it relates to a composite photocatalyst that can utilize sunlight and can be magnetically separated and a preparation method thereof.
背景技术 Background technique
光催化技术在降解水体或空气中的有机污染物等方面具有巨大的应用潜力,在难降解有毒有机物的矿化分解方面比电催化、湿式催化氧化等技术具有明显的优点。但光催化技术在给水处理与废水处理上尚未工业化,在工程应用上存在的主要问题是无法利用太阳光以及悬浮体系光催化剂粉末不能很好地分离回收。将光催化剂固定在玻璃、陶瓷等材料上可以解决光催化剂的分离回收问题,但这样极大地降低了催化剂的比表面积,导致光催化效率明显低于悬浮体系。Photocatalytic technology has great application potential in degrading organic pollutants in water or air, and has obvious advantages over electrocatalysis and wet catalytic oxidation in the mineralization and decomposition of refractory toxic organic substances. However, photocatalytic technology has not yet been industrialized in water supply and wastewater treatment, and the main problems in engineering applications are the inability to use sunlight and the inability to separate and recycle the photocatalyst powder in the suspension system. Immobilizing photocatalysts on glass, ceramics and other materials can solve the problem of photocatalyst separation and recovery, but this greatly reduces the specific surface area of the catalyst, resulting in a significantly lower photocatalytic efficiency than the suspension system.
纳米尖晶石NiFe2O4是一种超顺磁材料,把TiO2包覆在NiFe2O4外面可以很好地解决TiO2光催化材料回收的问题,即用磁性较强的永久磁铁吸附TiO2/NiFe2O4光催化材料,实现光催化剂的分离和回收。同时,制备过程中微量的Fe3+、Ni2+通过热运动渗入TiO2外壳,能有效降低TiO2的禁带宽度。从化学观点看,过渡金属离子Fe3+、Ni2+的掺杂可以在半导体晶格中引入缺陷位置或改变其结晶度,成为光生电子或光生空穴的捕获阱而延长其寿命,加强半导体的光催化作用,还可以使半导体的吸收波长范围扩展至可见光区域,有利于提高光量子效率,提高材料的光催化效率。TiO2包覆NiFe2O4磁性纳米光催化复合材料因其在水处理过程中良好的可分离性、比负载体系更高的光催化活性及其吸收波长范围可扩展至可见光区域,将会有良好的应用前景。Nano-spinel NiFe 2 O 4 is a superparamagnetic material. Coating TiO 2 on the outside of NiFe 2 O 4 can solve the problem of TiO 2 photocatalytic material recovery, that is, it can be adsorbed by a permanent magnet with strong magnetic TiO 2 /NiFe 2 O 4 photocatalytic material to realize the separation and recovery of photocatalysts. At the same time, trace amounts of Fe 3+ and Ni 2+ penetrate into the TiO 2 shell through thermal motion during the preparation process, which can effectively reduce the band gap of TiO 2 . From a chemical point of view, the doping of transition metal ions Fe 3+ and Ni 2+ can introduce defect positions in the semiconductor lattice or change its crystallinity, and become traps for photogenerated electrons or photogenerated holes to prolong its life and strengthen the semiconductor. The photocatalytic effect of the semiconductor can also extend the absorption wavelength range of the semiconductor to the visible light region, which is conducive to improving the photon quantum efficiency and the photocatalytic efficiency of the material. TiO 2 -coated NiFe 2 O 4 magnetic nano-photocatalytic composites will have good separability in water treatment process, higher photocatalytic activity than the supporting system, and the absorption wavelength range can be extended to the visible light region. Good application prospects.
一种可磁分离的复合光催化剂的制备方法(CN200510027324.5)技术,首先通过低温催化相转化的方法合成磁性载体铁酸镍纳米粒子,然后用具有光化学惰性和电化学惰性的二氧化硅通过液相沉积的方法包覆铁酸镍纳米粒子,最后将二氧化钛纳米粒子负载在已包覆二氧化硅的铁酸镍纳米粒子上;一种磁性纳米复合光催化剂及其制备方法(CN200610011122.6),该磁性光催化剂包括磁性尖晶石载体、具有光化学和电化学惰性的纳米氧化物包膜与具有高光活性的半导体粒子二氧化钛,所用的磁性核是用层状前体法制备的具有不同磁学性能的磁性尖晶石铁氧体,所用的二氧化钛前体在90~100℃水溶液中能直接水解生成锐钛矿的二氧化钛。但他们制备的磁性复合材料并未见在可见光区有响应,并且制备过程复杂、周期较长。A method for preparing a magnetically separable composite photocatalyst (CN200510027324.5) technology, first synthesizes magnetic carrier nickel ferrite nanoparticles by low-temperature catalytic phase conversion, and then uses photochemically inert and electrochemically inert silicon dioxide to pass through Coating nickel ferrite nanoparticles by liquid phase deposition, and finally loading titanium dioxide nanoparticles on nickel ferrite nanoparticles coated with silicon dioxide; a magnetic nanocomposite photocatalyst and its preparation method (CN200610011122.6) , the magnetic photocatalyst includes a magnetic spinel carrier, a nano-oxide coating with photochemical and electrochemical inertness, and a semiconductor particle titanium dioxide with high photoactivity. The magnetic core used is prepared by a layered precursor method with different magnetic properties. Magnetic spinel ferrite with high performance, the titanium dioxide precursor used can be directly hydrolyzed to anatase titanium dioxide in an aqueous solution at 90-100 °C. However, the magnetic composite materials they prepared did not respond in the visible light region, and the preparation process was complicated and the cycle was long.
发明内容 Contents of the invention
本发明的目的在于提供一种制备工艺简单、周期短、在水处理过程中具有良好的磁分离性、比负载体系更高的光催化活性及其吸收波长范围可扩展至可见光区域的、大比表面积的、以解决光催化技术在给水处理与废水处理上难以工业化的磁性光催化剂及其制备方法。The purpose of the present invention is to provide a simple preparation process, short cycle, good magnetic separation in the water treatment process, higher photocatalytic activity than the loading system and its absorption wavelength range can be extended to the visible light region, large specific A magnetic photocatalyst and a preparation method thereof that solve the problem of industrialization of photocatalytic technology in water treatment and wastewater treatment.
为实现上述任务,本发明所采用的技术方案是:先将二价镍盐、三价铁盐和强碱按摩尔比n(Ni2+)∶n(Fe3+)∶n(OH-)=1∶2~3∶8~9溶解于蒸馏水中,再将溶液加热至95~105℃,保温1~1.5h,静置、冷却后抽滤洗涤2~3次,即得水热反应前驱体。In order to realize the above-mentioned task, the technical solution adopted in the present invention is: first divalent nickel salt, ferric salt and strong base are mixed in molar ratio n(Ni 2+ ):n(Fe 3+ ):n(OH - ) =1:2~3:8~9 dissolved in distilled water, then heated the solution to 95~105°C, kept it warm for 1~1.5h, let it stand, cooled and then filtered and washed 2~3 times to obtain the hydrothermal reaction precursor body.
其中:二价镍盐为硝酸镍、硫酸镍、氯化镍中的一种或多种;三价铁盐为硝酸铁、硫酸铁、氯化铁中的一种或多种;强碱为氢氧化钾、氢氧化钠、氢氧化锂中的一种或多种。Among them: the divalent nickel salt is one or more of nickel nitrate, nickel sulfate, and nickel chloride; the ferric salt is one or more of ferric nitrate, ferric sulfate, and ferric chloride; the strong base is hydrogen One or more of potassium oxide, sodium hydroxide, and lithium hydroxide.
将水热反应前驱体加入蒸馏水中,使其中镍浓度为0.45~2.5mol/L,再加入添加剂使其浓度为0.3~2.0mol/L,用碱液调节pH值至8.0~13.0,搅拌均匀后移入高压反应釜中,填充度为60~90%,在100~250℃条件下水热反应0.5~8h,冷却后抽滤,用蒸馏水洗涤2~3次,所得滤渣在70~100℃条件下真空干燥2~5h,研磨即得NiFe2O4纳米颗粒。Add the hydrothermal reaction precursor to distilled water so that the nickel concentration is 0.45-2.5mol/L, then add additives to make the concentration 0.3-2.0mol/L, adjust the pH value to 8.0-13.0 with lye, and stir evenly Move it into a high-pressure reactor with a filling degree of 60-90%, react hydrothermally at 100-250°C for 0.5-8 hours, suction filter after cooling, wash with distilled water for 2-3 times, and vacuum the obtained filter residue at 70-100°C Dry for 2-5 hours and grind to obtain NiFe 2 O 4 nanoparticles.
所述的添加剂为冰乙酸、乙酸钠、乙酸钾中的一种或多种。The additive is one or more of glacial acetic acid, sodium acetate and potassium acetate.
将所制备的NiFe2O4纳米颗粒加入分散剂溶液中,使NiFe2O4的浓度为0.005~0.05mol/L,超声分散10~30min,加入尿素,尿素的浓度为0.01~1.5mol/L,搅拌后用稀硫酸调节溶液pH值为1.0~6.0,再加入硫酸钛,使n(Ti)/n(Ni)=1~80,把该混合液移入到容器,在50~100℃的条件下,快速振荡反应1~10h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~500℃的温度热处理0.5~2h,即得TiO2/NiFe2O4磁性光催化剂。Add the prepared NiFe 2 O 4 nanoparticles into the dispersant solution so that the concentration of NiFe 2 O 4 is 0.005-0.05mol/L, ultrasonically disperse for 10-30min, add urea, and the concentration of urea is 0.01-1.5mol/L , after stirring, use dilute sulfuric acid to adjust the pH value of the solution to 1.0-6.0, then add titanium sulfate to make n(Ti)/n(Ni)=1-80, transfer the mixed solution into a container, and put it under the condition of 50-100°C Rapid shaking reaction for 1-10 hours. After separation, the synthesized product was washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then heat-treated at 150-500°C for 0.5-2 hours to obtain TiO 2 /NiFe 2 O 4 magnetic photocatalyst.
所述的分散剂溶液为十二烷基硫酸钠、十二烷基磺酸钠、聚乙二醇、磷酸酯溶液中的一种,其浓度范围为0.01~2.5mol/L。The dispersant solution is one of sodium dodecylsulfate, sodium dodecylsulfonate, polyethylene glycol and phosphoric acid ester solution, and its concentration range is 0.01-2.5mol/L.
将所制备的NiFe2O4加入分散剂溶液中,使NiFe2O4的浓度为0.005~0.05mol/L,超声分散10~30min,把该混合液移入到容器中,缓慢滴加正硅酸乙酯和浓氨水,使n(Si)/n(Ni)=1~10、n(N)/n(Si)=4~10,再升温至50~80℃,快速振荡反应3~5h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~500℃的温度热处理0.5~2h,即得SiO2/NiFe2O4。Add the prepared NiFe 2 O 4 into the dispersant solution so that the concentration of NiFe 2 O 4 is 0.005-0.05mol/L, ultrasonically disperse for 10-30min, transfer the mixed solution into a container, and slowly add orthosilicic acid dropwise Ethyl ester and concentrated ammonia water, make n(Si)/n(Ni)=1~10, n(N)/n(Si)=4~10, then raise the temperature to 50~80°C, react with rapid shaking for 3~5h, After separation, the synthesized product is washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then heat-treated at 150-500°C for 0.5-2 hours to obtain SiO 2 /NiFe 2 O 4 .
将所制备的SiO2/NiFe2O4加入分散剂溶液中,使SiO2/NiFe2O4的浓度为0.005~0.05mol/L,超声分散10~30min,然后加入尿素,尿素的浓度为0.01~1.5mol/L,搅拌后用稀硫酸调溶液pH值为1.0~6.0,再加入硫酸钛,使n(Ti)/n(Ni)=1~80,把该混合液移入到容器中,在50~100℃的条件下快速振荡反应1~10h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~500℃的温度热处理0.5~2h,即可得TiO2/SiO2/NiFe2O4光催化剂。Add the prepared SiO 2 /NiFe 2 O 4 into the dispersant solution so that the concentration of SiO 2 /NiFe 2 O 4 is 0.005-0.05mol/L, ultrasonically disperse for 10-30min, then add urea, the concentration of urea is 0.01 ~1.5mol/L, after stirring, use dilute sulfuric acid to adjust the pH value of the solution to 1.0~6.0, then add titanium sulfate to make n(Ti)/n(Ni)=1~80, transfer the mixed solution into the container, and Rapid shaking reaction at 50-100°C for 1-10 hours. After separation, the synthesized product was washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then heat-treated at 150-500°C for 0.5-2 hours. , TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst can be obtained.
本发明先用水热法合成NiFe2O4纳米颗粒,然后利用均匀沉淀法在NiFe2O4磁核表面直接包覆或者添加非晶态SiO2中间层后包覆无定形TiO2外壳,再经过一定温度热处理使无定形TiO2外壳转变成具有较高光催化活性的锐钛矿相,同时微量的Fe3+、Ni2+通过热运动渗入TiO2外壳,能有效降低TiO2的禁带宽度,使得吸收波长范围扩展至可见光区域。由于水热法是一种新的纳米材料制备方法,能制备出纯度高、晶型好、单分散、形状以及大小可控的纳米微粒,比其他方法具有更大的优势,故采用水热法制备NiFe2O4磁核。本发明采用均匀沉淀法制备TiO2包覆NiFe2O4纳米复合材料,由于OH-是均匀沉淀剂CO(NH2)2通过化学反应缓慢生成的,因此可避免浓度不均匀现象,从而控制包覆层的生长速度,获得包覆均匀、致密的复合材料。两种方法组合具有制备工艺简单、周期短的特点。In the present invention, NiFe 2 O 4 nanoparticles are firstly synthesized by hydrothermal method, and then the surface of the NiFe 2 O 4 magnetic core is directly coated by a uniform precipitation method or coated with an amorphous TiO 2 shell after adding an amorphous SiO 2 intermediate layer, and then After heat treatment at a certain temperature, the amorphous TiO 2 shell is transformed into an anatase phase with high photocatalytic activity. At the same time, trace amounts of Fe 3+ and Ni 2+ penetrate into the TiO 2 shell through thermal motion, which can effectively reduce the bandgap width of TiO 2 , extending the absorption wavelength range to the visible region. Since the hydrothermal method is a new method for preparing nanomaterials, it can prepare nanoparticles with high purity, good crystal form, monodispersity, shape and size, and has greater advantages than other methods, so the hydrothermal method is adopted. Preparation of NiFe 2 O 4 magnetic cores. The present invention adopts uniform precipitation method to prepare TiO 2 coated NiFe 2 O 4 nanocomposite material, because OH - is produced slowly by chemical reaction of uniform precipitant CO(NH 2 ) 2 , so the phenomenon of uneven concentration can be avoided, thereby controlling the coating The growth rate of the cladding layer is controlled to obtain a uniform and dense composite material. The combination of the two methods has the characteristics of simple preparation process and short period.
本发明采用水热法制备的纳米NiFe2O4,结晶完好,颗粒基本上呈立方体外形,尺寸大小范围为1~50nm。所制备的TiO2/NiFe2O4光催化剂和TiO2/SiO2/NiFe2O4光催化剂均为纳米尺度的复合粒子,呈现出核-壳结构,其中NiFe2O4多数位于复合颗粒的中心,TiO2均匀分散包覆在NiFe2O4表面,主要以锐钛矿相存在,且该复合光催化剂的粒径范围为15~100nm,比表面积为10~100m2/g。The nano-NiFe 2 O 4 prepared by the hydrothermal method in the invention has perfect crystallization, and the particles are basically in the shape of a cube, and the size range is 1-50nm. The prepared TiO 2 /NiFe 2 O 4 photocatalysts and TiO 2 /SiO 2 /NiFe 2 O 4 photocatalysts are both nanoscale composite particles, presenting a core-shell structure, in which NiFe 2 O 4 is mostly located in the composite particle In the center, TiO 2 is evenly dispersed and coated on the surface of NiFe 2 O 4 , and mainly exists in anatase phase, and the particle size range of the composite photocatalyst is 15-100nm, and the specific surface area is 10-100m 2 /g.
附图说明 Description of drawings
图1是本发明所制备的TiO2/NiFe2O4光催化剂(b、c)、TiO2/SiO2/NiFe2O4光催化剂(a)锐钛矿TiO2(d)的UV-vis漫反射光谱;Fig. 1 is the UV-vis of TiO 2 /NiFe 2 O 4 photocatalyst (b, c), TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst (a) anatase TiO 2 (d) prepared by the present invention Diffuse reflectance spectrum;
图2是以甲基橙的水溶液为模拟污染水体系评价本发明所制备光催化剂的光催化性能的曲线(a-TiO2/NiFe2O4、b-TiO2/SiO2/NiFe2O4)。Fig. 2 is the curve (a-TiO 2 /NiFe 2 O 4 , b-TiO 2 /SiO 2 /NiFe 2 O 4 ).
具体实施方式 Detailed ways
实施例1Example 1
(1)NiFe2O4纳米颗粒的水热合成(1) Hydrothermal synthesis of NiFe 2 O 4 nanoparticles
将NiSO4·6H2O、Fe2(SO4)3·XH2O和KOH按n(Ni2+)∶n(Fe3+)∶n(OH-)=1∶2~2.5∶8~8.5溶解于蒸馏水中,将溶液放在电炉上持续沸腾1~1.5h。静置、冷却后抽滤,用蒸馏水洗涤2~3次,即得水热反应前驱体。NiSO 4 ·6H 2 O, Fe 2 (SO 4 ) 3 ·XH 2 O and KOH are calculated as n(Ni 2+ ):n(Fe 3+ ):n(OH - )=1:2~2.5:8~ 8.5 Dissolve in distilled water, put the solution on the electric stove and keep boiling for 1~1.5h. After standing still and cooling, filter with suction and wash with distilled water for 2 to 3 times to obtain the hydrothermal reaction precursor.
将水热反应前驱体加入蒸馏水中,使其中镍浓度为1.0~2.5mol/L,再加入醋酸使其浓度为1.0~2.0mol/L,用碱液调节pH值至10.0~13.0,搅拌均匀后移入高压反应釜中,填充度为60~90%,在100~250℃条件下水热反应3~8h,冷却后抽滤,用蒸馏水洗涤2~3次,所得滤渣在70~100℃条件下真空干燥3~5h,研磨即得NiFe2O4纳米颗粒。Add the hydrothermal reaction precursor to distilled water so that the nickel concentration is 1.0-2.5mol/L, then add acetic acid to make the concentration 1.0-2.0mol/L, adjust the pH value to 10.0-13.0 with lye, and stir well Move it into a high-pressure reactor with a filling degree of 60-90%, react hydrothermally at 100-250°C for 3-8 hours, suction filter after cooling, wash with distilled water for 2-3 times, and vacuum the obtained filter residue at 70-100°C Dry for 3-5 hours and grind to obtain NiFe 2 O 4 nanoparticles.
采用透射电子显微镜对该NiFe2O4磁核进行表征,发现NiFe2O4颗粒基本上呈立方体外形,粒度范围为为12~25nm。The NiFe 2 O 4 magnetic core was characterized by transmission electron microscopy, and it was found that the NiFe 2 O 4 particles were basically in the shape of a cube, and the particle size range was 12-25nm.
(2)均匀沉淀法制备TiO2/NiFe2O4光催化剂(2) Preparation of TiO 2 /NiFe 2 O 4 photocatalyst by uniform precipitation method
将所制备的NiFe2O4纳米颗粒加入0.1~1.0mol/L的十二烷基硫酸钠溶液中,使NiFe2O4的浓度为0.01~0.05mol/L,超声分散10~30min,加入尿素,尿素的浓度为1.0~1.5mol/L,搅拌后用稀硫酸调节溶液pH值为4.0~6.0,再加入硫酸钛,使n(Ti)/n(Ni)=5~40,再把该混合液移入到容器,在85~100℃的条件下,快速振荡反应3~5h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~300℃的温度热处理1.5~2h,即得TiO2/NiFe2O4磁性光催化剂。Add the prepared NiFe 2 O 4 nanoparticles into 0.1-1.0 mol/L sodium dodecyl sulfate solution, make the concentration of NiFe 2 O 4 0.01-0.05 mol/L, ultrasonically disperse for 10-30 minutes, add urea , the concentration of urea is 1.0~1.5mol/L, after stirring, adjust the pH value of the solution to 4.0~6.0 with dilute sulfuric acid, then add titanium sulfate to make n(Ti)/n(Ni)=5~40, and then mix the Transfer the solution into the container, and shake it rapidly for 3-5 hours under the condition of 85-100°C. After separation, the synthesized product is washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then heated at 150-300 The temperature of ℃ is heat treated for 1.5-2 hours, and the TiO 2 /NiFe 2 O 4 magnetic photocatalyst is obtained.
采用X射线衍射仪、透射电子显微镜、BET表面积测试仪和紫外-可见漫反射光谱仪对该TiO2/NiFe2O4光催化剂进行表征,发现TiO2均匀分散包覆在NiFe2O4表面,主要以锐钛矿相存在,该光催化剂的粒度范围为30~40nm,比表面积为10.52m2/g,在400-700nm可见光范围内均有明显的吸收。图1是本发明所制备的TiO2/NiFe2O4光催化剂(b、c)锐钛矿TiO2(d)的UV-vis漫反射光谱,可以看出,锐钛矿TiO2对光的吸收范围为320~400nm,主要集中在紫外区域,对超过400nm的可见光几乎没有吸收,但TiO2/NiFe2O4光催化剂的吸收光谱范围相比锐钛矿TiO2扩大了很多,在400~700nm可见光范围内均有明显的吸收,这对开发日光催化剂是十分有利的。The TiO 2 /NiFe 2 O 4 photocatalyst was characterized by X-ray diffractometer, transmission electron microscope, BET surface area tester and ultraviolet-visible diffuse reflectance spectrometer. It was found that TiO 2 was uniformly dispersed and coated on the surface of NiFe 2 O 4 Existing in anatase phase, the photocatalyst has a particle size range of 30-40nm, a specific surface area of 10.52m 2 /g, and obvious absorption in the visible light range of 400-700nm. Fig. 1 is the UV-vis diffuse reflectance spectrum of TiO 2 /NiFe 2 O 4 photocatalysts (b, c) anatase TiO 2 (d) prepared by the present invention, as can be seen, anatase TiO 2 to light The absorption range is 320-400nm, mainly concentrated in the ultraviolet region, and has almost no absorption for visible light exceeding 400nm, but the absorption spectrum range of TiO 2 /NiFe 2 O 4 photocatalyst is much wider than that of anatase TiO 2 , at 400- There is obvious absorption in the visible light range of 700nm, which is very beneficial to the development of solar catalysts.
(3)均匀沉淀法制备TiO2/SiO2/NiFe2O4光催化剂(3) Preparation of TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst by uniform precipitation method
将所制备的NiFe2O4加入0.1~1.0mol/L的十二烷基硫酸钠溶液中,使NiFe2O4的浓度为0.01~0.05mol/L,超声分散10~30min,把该混合液移入到容器中,缓慢滴加正硅酸乙酯和浓氨水,使n(Si)/n(Ni)=5~10、n(N)/n(Si)=8~10,再升温至60~80℃,快速振荡反应3~5h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以250~500℃的温度热处理1.5~2h,即得SiO2/NiFe2O4。Add the prepared NiFe 2 O 4 into 0.1-1.0 mol/L sodium dodecyl sulfate solution, make the concentration of NiFe 2 O 4 0.01-0.05 mol/L, ultrasonically disperse for 10-30 minutes, and put the mixed solution Move it into a container, slowly add tetraethyl orthosilicate and concentrated ammonia water dropwise, make n(Si)/n(Ni)=5~10, n(N)/n(Si)=8~10, then raise the temperature to 60 ~80°C, rapid shaking reaction for 3~5h, the synthesized product is separated and washed with distilled water and ethanol respectively, dried at 90~110°C for 3~5h, and then heat treated at 250~500°C for 1.5~2h to obtain SiO 2 /NiFe 2 O 4 .
将所制备的SiO2/NiFe2O4纳米颗粒加入0.1~1.0mol/L的十二烷基硫酸钠溶液中,使NiFe2O4的浓度为0.02~0.05mol/L,超声分散10~30min,加入尿素,尿素的浓度为1.0~1.5mol/L,搅拌后用稀硫酸调节溶液pH值为3.0~6.0,再加入硫酸钛,使n(Ti)/n(Ni)=5~60,把该混合液移入到容器,在50~100℃的条件下,快速振荡反应3~5h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~300℃的温度热处理0.5~2h,即得TiO2/SiO2/NiFe2O4磁性光催化剂。Add the prepared SiO 2 /NiFe 2 O 4 nanoparticles into 0.1-1.0 mol/L sodium dodecyl sulfate solution so that the concentration of NiFe 2 O 4 is 0.02-0.05 mol/L, and ultrasonically disperse for 10-30 minutes , add urea, the concentration of urea is 1.0~1.5mol/L, after stirring, adjust the pH value of the solution with dilute sulfuric acid to be 3.0~6.0, then add titanium sulfate, make n(Ti)/n(Ni)=5~60, put The mixed solution was transferred into the container, and reacted with rapid shaking at 50-100°C for 3-5 hours. After separation, the synthesized product was washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then heated at 150 Heat treatment at ~300°C for 0.5~2h to obtain TiO 2 /SiO 2 /NiFe 2 O 4 magnetic photocatalyst.
采用X射线衍射仪、透射电子显微镜、BET表面积测试仪和紫外-可见漫反射光谱仪对该TiO2/SiO2/NiFe2O4光催化剂进行表征,发现TiO2均匀分散包覆在SiO2/NiFe2O4表面,主要以锐钛矿相存在,中间层SiO2为非晶态,该光催化剂为双层包覆结构,粒度范围为50~70nm,比表面积为12.14m2/g,在400-700nm可见光范围内均有明显的吸收。图1是本发明所制备的TiO2/SiO2/NiFe2O4光催化剂(a)锐钛矿TiO2(d)的UV-vis漫反射光谱,可以看出,锐钛矿TiO2对光的吸收范围为320~400nm,主要集中在紫外区域,对超过400nm的可见光几乎没有吸收,但TiO2/SiO2/NiFe2O4光催化剂的吸收光谱范围相比锐钛矿TiO2扩大了很多,在400~700nm可见光范围内均有明显的吸收,这对开发日光催化剂是十分有利的。The TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst was characterized by X-ray diffractometer, transmission electron microscope, BET surface area tester and ultraviolet-visible diffuse reflectance spectrometer. It was found that TiO 2 was uniformly dispersed and coated on SiO 2 /NiFe The surface of 2 O 4 mainly exists in anatase phase, and the intermediate layer SiO 2 is amorphous. The photocatalyst has a double-layer coating structure with a particle size range of 50-70nm and a specific surface area of 12.14m 2 /g. There is obvious absorption in the range of -700nm visible light. Fig. 1 is the UV-vis diffuse reflectance spectrum of TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst (a) anatase TiO 2 (d) prepared by the present invention, as can be seen, anatase TiO 2 is sensitive to light The absorption range of TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst is much wider than that of anatase TiO 2 , mainly concentrated in the ultraviolet region, and has almost no absorption for visible light exceeding 400 nm. , has obvious absorption in the range of 400-700nm visible light, which is very beneficial to the development of solar catalysts.
实施例2Example 2
(1)NiFe2O4纳米颗粒的水热合成(1) Hydrothermal synthesis of NiFe 2 O 4 nanoparticles
将NiCl2、FeCl3和NaOH按n(Ni2+)∶n(Fe3+)∶n(OH-)=1∶2.5~3∶8.5~9溶解于蒸馏水中,将溶液放在电炉上持续沸腾1~1.5h。静置、冷却后抽滤,用蒸馏水洗涤2~3次,即得水热反应前驱体。Dissolve NiCl 2 , FeCl 3 and NaOH in distilled water according to n(Ni 2+ ):n(Fe 3+ ):n(OH - )=1:2.5~3:8.5~9, and put the solution on the electric furnace for continuous Boiling 1 ~ 1.5h. After standing still and cooling, filter with suction and wash with distilled water for 2 to 3 times to obtain the hydrothermal reaction precursor.
将水热反应前驱体加入蒸馏水中,使其中镍浓度为0.45~1.5mol/L,再加入乙酸钠使其浓度为0.3~1.0mol/L,用碱液调节pH值至8.0~10.5,搅拌均匀后移入高压反应釜中,填充度为75~90%,在150~250℃条件下水热反应0.5~3.5h,冷却后抽滤,用蒸馏水洗涤2~3次,所得滤渣在70~100℃条件下真空干燥3~5h,研磨即得NiFe2O4纳米颗粒。Add the hydrothermal reaction precursor to distilled water so that the nickel concentration is 0.45-1.5mol/L, then add sodium acetate to make the concentration 0.3-1.0mol/L, adjust the pH value to 8.0-10.5 with lye, and stir well Then move it into a high-pressure reactor with a filling degree of 75-90%. Under the condition of 150-250°C, hydrothermally react for 0.5-3.5h. After cooling, filter it with suction and wash it with distilled water for 2-3 times. Dry under vacuum for 3-5 hours, and grind to obtain NiFe 2 O 4 nanoparticles.
采用透射电子显微镜对该NiFe2O4磁核进行表征,发现NiFe2O4颗粒基本上呈立方体外形,粒度范围为为10~20nm。The NiFe 2 O 4 magnetic core was characterized by a transmission electron microscope, and it was found that the NiFe 2 O 4 particles were basically in the shape of a cube, with a particle size ranging from 10 to 20 nm.
(2)均匀沉淀法制备TiO2/NiFe2O4光催化剂(2) Preparation of TiO 2 /NiFe 2 O 4 photocatalyst by uniform precipitation method
将所制备的NiFe2O4纳米颗粒加入0.5~1.0mol/L聚乙二醇(分子量4000)溶液中,使NiFe2O4的浓度为0.01~0.05mol/L,超声分散10~30min,加入尿素,尿素的浓度为0.02~0.5mol/L,搅拌后用稀硫酸调节溶液pH值为1.0~5.0,再加入硫酸钛,使n(Ti)/n(Ni)=10~80,再把该混合液移入到容器,在55~85℃的条件下,快速振荡反应1~3h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以200~500℃的温度热处理1.5~2h,即得TiO2/NiFe2O4磁性光催化剂。Add the prepared NiFe 2 O 4 nanoparticles into 0.5-1.0mol/L polyethylene glycol (molecular weight 4000) solution, make the concentration of NiFe 2 O 4 0.01-0.05mol/L, ultrasonically disperse for 10-30min, add Urea, the concentration of urea is 0.02~0.5mol/L, after stirring, use dilute sulfuric acid to adjust the pH value of the solution to 1.0~5.0, then add titanium sulfate to make n(Ti)/n(Ni)=10~80, and then add the Transfer the mixed liquid into the container, and shake it quickly for 1-3 hours at 55-85°C. After separation, the synthesized product is washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then heated at 200-100°C. Heat treatment at 500°C for 1.5-2 hours to obtain TiO 2 /NiFe 2 O 4 magnetic photocatalyst.
采用X射线衍射仪、透射电子显微镜、BET表面积测试仪和紫外-可见漫反射光谱仪对该TiO2/NiFe2O4光催化剂进行表征,发现TiO2均匀分散包覆在NiFe2O4表面,主要以锐钛矿相存在,该光催化剂的粒度范围为25~35nm,比表面积为20.32m2/g,在400-700nm可见光范围内均有明显的吸收。The TiO 2 /NiFe 2 O 4 photocatalyst was characterized by X-ray diffractometer, transmission electron microscope, BET surface area tester and ultraviolet-visible diffuse reflectance spectrometer. It was found that TiO 2 was uniformly dispersed and coated on the surface of NiFe 2 O 4 Existing in anatase phase, the particle size range of the photocatalyst is 25-35nm, the specific surface area is 20.32m 2 /g, and it has obvious absorption in the visible light range of 400-700nm.
(3)均匀沉淀法制备TiO2/SiO2/NiFe2O4光催化剂(3) Preparation of TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst by uniform precipitation method
将所制备的NiFe2O4加入0.5~2.0mol/L的十二烷基硫酸钠溶液中,使NiFe2O4的浓度为0.01~0.05mol/L,超声分散10~30min,把该混合液移入到容器中,缓慢滴加正硅酸乙酯和浓氨水,使n(Si)/n(Ni)=1~6、n(N)/n(Si)=4~7,然后升温至50~75℃,快速振荡反应3~5h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~300℃的温度热处理0.5~1.5h,即得SiO2/NiFe2O4。Add the prepared NiFe 2 O 4 into 0.5-2.0 mol/L sodium dodecyl sulfate solution, make the concentration of NiFe 2 O 4 0.01-0.05 mol/L, ultrasonically disperse for 10-30 minutes, and put the mixed solution Move it into a container, slowly add tetraethyl orthosilicate and concentrated ammonia water dropwise to make n(Si)/n(Ni)=1~6, n(N)/n(Si)=4~7, and then raise the temperature to 50 ~75°C, rapid shaking reaction for 3~5h, the synthesized product is separated and washed with distilled water and ethanol respectively, dried at 90~110°C for 3~5h, and then heat-treated at 150~300°C for 0.5~1.5h, that is Get SiO 2 /NiFe 2 O 4 .
将所制备的SiO2/NiFe2O4纳米颗粒加入0.5~1.0mol/L的十二烷基硫酸钠溶液中,使NiFe2O4的浓度为0.005~0.03mol/L,超声分散10~30min,加入尿素,尿素的浓度为0.3~1.0mol/L,搅拌后用稀硫酸调节溶液pH值为1.0~5.0,再加入硫酸钛,使n(Ti)/n(Ni)=10~70,再把该混合液移入到容器,在60~100℃的条件下,快速振荡反应3~5h,合成产物经分离后分别用蒸馏水、乙醇洗涤,在90~110℃条件下干燥3~5h,然后以150~300℃的温度热处理0.5~2h,即得TiO2/SiO2/NiFe2O4磁性光催化剂。Add the prepared SiO 2 /NiFe 2 O 4 nanoparticles into 0.5-1.0 mol/L sodium dodecyl sulfate solution so that the concentration of NiFe 2 O 4 is 0.005-0.03 mol/L, and ultrasonically disperse for 10-30 minutes , add urea, the concentration of urea is 0.3~1.0mol/L, adjust the pH value of the solution with dilute sulfuric acid after stirring to 1.0~5.0, then add titanium sulfate, make n(Ti)/n(Ni)=10~70, then Put the mixed solution into the container, and react with rapid shaking at 60-100°C for 3-5 hours. After separation, the synthesized product is washed with distilled water and ethanol, dried at 90-110°C for 3-5 hours, and then Heat treatment at a temperature of 150-300° C. for 0.5-2 hours to obtain TiO 2 /SiO 2 /NiFe 2 O 4 magnetic photocatalyst.
采用X射线衍射仪、透射电子显微镜、BET表面积测试仪和紫外-可见漫反射光谱仪对该TiO2/SiO2/NiFe2O4光催化剂进行表征,发现TiO2均匀分散包覆在SiO2/NiFe2O4表面,主要以锐钛矿相存在,中间层SiO2为非晶态,该光催化剂为双层包覆结构,粒度范围为40~55nm,比表面积为25.21m2/g,在400-700nm可见光范围内均有明显的吸收。The TiO 2 /SiO 2 /NiFe 2 O 4 photocatalyst was characterized by X-ray diffractometer, transmission electron microscope, BET surface area tester and ultraviolet-visible diffuse reflectance spectrometer. It was found that TiO 2 was uniformly dispersed and coated on SiO 2 /NiFe The surface of 2 O 4 mainly exists in anatase phase, and the intermediate layer SiO 2 is amorphous. The photocatalyst has a double-layer coating structure, the particle size range is 40-55nm, and the specific surface area is 25.21m 2 /g. There is obvious absorption in the range of -700nm visible light.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101247399A CN100406117C (en) | 2006-10-12 | 2006-10-12 | A kind of magnetic photocatalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101247399A CN100406117C (en) | 2006-10-12 | 2006-10-12 | A kind of magnetic photocatalyst and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1935358A CN1935358A (en) | 2007-03-28 |
CN100406117C true CN100406117C (en) | 2008-07-30 |
Family
ID=37953200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101247399A Expired - Fee Related CN100406117C (en) | 2006-10-12 | 2006-10-12 | A kind of magnetic photocatalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100406117C (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214441B (en) * | 2007-12-28 | 2011-10-05 | 中国科学院上海硅酸盐研究所 | A kind of preparation method of titanium-bismuth-iron photocatalyst |
CN102357363A (en) * | 2011-07-23 | 2012-02-22 | 上海海事大学 | Magnetic-supported nanometer Fe3O4/SiO2/TiO2 visible light catalyst and preparation method thereof |
CN102430410A (en) * | 2011-12-31 | 2012-05-02 | 上海大学 | Preparation method of TiO2/SiO2/NiFe2O4 magnetic composite photocatalyst |
CN105268997B (en) * | 2014-11-12 | 2017-08-18 | 中国人民解放军第二炮兵工程大学 | A kind of NiFe204The preparation method of@α Fe nuclear shell structure micro-nano nano composite materials |
CN104722308A (en) * | 2015-04-03 | 2015-06-24 | 西安石油大学 | A kind of preparation method of Gd-TiO2-SiO2-NiFe2O4 composite magnetic material |
CN104971755A (en) * | 2015-06-03 | 2015-10-14 | 河南师范大学 | A kind of supported NiFe2O4/Bi2O2CO3-BiPO4 composite photocatalyst and its preparation method |
CN106082360B (en) * | 2016-06-01 | 2018-02-23 | 华南师范大学 | A kind of lithium ion battery negative material of flower-shaped high power capacity and preparation method and application |
CN106311199B (en) * | 2016-08-24 | 2018-11-16 | 河南大学 | A kind of stable dispersion and the controllable SiO of photocatalytic activity2@TiO2Core-shell structure, preparation method and its application |
CN108483517B (en) * | 2018-04-03 | 2020-01-03 | 山东大学 | Nickel ferrite nanosheet and preparation method and application thereof |
CN108818884A (en) * | 2018-06-13 | 2018-11-16 | 苏州诺弘添恒材料科技有限公司 | A kind of preparation method of the soft magnetic materials with corrosion-inhibiting coating |
JP7198646B2 (en) * | 2018-11-28 | 2023-01-04 | 日揮触媒化成株式会社 | TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME |
CN112892487A (en) * | 2021-01-19 | 2021-06-04 | 广州华晟科创科技发展有限公司 | Composite antibacterial air purifying agent and preparation method thereof |
CN114228206B (en) * | 2021-12-20 | 2024-01-30 | 宿迁精诚模具有限公司 | A mold for forming a catalyst-loaded high-crystallinity composite membrane and its preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1416956A (en) * | 2001-11-01 | 2003-05-14 | 中国科学院广州能源研究所 | Megnetic nano composite photocatalyst and its prepn and use |
CN1724164A (en) * | 2005-06-30 | 2006-01-25 | 上海交通大学 | Preparation method of magnetically separable composite photocatalyst |
CN1792428A (en) * | 2006-01-06 | 2006-06-28 | 北京化工大学 | Magnetic nanometer photocatalyst and its prepn. method |
-
2006
- 2006-10-12 CN CNB2006101247399A patent/CN100406117C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1416956A (en) * | 2001-11-01 | 2003-05-14 | 中国科学院广州能源研究所 | Megnetic nano composite photocatalyst and its prepn and use |
CN1724164A (en) * | 2005-06-30 | 2006-01-25 | 上海交通大学 | Preparation method of magnetically separable composite photocatalyst |
CN1792428A (en) * | 2006-01-06 | 2006-06-28 | 北京化工大学 | Magnetic nanometer photocatalyst and its prepn. method |
Also Published As
Publication number | Publication date |
---|---|
CN1935358A (en) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100406117C (en) | A kind of magnetic photocatalyst and preparation method thereof | |
Meng et al. | Hierarchical structured ZnFe2O4@ SiO2@ TiO2 composite for enhanced visible-light photocatalytic activity | |
Tatarchuk et al. | Photocatalysis: activity of nanomaterials | |
Pan et al. | Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis | |
CN106492854B (en) | There is the composite nano Ag of photocatalysis performance using two-step method preparation3PO4/TiO2Material and methods and applications | |
CN103599769B (en) | A ZnSn(OH)6 Nanocubic Particle/Graphene Sandwich Structure Composite Photocatalyst | |
CN101564688B (en) | Method for preparing titanic oxide nano composited tube | |
Lv et al. | Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants | |
CN105126814B (en) | A kind of CeVO4The preparation method of micron ball photocatalyst | |
CN101767770A (en) | Method for preparing ZrO2-CeO2/CNTs composite nanotube by hydrothermal method | |
CN105879884B (en) | One-dimensional ZnS/CdS-C nanocomposites and preparation method thereof | |
CN106311220B (en) | A kind of Bi2MoO6/TiO2/ RGO composite photo-catalysts and preparation method thereof | |
CN101905166B (en) | A magnetically separable nitrogen-doped TiO2 photocatalyst and its preparation method | |
CN103058265B (en) | Preparation method of mesoporous nano flaky zinc oxide powder with high specific surface area | |
CN110142049A (en) | A kind of preparation method of cadmium sulfide and zinc sulfide core-shell structure photocatalytic material for hydrogen production | |
CN103754837A (en) | Method for preparation of bismuth-containing nano-hollow ball by using porous bismuth oxide as template | |
CN102631919B (en) | Preparation method of copper-titanium-oxide mesomorphism material | |
Chen et al. | Review on the preparation and performance improvement methods of bismuth photocatalyst materials | |
CN103601238B (en) | A kind of microwave-assisted solid-state reaction method prepares the TiO of doping iron2The method of powder body | |
CN103143359A (en) | A magnetic recyclable hollow TiO2-SiO2-CoFe2O4 nano photocatalytic material and its preparation method | |
CN106219606B (en) | A kind of nanometer of flower ball-shaped Ag3VO4Preparation method | |
CN110227515B (en) | Bi2MoO6/BiPO4p-n heterojunction photocatalyst, preparation method and application thereof | |
CN102000580A (en) | Method for preparing spinel-type magnetic nano composite metal oxide visible light catalyst | |
CN104741112B (en) | A kind of TiO2/WO3The preparation method of composite granule | |
CN103601239A (en) | A kind of preparation method of mixed crystal TiO2 nanowire of anatase and brookite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |