CN102828250A - 一种GaN纳米线生长方法 - Google Patents

一种GaN纳米线生长方法 Download PDF

Info

Publication number
CN102828250A
CN102828250A CN2012103172284A CN201210317228A CN102828250A CN 102828250 A CN102828250 A CN 102828250A CN 2012103172284 A CN2012103172284 A CN 2012103172284A CN 201210317228 A CN201210317228 A CN 201210317228A CN 102828250 A CN102828250 A CN 102828250A
Authority
CN
China
Prior art keywords
purity
carrier gas
hcl
film
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103172284A
Other languages
English (en)
Inventor
修向前
华雪梅
张士英
林增钦
谢自力
张�荣
韩平
陆海
顾书林
施毅
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN2012103172284A priority Critical patent/CN102828250A/zh
Publication of CN102828250A publication Critical patent/CN102828250A/zh
Priority to PCT/CN2013/077974 priority patent/WO2014032465A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种制备GaN纳米线的方法,蓝宝石衬底的清洗后,先蒸镀金属Ni薄膜;Ni薄膜厚度5-50nm;将覆有镍薄膜的蓝宝石衬底放入HVPE生长***中,开始低温生长GaN纳米线;生长温度:500–850℃;高纯N2作为载气,总N2载气流量1-5slm;Ga源采用常规的高纯金属镓和高纯HCl反应生成GaCl,HCl流量:1-20sccm,HCl载气流量10-200sccm;以高纯氨气作为氮源,NH3流量:50–500sccm;生长时间1-10分钟。生长出GaN纳米线。

Description

一种GaN纳米线生长方法
技术领域
本发明涉及一种用氢化物气相外延生长GaN纳米线的方法。
背景技术
以GaN及InGaN、AlGaN合金材料为主的III-V族氮化物材料(又称GaN基材料)是近几年来国际上倍受重视的新型半导体材料。GaN基材料是直接带隙宽禁带半导体材料,具有1.9—6.2eV之间连续可变的直接带隙,优异的物理、化学稳定性,高饱和电子漂移速度,高击穿场强和高热导率等优越性能,在短波长半导体光电子器件和高频、高压、高温微电子器件制备等方面具有重要的应用,用于制造比如蓝、紫、紫外波段发光器件、探测器件,高温、高频、高场大功率器件,场发射器件,抗辐射器件,压电器件等。
一维体系的纳米材料是可以有效传输电子和光学激子的最小维度结构,也是纳米机械器件和纳米电子器件的最基本结构单元。GaN材料作为重要半导体材料的优良特性使得一维GaN纳米结构在微纳光电器件、光电探测器件、电子器件、环境和医学等领域具有更广泛的的潜在应用前景,因此,制备性能优异、高质量的一维GaN纳米结构及特性研究就成为当前国际、国内研究的前沿课题。
GaN基材料的生长有很多种方法,如金属有机物气相外延(MOCVD)、高温高压合成体GaN单晶、分子束外延(MBE)、升华法以及氢化物气相外延(HVPE)等。GaN纳米结构的制备主要有各向异性可控生长法、VLS (Vapor– Liquid–Solid)和SLS(Solution–Liquid–Solid)机制生长法、模板辅助生长法、表面活性剂法、纳米粒子自组装及物理或化学方法剪切等。GaN纳米结构的生长可以采用多种方式如MOCVD、MBE等获得,但是此类设备价格成本高,源材料价格高昂。
本发明给出了一种采用金属镍(Ni)做催化剂,用氢化物气相外延(HVPE)设备生长GaN纳米线的方法及工艺。
发明内容
本发明目的是:提出一种用金属镍作为催化剂,在氢化物气相外延生长设备中生长GaN纳米线。能制备出性能优异、高质量的一维GaN纳米结构产品。
本发明的技术方案是,制备GaN纳米线的方法,利用氢化物气相外延(HVPE)设备生长GaN纳米线。以金属镍作催化剂,蓝宝石衬底的清洗后,先蒸镀金属Ni薄膜的;Ni薄膜沉积速率设置约为1-2埃/秒,Ni薄膜厚度5-50nm;将覆有金属镍薄膜的蓝宝石衬底放入HVPE生长***中,开始低温生长GaN纳米线;生长温度:500–850℃;高纯N2作为载气,总N2载气流量1-5slm;Ga源采用常规的高纯金属镓和高纯HCl反应生成GaCl,HCl流量:1-20sccm,HCl载气流量10-200sccm。高纯氨气作为氮源,NH3流量:50–500sccm;生长时间1-10分钟。
生长温度尤其是:500- 650℃。
金属镍作为催化剂时, GaN纳米线的HVPE为VLS机制。由于HVPE生长速率快(几百微米/小时),常用于快速生长厚膜。在本发明中, 需要控制生长条件,使得HVPE GaN生长速率降低,以获得GaN纳米线。本发明的技术方案为:用物理气相沉积的方法在蓝宝石衬底上蒸镀金属Ni,然后放入HVPE生长***中,低温生长 GaN纳米线。
本发明有益效果是:本发明给出了一种工艺简单、成本低廉的GaN纳米线生长方法和工艺。直径达到数十纳米,且长度可以达到数微米。
附图说明
图1为本发明实施例的产物照片。在其它参数不变的情况下, NH3流量变化制备GaN纳米线的形貌(图1在左中右三幅照片分别对应着 NH3流量的不同:即分别为50,100和200sccm。生长温度:550、600和650℃除纳米线径度外,外观无显著区别。
图2 为本发明实施例的产物照片。HVPE生长GaN纳米线的扫描电子显微镜照片,其中***图为高倍数照片。
具体实施方式
本发明方法和工艺包括几个部分:金属Ni薄膜在蓝宝石衬底上的物理气相沉积;GaN纳米线的HVPE低温生长。
本发明技术实施方式之一,HVPE技术制备GaN纳米线,包括下面几步:
1、             蓝宝石衬底的清洗和处理。将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干。
2、             蓝宝石衬底放入物理气相沉积装置反应腔内,在一定反应腔体压力和金属源温度下,即可开始金属Ni薄膜的蒸镀。Ni薄膜沉积速率设置约为1-2埃/秒,Ni纳米薄膜厚度5-50nm。 本实施例选择20-30nm。
3、             将覆有金属镍薄膜的蓝宝石衬底放入HVPE生长***中,开始低温生长GaN纳米线。生长温度:550、600和650℃三个温度条件;高纯N2作为载气,总N2载气流量1-5slm;高纯金属镓和高纯HCl反应生成GaCl作为镓源,HCl流量:1-20sccm,HCl载气流量10-200sccm。高纯氨气作为氮源,NH3流量(对应三种流量):50,100和200sccm;生长时间5分钟。
4、             按照步骤3生长完成后降温取出样品,即获得GaN纳米线。
5、             控制步骤2-4中的参数,可以实现金属Ni薄膜在纳米线生长温度时退火成有序颗粒,从而获得有序排列的GaN纳米线。

Claims (2)

1.一种制备GaN纳米线的方法,其特征是蓝宝石衬底的清洗后,先蒸镀金属Ni薄膜;Ni薄膜厚度5-50nm;将覆有镍薄膜的蓝宝石衬底放入HVPE生长***中,开始低温生长GaN纳米线;生长温度:500–850℃;高纯N2作为载气,总N2载气流量1-5slm;Ga源采用常规的高纯金属镓和高纯HCl反应生成GaCl,HCl流量:1-20sccm,HCl载气流量10-200sccm;以高纯氨气作为氮源,NH3流量:50–500sccm;生长时间1-10分钟。
2.根据权利要求1所述的用HVPE生长GaN纳米线,其特征是,生长温度是:500- 650℃。
CN2012103172284A 2012-08-31 2012-08-31 一种GaN纳米线生长方法 Pending CN102828250A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012103172284A CN102828250A (zh) 2012-08-31 2012-08-31 一种GaN纳米线生长方法
PCT/CN2013/077974 WO2014032465A1 (zh) 2012-08-31 2013-06-26 一种GaN纳米线生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103172284A CN102828250A (zh) 2012-08-31 2012-08-31 一种GaN纳米线生长方法

Publications (1)

Publication Number Publication Date
CN102828250A true CN102828250A (zh) 2012-12-19

Family

ID=47331546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103172284A Pending CN102828250A (zh) 2012-08-31 2012-08-31 一种GaN纳米线生长方法

Country Status (2)

Country Link
CN (1) CN102828250A (zh)
WO (1) WO2014032465A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456602A (zh) * 2013-03-18 2013-12-18 深圳信息职业技术学院 非极性面氮化镓纳米锥材料的制备方法
WO2014032465A1 (zh) * 2012-08-31 2014-03-06 南京大学 一种GaN纳米线生长方法
CN107910243A (zh) * 2017-10-18 2018-04-13 中国科学院半导体研究所 在衬底上制备GaN纳米线的方法
WO2021012496A1 (zh) * 2019-07-22 2021-01-28 南京大学 一种控制GaN纳米线结构与形貌的分子束外延生长方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881554A (zh) * 2017-10-18 2018-04-06 中国科学院半导体研究所 在衬底上生长GaN平面纳米线的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010707A1 (en) * 2004-10-21 2008-01-10 Sharp Laboratories Of America, Inc. Ambient environment nanowire sensor
JP2008108757A (ja) * 2006-10-23 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
CN101229912A (zh) * 2007-12-26 2008-07-30 中国科学院上海微***与信息技术研究所 采用干法刻蚀制备氮化镓纳米线阵列的方法
CN101728248A (zh) * 2008-10-15 2010-06-09 中国科学院半导体研究所 氮化镓生长方法
CN101510504B (zh) * 2009-03-13 2010-09-08 苏州纳晶光电有限公司 半导体薄膜的纳区横向外延生长方法
JP2011073894A (ja) * 2009-09-29 2011-04-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
CN101689484B (zh) * 2007-07-10 2012-02-15 Nxp股份有限公司 失配衬底上的单晶生长

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898751B (zh) * 2009-05-27 2012-08-08 中国科学院半导体研究所 Ⅲ族氮化物纳米材料的生长方法
CN102828250A (zh) * 2012-08-31 2012-12-19 南京大学 一种GaN纳米线生长方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010707A1 (en) * 2004-10-21 2008-01-10 Sharp Laboratories Of America, Inc. Ambient environment nanowire sensor
JP2008108757A (ja) * 2006-10-23 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
CN101689484B (zh) * 2007-07-10 2012-02-15 Nxp股份有限公司 失配衬底上的单晶生长
CN101229912A (zh) * 2007-12-26 2008-07-30 中国科学院上海微***与信息技术研究所 采用干法刻蚀制备氮化镓纳米线阵列的方法
CN101728248A (zh) * 2008-10-15 2010-06-09 中国科学院半导体研究所 氮化镓生长方法
CN101510504B (zh) * 2009-03-13 2010-09-08 苏州纳晶光电有限公司 半导体薄膜的纳区横向外延生长方法
JP2011073894A (ja) * 2009-09-29 2011-04-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU ZHAN HUI ET AL: "Gallium Nitride Nanowires Grown by", 《CHINESE PHYSIES LETTERS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032465A1 (zh) * 2012-08-31 2014-03-06 南京大学 一种GaN纳米线生长方法
CN103456602A (zh) * 2013-03-18 2013-12-18 深圳信息职业技术学院 非极性面氮化镓纳米锥材料的制备方法
CN103456602B (zh) * 2013-03-18 2016-12-07 深圳信息职业技术学院 非极性面氮化镓纳米锥材料的制备方法
CN107910243A (zh) * 2017-10-18 2018-04-13 中国科学院半导体研究所 在衬底上制备GaN纳米线的方法
WO2021012496A1 (zh) * 2019-07-22 2021-01-28 南京大学 一种控制GaN纳米线结构与形貌的分子束外延生长方法

Also Published As

Publication number Publication date
WO2014032465A1 (zh) 2014-03-06

Similar Documents

Publication Publication Date Title
KR100646696B1 (ko) 질화물 반도체 소자 및 그 제조방법
Choi et al. Growth and modulation of silicon carbide nanowires
Kente et al. Gallium nitride nanostructures: Synthesis, characterization and applications
He et al. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range
CN106803478B (zh) 一种GaN纳米结构阵列生长方法
CN102828250A (zh) 一种GaN纳米线生长方法
JP5876408B2 (ja) ナノワイヤの作製方法
Suo et al. Synthetic strategies and applications of GaN nanowires
CN102856172A (zh) 一种制备低应力GaN薄膜的方法
KR100623271B1 (ko) 갈륨망간나이트라이드 단결정 나노선의 제조방법
CN106757323B (zh) 一种无应力InN纳米线生长方法
CN102828240A (zh) 一种制备GaN薄膜材料的方法
Feng et al. Direct Growth of GaN Nanowires by Ga and N2 without Catalysis
CN103757693B (zh) 一种GaN纳米线的生长方法
CN102134484B (zh) GaN@SiO2微米材料的制备方法
Li et al. Growth of InAs nanowires with the morphology and crystal structure controlled by carrier gas flow rate
Shekari et al. Optical and structural characterizations of GaN nanostructures
CN102321915A (zh) 一种Mn掺杂AlN单晶纳米棒的制备方法
Suo et al. Three-dimensional single-crystalline GaN hierarchical nanowire architectures
Shekari et al. Structural characterizations of GaN nanowires grown on Si (111) substrates by thermal evaporation
KR20040092583A (ko) 중심이 제거된 나노 구조체 및 이의 제조방법
CN111893454B (zh) 一种常压下锗锡纳米材料的制备方法
Rozhavskaya et al. Various types of GaN/InGaN nanostructures grown by MOCVD on Si (111) substrate
Zou et al. Assembly-line flash synthesis of ZnO nanobelts on metal Zn
KR100485874B1 (ko) 수소 및 불활성기체에 의한 화합물반도체 박막의 양자점 생성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121219