CN102944996A - 伺服***控制器及控制方法 - Google Patents

伺服***控制器及控制方法 Download PDF

Info

Publication number
CN102944996A
CN102944996A CN2012102536175A CN201210253617A CN102944996A CN 102944996 A CN102944996 A CN 102944996A CN 2012102536175 A CN2012102536175 A CN 2012102536175A CN 201210253617 A CN201210253617 A CN 201210253617A CN 102944996 A CN102944996 A CN 102944996A
Authority
CN
China
Prior art keywords
servo
action
drive system
signal
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102536175A
Other languages
English (en)
Inventor
王春阳
伊桐
石要武
李金菲
赵晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN2012102536175A priority Critical patent/CN102944996A/zh
Publication of CN102944996A publication Critical patent/CN102944996A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

一种伺服***控制器及控制方法包括:伺服***参数存储部,存储有伺服***的剪切频率,目标动作值、相位裕度;参数计算部,根据剪切频率和相位裕度分别计算出积分增益、比例增益和积分阶次;初始信号获取部,根据积分增益、比例增益和积分阶次来获取在伺服***启动状态时控制其初始动作的初始控制信号,伺服***根据该初始控制信号开始动作;反馈传感部,感应伺服***的动作并根据该动作发出相对应的动作反馈信号;纠偏部,根据动作反馈信号、目标动作值以及积分增益、比例增益和积分阶次来获取纠正伺服***的动作纠偏信号,伺服***根据该纠偏信号调整动作,保证伺服***动作精确。

Description

伺服***控制器及控制方法
技术领域
本发明涉及一种伺服***控制器及控制方法。
背景技术
伺服***在自动控制领域占有非常重要的地位,是一种被控量为位移、速度、加速度的反馈控制***,能够精确地跟随某个控制过程。另外,一些伺服***工作环境复杂,***存在比较大的不确定性和滞后,以及在工作过程中惯性负载的变化,是典型的非线性***。目前基于自动控制技术的伺服***中采用的控制器多为传统PID控制器、模糊自适应控制器、神经网络控制器等。传统PID控制器控制方法过于简单,参数的控制性能也有一定的局限性,虽然传统PID控制器由三个参数实现控制性能,但是它的微分阶次是1阶的,因此控制***的类型比较固定,对于分数阶***采用传统PID控制器控制的就会产生较大误差,控制效果有时达不到控制精度要求。因此,对于非线性、滞后的伺服***,采用常规控制器往往难以满足***对鲁棒性和稳定精度的要求。
发明内容
为了满足伺服***既能够具有稳定的精度又能够提高***鲁棒性和灵活性,本发明提供了一种伺服***控制器及控制方法。
一种控制伺服***的伺服***控制器,其特征在于:包括存储有伺服***的剪切频率、相位裕度、目标动作值的伺服***参数存储部;根据伺服***参数存储部中的剪切频率以及相位裕度分别计算出积分增益、比例增益和积分阶次的参数计算部,根据积分增益、比例增益和积分阶次来获取在所述伺服***启动状态时控制其初始动作的初始控制信号的初始信号获取部,伺服***根据该初始控制信号开始动作;感应伺服***的动作并根据该动作发出相对应的动作反馈信号的反馈传感部;根据动作反馈信号、目标动作值以及积分增益、比例增益和积分阶次来获取纠正伺服***的动作纠偏信号的纠偏部,根据该纠偏信号调整动作来保证伺服***的动作的精确。
进一步,本发明提供的伺服***控制器还可以具有这样的特征:纠偏信号获取部具有将所述动作反馈信号转换为实际动作值的反馈信号转换部;根据所述实际动作值与所述目标动作值计算出所述伺服***的动作偏差的偏差计算部;根据所述动作偏差以及所述积分增益、所述比例增益和所述积分阶次来获取控制所述伺服***动作纠偏的纠偏控制信号的纠偏信号获取部;将所述该纠偏控制信号转换为所述伺服***能够接收的相对应的所述动作纠偏信号的纠偏信号转换部。
进一步,本发明提供的伺服***控制器还可以具有这样的特征:积分增益、比例增益和积分阶次分别通过选取伺服***模型为
Figure BDA00001913303800021
形式得出的以下关系式计算得出的,
K i = - tan ( arctan B A + ω C L + φ m ) M - - - ( 4 )
K p = A 2 + B 2 ( 1 + K i ω c - λ cos ( λπ 2 ) ) 2 + ( K i ω c - λ sin ( λπ 2 ) ) 2 - - - ( 6 )
其中:s表示频域,Kp为比例增益;Ki为积分增益;λ为积分阶次;ωc为剪切频率;φm为相位裕度;A=1-T2ωc 2;B=T3ωc-T1ωc 3
M = ω c - λ sin ( λπ 2 ) + ω c cos ( λπ 2 ) tan ( arctan B A + ω c L + φ m ) ;
Figure BDA00001913303800033
Figure BDA00001913303800034
T2、T1、T3、L是常数,A,B,M,
Figure BDA00001913303800035
Y用作公式的代换。
进一步,本发明提供的伺服***控制器还可以具有这样的特征:初始信号获取部以及纠偏部都是通过将Kp、Ki、以及λ的值带入函数来获取初始控制信号以及动作控制信号,在该函数中,s表示频域,初始控制信号以及动作控制信号即由该频域得出。
进一步,本发明提供的伺服***控制器还可以具有这样的特征:λ为(0,2]范围内的任意实数。
另外,本发明提供的一种伺服***控制方法,其特征在于:设有伺服***参数存储部来存储有所述伺服***的剪切频率,目标动作值;采用参数计算部来根据伺服***参数存储部中的剪切频率分别计算出积分增益、比例增益和积分阶次,采用初始信号获取部来根据积分增益、比例增益和积分阶次来获取在伺服***启动状态时控制其初始动作的初始控制信号,伺服***根据该初始控制信号开始动作;采用反馈传感部来感应伺服***的动作并根据该动作发出相对应的动作反馈信号;采用纠偏部来根据动作反馈信号、所述目标动作值以及积分增益、比例增益和积分阶次来获取纠正伺服***的动作纠偏信号,伺服***根据该纠偏信号调整动作,保证伺服***动作的精确。
进一步,本发明提供的伺服***控制方法还可以具有这样的特征:纠偏信号获取部通过采用反馈信号转换部来将所述动作反馈信号转换为实际动作值;采用偏差计算部来根据所述实际动作值与所述目标动作值计算出所述伺服***的动作偏差;采用纠偏信号获取部来根据所述动作偏差以及所述积分增益、所述比例增益和所述积分阶次来获取控制所述伺服***动作纠偏的纠偏控制信号;采用纠偏信号转换部来将所述该纠偏控制信号转换为所述伺服***能够接收的相对应的所述动作纠偏信号。
进一步,本发明提供的伺服***控制方法还可以具有这样的特征:积分增益、比例增益和积分阶次分别通过选取伺服***模型为
Figure BDA00001913303800041
形式得出的以下关系式计算得出的,
K i = - tan ( arctan B A + ω C L + φ m ) M - - - ( 4 )
Figure BDA00001913303800043
K p = A 2 + B 2 ( 1 + K i ω c - λ cos ( λπ 2 ) ) 2 + ( K i ω c - λ sin ( λπ 2 ) ) 2 - - - ( 6 )
其中:s表示频域,Kp为比例增益;Ki为积分增益;λ为积分阶次;ωc为剪切频率;φm为相位裕度;A=1-T2ωc 2;B=T3ωc-T1ωc 3
M = ω c - λ sin ( λπ 2 ) + ω c cos ( λπ 2 ) tan ( arctan B A + ω c L + φ m ) ;
Figure BDA00001913303800052
T2、T1、T3、L是常数,A,B,M,
Figure BDA00001913303800053
Y用作公式的代换。
进一步,本发明提供的伺服***控制方法还可以具有这样的特征:初始信号获取部以及纠偏部都是通过将Kp、Ki、以及λ的值带入函数
Figure BDA00001913303800054
来获取初始控制信号以及动作控制信号,在该函数中,s表示频域,初始控制信号以及动作控制信号即由该频域得出。
进一步,本发明提供的伺服***控制方法还可以具有这样的特征:λ为(0,2]范围内的任意实数。
发明作用与效果
本发明提供的伺服***控制器在拥有两个可调参数Kp、Ki的前提下,又有一个积分阶次λ,调整参数Kp,Ki的数值可改善伺服***的响应速度,改善***的动态特性,消除***稳态误差,再增加一个可调参数λ,又可改善伺服***的稳态精度,三个参数配合调整可大大增加***的稳定性,同时还可以满足***鲁棒性的需求。因此该方法的设计更加灵活,控制性能更加优越,被其伺服***的精度也得到了很好的控制,操作简单,易行。
附图说明
图1是本发明在实施例中的伺服***控制器的控制示意图;
图2是本发明在实施例中的初始信号获取部的组成示意图;
图3是本发明在实施例中的纠偏部的组成示意图;
图4是本发明在实施例中的伺服***控制器的控制流程图。
具体实施方式
图1是本实施例中的伺服***控制器的控制示意图。如图1所示,一种满足伺服***10既能够具有稳定的精度又能够提高***鲁棒性和灵活性的伺服***控制器(即FOPI控制器)具有:伺服***参数存储部1、参数计算部2、初始信号获取部3、反馈传感部4、纠偏部5。显然,本实施例中所选用的控制对象为伺服***,即伺服***控制器亦可叫做伺服***控制器。
伺服***参数存储部1中存储有伺服***10的剪切频率ωc,目标动作,相位裕度φm等自身特征参数。
参数计算部2根据剪切频率以及相位裕度分别计算出积分增益Ki、比例增益Kp和积分阶次λ。
图2是本实施例中的初始信号获取部的组成示意图。如图2所示,初始信号获取部3由初始信号形成部31和初始信号转换部32构成,其中,初始信号形成部31根据积分增益、比例增益和积分阶次来获取在所述伺服***启动状态时控制其初始动作的初始信号;初始信号转换部32将初始信号转换为伺服***能够接收的相对应的初始控制信号,伺服***10根据该初始控制信号开始动作。
反馈传感部4用来感应伺服***的动作并根据该动作发出相对应的动作反馈信号。
图3是本发明在实施例中的纠偏部的组成示意图。如图3所示,纠偏部5具有反馈信号转换部51、偏差计算部52、纠偏信号获取部53、纠偏信号转换部54构成来根据动作反馈信号、目标动作值以及积分增益、比例增益和积分阶次来获取纠正伺服***的动作纠偏信号。
反馈信号转换部51将动作反馈信号转换为实际动作值;偏差计算部52根据实际动作值与目标动作值计算出伺服***的动作偏差;纠偏信号获取部53根据动作偏差以及微分基数、比例基数和积分阶次来获取控制伺服***动作纠偏的纠偏控制信号;纠偏信号转换部54将该纠偏控制信号转换为伺服***能够接收的相对应的动作纠偏信号。
中央处理器100来协调各个部件之间的工作。
本实施例中的初始信号转换部32以及纠偏信号转换部54是同一个伺服放大器将将初始信号放大为初始控制信号,纠偏控制信号放大为动作纠偏信号。
综上所述,该伺服***控制器是首先根据伺服***的非线性结构,确立伺服***的模型;其次再针对伺服***开环增益鲁棒性FOPI控制器参数整定方法设计原理设计出来的;最后针对伺服***的非线性工作特性,应用FOPI控制器实现最新的伺服***控制方法。
其中,参数计算部首先是通过如下参数整定方程来得到关于Kp、Ki、λ三个参数的关系式。
设被控***传递函数为:
Figure BDA00001913303800071
公式中的T1,T2,T3,L是常数。
针对伺服***的开环增益鲁棒性,FOPI控制器的参数整定方法设计原理为:
Arg[G(jω)]=Arg[C(jωc)P(jωc)]=-π+φm   (a)
|G(jωc)|dB=|C(jωc)||P(jωc)|dB=0        (b)
( d ( Arg [ C ( j ω c ) P ( j ω c ) ] ) dω ) ω = ω c = 0 - - - ( c )
其中,φm—相位裕度,ωc—剪切频率。
由以上关系式,经过数值计算,即可求得控制器的三个参数Kp、Ki、λ的关系式如下:
K i = - tan ( arctan B A + ω C L + φ m ) M - - - ( 4 )
Figure BDA00001913303800083
K p = A 2 + B 2 ( 1 + K i ω c - λ cos ( λπ 2 ) ) 2 + ( K i ω c - λ sin ( λπ 2 ) ) 2 - - - ( 6 )
其中:Kp为比例增益;Ki为积分增益;λ为积分阶次;ωc为剪切频率;φm为相位裕度;A=1-T2ωc 2;B=T3ωc-T1ωc 3
M = ω c - λ sin ( λπ 2 ) + ω c cos ( λπ 2 ) tan ( arctan B A + ω c L + φ m ) ;
Figure BDA00001913303800086
Figure BDA00001913303800087
A,B,M,
Figure BDA00001913303800088
Y用作公式的代换。
由以上关系式,经过数值计算,即可求得控制器的三个参数Kp、Ki、λ。
其中,FOPI控制器的传递函数为:
Figure BDA00001913303800091
初始信号获取部3以及纠偏部5都是通过将Kp、Ki、λ的值带入函数
Figure BDA00001913303800092
来获取所述初始控制信号以及所述动作控制信号,在该函数中,s表示频域,所述初始控制信号以及所述动作控制信号即由该频域得出。
该参数计算部中,λ的取值特点是可以取任意实数,也可以为复数,在本发明中将λ的最佳取值范围为(0,2]的任意实数。由于该FOPI控制器的参数取值特点,它的应用场合也十分宽广,既可以用于控制整数阶***,也可以用于控制分数阶***,即该FOPI控制器具有很好的应用灵活性。
图4是本发明在实施例中的伺服***控制器的控制流程图。如图4所示,该FOPI控制器的工作步骤为:
S1:由参数计算部根据上述公式以及剪切频率计算出Kp、Ki、λ。
S2:初始信号形成部31根据Kp、Ki、以及λ来获取初始信号;
S3:伺服放大器将初始信号转换为初始控制信号;
S4:伺服***10根据该初始控制信号开始动作;
S5:反馈传感部4感应并发出伺服***的动作反馈信号;
S6:反馈信号转换部51将动作反馈信号转换为实际动作值;
S7:偏差计算部52计算出伺服***的动作偏差;
S8:纠偏信号获取部53获取控制伺服***动作纠偏的纠偏控制信号;
S9:伺服放大器54将纠偏控制信号放大为动作纠偏信号;
S10:伺服***10根据该动作纠偏信号实时纠偏,实现精准动作。
FOPI控制器实时地校正差值信号,使工作台的执行动作达到最理想状态。
实施例作用与效果
本实施例中所提供的FOPI控制器及其控制方法拥有两个可调参数Kp、Ki的前提下,又有一个积分阶次λ,调整参数Kp、Ki的数值可改善伺服***的响应速度,改善***的动态特性,消除伺服***稳态误差,再增加一个可调参数λ来改善伺服***的稳态精度,三个参数配合调整可大大增加***的稳定性,同时还可以满足***鲁棒性的需求。因此,设计更加灵活,控制性能更加优越,被其控制的伺服***的精度也得到了很好的提高,操作简单,易行。

Claims (10)

1.一种控制伺服***的伺服***控制器,其特征在于,包括:
伺服***参数存储部,存储有所述伺服***的剪切频率,相位裕度,目标动作值;
参数计算部,根据所述伺服***参数存储部中的所述剪切频率以及所述相位裕度分别计算出积分增益、比例增益和积分阶次,
初始信号获取部,根据所述积分增益、所述比例增益和所述积分阶次来获取在所述伺服***启动状态时控制其初始动作的初始控制信号,所述伺服***根据该初始控制信号开始动作;
反馈传感部,感应所述伺服***的动作并根据该动作发出相对应的动作反馈信号;
纠偏部,根据所述动作反馈信号、所述目标动作值以及所述积分增益、所述比例增益和所述积分阶次来获取纠正所述伺服***的动作纠偏信号,所述伺服***根据该纠偏信号调整动作,保证所述伺服***动作的精确。
2.根据权利要求1所述的伺服***控制器,其特征在于:
其中,所述积分增益、所述比例增益和所述积分阶次分别通过选取伺服***模型为
Figure FDA00001913303700011
形式得出的以下关系式计算得出的:
K i = - tan ( arctan B A + ω C L + φ m ) M - - - ( 4 )
Figure FDA00001913303700013
K p = A 2 + B 2 ( 1 + K i ω c - λ cos ( λπ 2 ) ) 2 + ( K i ω c - λ sin ( λπ 2 ) ) 2 - - - ( 6 )
其中:s表示频域,Kp为所述比例增益;Ki为所述积分增益;λ为所述积分阶次;ωc为所述剪切频率;φm为所述相位裕度;A=1-T2ωc 2;B=T3ωc-T1ωc 3
M = ω c - λ sin ( λπ 2 ) + ω c cos ( λπ 2 ) tan ( arctan B A + ω c L + φ m ) ;
Figure FDA00001913303700023
Figure FDA00001913303700024
T2、T1、T3、L是常数,A,B,M,
Figure FDA00001913303700025
Y用作公式的代换。
3.根据权利要求2所述的伺服***控制器,其特征在于:
其中,所述初始信号获取部以及所述纠偏部都是通过将Kp、Ki、以及λ的值带入函数
Figure FDA00001913303700026
来获取所述初始控制信号以及所述动作控制信号,在该函数中,s表示所述频域,所述初始控制信号以及所述动作控制信号即由该频域得出。
4.根据权利要求2所述的伺服***控制器,其特征在于:
其中,所述λ为(0,2]范围内的任意实数。
5.根据权利要求1所述的伺服***控制器,其特征在于,其中,所述纠偏信号获取部具有:
反馈信号转换部,将所述动作反馈信号转换为实际动作值;
偏差计算部,根据所述实际动作值与所述目标动作值计算出所述伺服***的动作偏差;
纠偏信号获取部,根据所述动作偏差以及所述积分增益、所述比例增益和所述积分阶次来获取控制所述伺服***动作纠偏的纠偏控制信号;
纠偏信号转换部,将所述该纠偏控制信号转换为所述伺服***能够接收的相对应的所述动作纠偏信号。
6.一种控制伺服***的伺服***控制方法,其特征在于:
设有伺服***参数存储部来存储有所述伺服***的剪切频率、相位裕度、目标动作值;
采用参数计算部来根据所述伺服***参数存储部中的所述剪切频率以及所述相位裕度分别计算出积分增益、比例增益和积分阶次,
采用初始信号获取部来根据所述积分增益、所述比例增益和所述积分阶次来获取在所述伺服***启动状态时控制其初始动作的初始控制信号,所述伺服***根据该初始控制信号开始动作;
采用反馈传感部来感应所述伺服***的动作并根据该动作发出相对应的动作反馈信号;
采用纠偏部来根据所述动作反馈信号、所述目标动作值以及所述积分增益、所述比例增益和所述积分阶次来获取纠正所述伺服***的动作纠偏信号,所述伺服***根据该纠偏信号调整动作,保证所述伺服***动作的精确。
7.根据权利要求6所述的伺服***控制方法,其特征在于,其中,所述纠偏信号获取部:
采用反馈信号转换部来将所述动作反馈信号转换为实际动作值;
采用偏差计算部来根据所述实际动作值与所述目标动作值计算出所述伺服***的动作偏差;
采用纠偏信号获取部来根据所述动作偏差以及所述积分增益、所述比例增益和所述积分阶次来获取控制所述伺服***动作纠偏的纠偏控制信号;
采用纠偏信号转换部来将所述该纠偏控制信号转换为所述伺服***能够接收的相对应的所述动作纠偏信号。
8.根据权利要求6所述的伺服***控制控制方法,其特征在于:
其中,所述积分增益、所述比例增益和所述积分阶次分别通过选取伺服***模型为
Figure FDA00001913303700041
形式得出的以下关系式计算得出的:
K i = - tan ( arctan B A + ω C L + φ m ) M - - - ( 4 )
Figure FDA00001913303700043
K p = A 2 + B 2 ( 1 + K i ω c - λ cos ( λπ 2 ) ) 2 + ( K i ω c - λ sin ( λπ 2 ) ) 2 - - - ( 6 )
其中:s表示频域,Kp为所述比例增益;Ki为所述积分增益;λ为所述积分阶次;ωc为所述剪切频率;φm为所述相位裕度;A=1-T2ωc 2;B=T3ωc-T1ωc 3
M = ω c - λ sin ( λπ 2 ) + ω c cos ( λπ 2 ) tan ( arctan B A + ω c L + φ m ) ;
Figure FDA00001913303700046
Figure FDA00001913303700047
T2、T1、T3、L是常数,A,B,M,
Figure FDA00001913303700051
Y用作公式的代换。
9.根据权利要求6所述的伺服***控制方法,其特征在于:
其中,所述初始信号获取部以及所述纠偏部都是通过将Kp、Ki、以及λ的值带入函数
Figure FDA00001913303700052
来获取所述初始控制信号以及所述动作控制信号,在该函数中,s表示所述频域,所述初始控制信号以及所述动作控制信号即由该频域得出。
10.根据权利要求6所述的伺服***控制方法,其特征在于:
其中,所述λ为(0,2]范围内的任意实数。
CN2012102536175A 2012-07-20 2012-07-20 伺服***控制器及控制方法 Pending CN102944996A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102536175A CN102944996A (zh) 2012-07-20 2012-07-20 伺服***控制器及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102536175A CN102944996A (zh) 2012-07-20 2012-07-20 伺服***控制器及控制方法

Publications (1)

Publication Number Publication Date
CN102944996A true CN102944996A (zh) 2013-02-27

Family

ID=47727947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102536175A Pending CN102944996A (zh) 2012-07-20 2012-07-20 伺服***控制器及控制方法

Country Status (1)

Country Link
CN (1) CN102944996A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049541A (zh) * 2014-05-13 2014-09-17 长春理工大学 一种直流电机鲁棒控制器的参数整定方法
CN110569561A (zh) * 2019-08-16 2019-12-13 佛山科学技术学院 一种分数阶pid控制器微分积分阶次估计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240501A (ja) * 1985-08-19 1987-02-21 Fujitsu Ltd デイジタル・サ−ボ制御装置のゲイン設定装置及びその方法
CN101464681A (zh) * 2007-12-20 2009-06-24 比亚迪股份有限公司 一种伺服控制器及电液伺服***
CN102073270A (zh) * 2011-01-27 2011-05-25 浙江工业大学 单输入单输出时滞***的分数阶pid控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240501A (ja) * 1985-08-19 1987-02-21 Fujitsu Ltd デイジタル・サ−ボ制御装置のゲイン設定装置及びその方法
CN101464681A (zh) * 2007-12-20 2009-06-24 比亚迪股份有限公司 一种伺服控制器及电液伺服***
CN102073270A (zh) * 2011-01-27 2011-05-25 浙江工业大学 单输入单输出时滞***的分数阶pid控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
满丽丽: "《基于分数阶比例积分控制器的伺服***校正方法研究及仿真》", 《中国优秀硕士学位论文全文数据库》, no. 4, 15 April 2011 (2011-04-15), pages 33 - 42 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049541A (zh) * 2014-05-13 2014-09-17 长春理工大学 一种直流电机鲁棒控制器的参数整定方法
CN104049541B (zh) * 2014-05-13 2016-12-07 长春理工大学 一种直流电机鲁棒控制器的参数整定方法
CN110569561A (zh) * 2019-08-16 2019-12-13 佛山科学技术学院 一种分数阶pid控制器微分积分阶次估计方法
CN110569561B (zh) * 2019-08-16 2022-11-22 佛山科学技术学院 一种分数阶pid控制器微分积分阶次估计方法

Similar Documents

Publication Publication Date Title
CN104379308B (zh) 机器人控制装置以及机器人控制方法
CN106325073B (zh) 基于分数阶的伺服***位置环ip控制器无模型自校正方法
WO2020024548A1 (zh) 一种pid控制器设计方法
CN102032640A (zh) 工业环境高精度空调的模糊pid控制方法及装置
CN108919639B (zh) 一种pid控制器参数最优比例模型建立方法
CN111812967B (zh) 基于稳定裕度和动态响应指标的pid控制参数整定方法
WO2005019949A1 (ja) Pidパラメータ調整装置
CN102944995B (zh) 伺服***控制器及控制方法
Meenakshipriya et al. Modelling and control of ball and beam system using coefficient diagram method (CDM) based PID controller
CN102385343A (zh) 使加工高精度化的伺服控制***
CN103197542A (zh) 基于数据驱动的时滞***pid控制器镇定方法
CN111817638A (zh) 永磁同步直线电机平台的相位超前线性自抗扰控制器
CN107797448A (zh) 采用扰动扩张补偿的电机位置离散重复控制方法
CN104360635A (zh) 一种电机位置伺服***的抗干扰控制方法
CN108155833A (zh) 考虑电气特性的电机伺服***渐近稳定控制方法
CN103425131B (zh) 基于非光滑控制和扰动观测的农用拖拉机导航控制方法
CN110032073A (zh) 具有等效扰动补偿的1/2幂次吸引重复控制方法
US11137728B2 (en) Processing device, control parameter determination method, and non-transitory recording medium storing a control parameter determination program
CN106814605A (zh) 一种基于滑窗预估的恒温箱温控算法
CN110134014A (zh) 周期伺服***幂次吸引重复控制的等效扰动补偿方法
CN106773652A (zh) 一种pid***及其参数自动调整方法
CN102944996A (zh) 伺服***控制器及控制方法
CN110209122A (zh) 一种多轴运动平台的控制方法、装置、介质及设备
CN103279034A (zh) 一种分数阶鲁棒控制器的参数整定方法
CN108566137A (zh) 一种电机位置伺服控制器的离散时域参数化设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130227