CN102820419A - High density nanowire arrays in a glassy matrix, and methods for drawing the same - Google Patents

High density nanowire arrays in a glassy matrix, and methods for drawing the same Download PDF

Info

Publication number
CN102820419A
CN102820419A CN2012102300904A CN201210230090A CN102820419A CN 102820419 A CN102820419 A CN 102820419A CN 2012102300904 A CN2012102300904 A CN 2012102300904A CN 201210230090 A CN201210230090 A CN 201210230090A CN 102820419 A CN102820419 A CN 102820419A
Authority
CN
China
Prior art keywords
thermoelectric
glass
fiber
pbte
optical cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102300904A
Other languages
Chinese (zh)
Inventor
B·杜塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZT3 Technologies Inc
Original Assignee
ZT3 Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/299,283 external-priority patent/US7559215B2/en
Priority claimed from US11/301,285 external-priority patent/US20070131269A1/en
Application filed by ZT3 Technologies Inc filed Critical ZT3 Technologies Inc
Publication of CN102820419A publication Critical patent/CN102820419A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01214Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multifibres, fibre bundles other than multiple core preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • C03B37/01245Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down by drawing and collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/026Drawing fibres reinforced with a metal wire or with other non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

The present invention provides a method of drawing a thermoelectrically active material (22) in a glass cladding (14), comprising sealing off one end of a glass tube (14) such that the tube (14) has an open end and a closed end, introducing the thermoelectrically active material (22) inside the glass tube (14) and evacuating the tube (14) by attaching the open end to a vacuum pump, heating a portion of the glass tube (14) such that the glass partially melts and collapses under the vacuum such that the partially melted glass tube (14) provides an ampoule (54) containing the thermoelectric material (22) to be used in a first drawing operation, introducing the ampoule (54) containing the thermoelectric material (22) into a heating device (10), increasing the temperature within the heating device (10) such that the glass tube (14) melts just enough for it to be drawn and drawing fibers (24) of the glass clad thermoelectrically active material (22).

Description

The manufacturing approach of the high density silk thread array in the glassy matrices
The application is to be that December 5, application number in 2006 are 200680045995.7, are entitled as the dividing an application of patent application of " manufacturing approach of the high density silk thread array in the glassy matrices " applying date.
Technical field
The present invention relates to high density nanowire arrays and drawing process thereof in the glassy matrices.
Background technology
Thermoelectric material generates electricity when the experience thermal gradient and when electric current flows through, produce thermal gradient from them.Scientist attempts to utilize actual thermoelectricity always in decades because actual thermoelectricity can: (1) replaces the fluorocarbon that in existing refrigerating system such as refrigerator and air-conditioning, uses; (2) through converting some or most of used heat to during electricity reduces thermal power generation noxious emission; And other effect.Yet actual thermoelectric prospect does not also realize.A problem is that the industrial standard in the pyroelectric technology can not be incorporated into daily heating and refrigeration product and the system from function because its efficient is low.
Block form (bulk form) thermoelectric device such as thermoelectric generator (thermoelectric generators; TEG), (thermoelectric refrigerators TER) is used to directly thermal conversion become electricity or directly converts electricity to heat with thermoelectric steam pump TEC.Yet the energy conversion efficiency of these block form thermoelectric devices and/or the coefficient of performance are more much lower than those conventional reciprocating formulas or rotary heat engine and steam compression system.Immature generally in view of these shortcomings and this technology, the block form thermoelectric device does not obtain extensively popularizing.
Two different metals or alloy can produce little electric current when the experience thermal gradient, formed early stage thermo-electric junction thus.Just produced differential voltage when passing contact when heat is transmitted, therefore a part of thermal conversion has been become.Several contacts can be by series connection to provide bigger voltage, and to produce the electric current that increases, perhaps both have concurrently by parallel connection.Modern thermoelectric generator can comprise a plurality of contacts of series connection, produces bigger voltage.Such thermoelectric generator can be connected in parallel to provide with the modular form manufacturing, thereby improves the amount of the electric current that is produced.
In 1821, Thomas John Seebeck (Thomas Johann Seebeck) was found first thermoelectric effect, is called as Seebeck (Seeback) effect.Seebeck is found, has taken place to depart from the time of near compass is placed on the closed-loop path of being processed by two different metals, and one of two contacts remain on than under another higher temperature at this moment.This proof just produces voltage difference when having the temperature difference between two contacts, wherein voltage difference depends on the character of related metal.The voltage (or EMF) of every ℃ of thermal gradient generation is called as Seebeck (Seeback) coefficient.
In 1883, amber ear card (Peltier) was found second thermoelectric effect, is called as peltier effect.Amber ear card is found no matter when make electric current flow through contact, all occurrence temperature variations at different metal contact place.Heat perhaps is absorbed or is released at the contact place, and this depends on sense of current.
William Mr. thomson (Sir William Thomson) was called as lord kelvin (Lord Kelvin) afterwards, found the 3rd thermoelectric effect, was called as Thomson effect, and it relates to the heating or the cooling of the single-phase zone Ampereconductors that experiences temperature gradient.Lord kelvin has also been set up four equations (kelvin relations) of related Seebeck, amber ear card and Thomson effect.In 1911, Alterikirch proposed, and utilizes thermoelectric principle that heat is directly changed into electricity, and perhaps vice versa.He has set up, and electric power produces and the thermoelectricity of refrigeration is theoretical, and wherein Seebeck coefficient (heat-electric power) requires high as far as possible to reach optimum performance.This theory also requires conductivity high as far as possible, and thermal conductivity is minimum.
Alterikirch has set up the standard of the thermopower conversion efficiency of a definite material, he with its called after power factor (power factor, PF).The latter representes through following equation: PF=S 2* σ=S 2/ ρ, wherein S is Seebeck coefficient or heat-electric power (thermo-power), σ is that conductivity and ρ (1/ σ) are resistivity.Therefore Alterikirch has set up equation: Z=S 2* σ/k=S 2/ ρ * k=PF/k, wherein Z has K -1The thermoelectric figure of merit of dimension.Through multiply by absolute temperature T, this equation can become nondimensional, under this temperature, carries out the measurement to S, ρ and k, makes dimensionless thermoelectric figure of merit or ZT factor equal (S 2* the T of σ/k).Reach a conclusion thus, in order to improve the performance of thermoelectric device, power factor should increase as much as possible, and k (thermal conductivity) should be reduced as much as possible.
The ZT factor of material shows its thermopower conversion efficiency.Before 40 years, the best ZT factor of existence is about 0.6.After the research in 40 years, commercial available system still is confined to almost can not reach 1 ZT value.Extensively think, will open the door of thermoelectric power generation, thereby begin to replace existing generation technology, traditional domestic refrigerator, air-conditioning etc. greater than 1 ZT factor.Really, the ZT factor in addition be 2.0 or the actual pyroelectric technology when bigger possibly cause heating of future generation and refrigerating system generation.In view of the above, there are needs in the method for producing actual pyroelectric technology, this method realizes the ZT factor of increase, is about 2.0 or bigger.
The thermoelectric generator of solid-state TEC and nanostructure has demonstrated the thermoelectricity capability that can have raising than the thermoelectric device of corresponding block form recently.Verified, when some thermoelectric active material (such as PbTe, Bi 2Te 3When and SiGe) being decreased to Nano grade (being typically about 4-100nm) on the size, the ZT factor significantly improves.This increase of ZT causes the expectation that utilizes quantum confinement to research and develop practical thermoelectric generators and refrigerator [refrigerator].Recently after deliberation various promising methods, such as the transmission and the restriction of nano wire and quantum dot, thermal conductivity on the direction vertical with the superlattice plane reduces and the optimization of ternary or quaternary chalcogenide and skutterudite.Yet these methods receive the cost restriction, and many materials can not be made in a large number.
The ability of changing the energy between multi-form effectively be science and engineering progress can discern one of symbol.Heat energy is the characteristics of the economy of energy to the conversion of electric power, wherein in addition the minor modifications of efficient and conversion method can have an immense impact on to currency savings, energy reserves and environmental effect.Equally, electromechanical energy conversion occupies the center of many modern machines.In view of the lasting demand to the electronic circuit miniaturization, nanoscale devices can work on power conversion, and can in the exploitation of the microelectronic circuit Refrigeration Technique that produces big calorimetric, work.Therefore, need the high performance energy conversion and the thermoelectric device of wide region, said device is based on one-dimensional inorganic nanostructure or nano wire.
Summary of the invention
The present invention relates to the nanostructure processed with the fiber of thermoelectric active material, it is one dimension basically, has than the remarkable little diameter of its length.The fiber that constitutes these nanostructures has about 200nm or littler diameter.Nanostructure of the present invention as herein described is called as " nano wire (nanowires) ", " optical cable (cables) ", " array (arrays) ", " heterostructure (heterostructures) " or " composite material (composites) ", and it comprises a plurality of one dimension fibres.This optical cable preferably includes at least a thermoelectric active material and glassy material, and this glassy material serves as the electrical insulator of thermoelectric active material, and thermoelectric active material also is called as " thermoelectric material " at this paper.
According to a further aspect of the invention, thermoelectric material comprises the big concentration that is embedded in the suitable glasses that forms optical cable (for example 10 6~ 10 10/ cm 2) line of nano-scale, wherein said thermoelectric material is the form of the nano wire of glass-clad, and said nano wire comprises a plurality of one dimension fibres, and this fiber extends big distance along the length of optical cable, and does not contact with other fiber.This thermoelectricity active material can comprise suitable metal, alloy or semi-conducting material, and it keeps the integrality at interface between thermoelectric material and the glassy material, and has no appreciable thermoelectric material to defile and/or spread.
The further aspect according to the present invention, a kind of method of making optical cable comprise that the quantity that increases thermoelectric fiber is extremely greater than 10 of optical cable cross section 9/ cm 2Each optical cable comprises the fiber array with diameter Distribution, and wherein the variation of fibre diameter can reduce through using automatic wire-drawer-tower (draw-tower), and said automatic wire-drawer-tower is applied in usually and is used for stretching optical fiber in the optical fiber industry.
The preferred cable of producing according to principle of the present invention preferably includes at least one thermoelectric fiber that is embedded in the electrical insulating material, and wherein thermoelectric material demonstrates quantum confinement.This preferred optical cable comprises a plurality of fibers, makes to have electrical connectivity between all fibres end.Alternatively, between the some fibre of this optical cable, have electrical connectivity, but be not whole.The glass-clad of this optical cable preferably includes electrical insulating material such as heat resistant glass, borosilicate, alumino-silicate, quartz or contains lead oxide, tellurium dioxide and the silicon dioxide glass as its main component.This thermoelectric material can be selected from metal, semimetal, alloy and semiconductor, makes this thermoelectric material demonstrate electrical connectivity and quantum confinement.
The present invention also provides the method for the thermoelectric active material in a kind of drawn glass covering, and said method comprises: an end of glass tube is sealed, made said pipe have openend and blind end; Thermoelectric active material is incorporated into the inside of glass tube, and through said openend is connected to the said pipe of finding time on the vacuum pump; The part of heating glass pipe makes glass melt in the vacuum lower part and subsides, causes the glass tube of partial melting that the ampoule that contains the thermoelectric material that will in first stretched operation, use is provided; The ampoule that will contain thermoelectric material is incorporated in the heater; Improve the temperature in the heater, making glass tube just be fused into is enough to stretch; Fiber with the thermoelectric active material of drawn glass covering.This method can further comprise with the fiber pack of the thermoelectric active material of glass-clad together; And one or many continuously again stretches; With the multi-fiber cable that generation has numerous single thermoelectric fiber, said single thermoelectric fiber is passed through glass-clad and mutually insulated.
In addition, said method can further comprise the steps: the fibrous fracture of glass-clad is become shorter fragment; The fiber fragment of glass-clad is incorporated in another glass tube with blind end and openend; Through openend being connected to the said pipe of finding time on the vacuum pump; The part of heating glass pipe makes glass in vacuum lower part fusing and subside, and causes the glass tube of partial melting that the ampoule of the fiber fragment that comprises glass-clad is provided; Said ampoule is incorporated in the heater; Improve the temperature in the heater, making glass tube just be fused into is enough to stretch; With the fiber of the thermoelectric active material of drawn glass covering, has the optical cable of numerous multicore fibers with generation.
All these execution modes all are intended in the scope of the invention disclosed herein.From the following detailed description with reference to the preferred implementation that accompanying drawing carried out, of the present invention these will become obvious easily to those skilled in the art with other execution mode, and the present invention is not limited to disclosed any concrete preferred implementation.
Description of drawings
Fig. 1 is principle according to the present invention be used for the stretching cutaway view of tube furnace of the thermoelectric active material that is embedded in glass-clad;
Fig. 2 is the X-ray diffractogram of the PbTe base optical cable of constructed according to the principles of the present invention;
Fig. 3 is the end view of PbTe base optical cable of the glass-clad of constructed according to the principles of the present invention;
Fig. 4 is the amplification view of the PbTe base optical cable of glass-clad in Fig. 3 of line 3A-3A intercepting.
Fig. 5 is stretch the for the second time cutaway view of the PbTe base optical cable of glass-clad among the Fig. 3 of back of PbTe fiber.
Fig. 6 is stretch the for the third time cutaway view of the PbTe base optical cable of glass-clad among the Fig. 3 of back of PbTe fiber.
Fig. 7 is the chart (the PbTe fiber stretches back for the first time) of the PbTe optical cable DC resistance of diagram Fig. 4;
Fig. 8 is the chart (the PbTe fiber stretches back for the second time) of the PbTe optical cable DC resistance of diagram Fig. 5; With
Fig. 9 is the chart (the PbTe fiber stretches back for the third time) of the PbTe optical cable DC resistance of diagram Fig. 6.
Embodiment
In the paragraph, the present invention will be described in detail with reference to accompanying drawing by way of example below.In whole specification, preferred implementation that is shown and embodiment should be considered to example, rather than conduct is to qualification of the present invention.As used herein, " the present invention " is meant any and any equivalent in the embodiment of the present invention as herein described.In addition, all execution mode or the methods that require to protect of mentioning and do not mean that to " the present invention " each characteristic (one or more) must comprise mentioned characteristic (one or more) in whole file.
Before beginning to describe accompanying drawing, will define some terms now.
Body material (bulk material): all common on the three-dimensional dimension all greater than the big or small thermoelectric material of 1 micron macroscopic view.
Chalcogenide (chalcogenide): VI family element in the periodic table.
Chemical vapor deposition: through wafer is placed in the admixture of gas---said gas reacts on wafer surface, makes film (being generally dielectric/insulator) be deposited on the wafer substrates.This can be in smelting furnace or reactor in to high temperature under, carry out, wherein wafer is heated still that the wall of reactor is not heated.The chemical vapor deposition that plasma strengthens has been avoided the needs to high temperature through reactant gas being excited into plasma.
Mix: the foreign substance with very small amount adds on the very pure in addition semiconductor crystal wittingly.The impurity of these interpolations gives excessive conduction electrons of this semiconductor or excessive conduction hole (not having conduction electrons).
Efficient: efficient is the power of the power that produces of system divided by this system of supply, and it is measuring of the material fine or not degree that a kind of form energy converted to another kind of form energy.For the thermoelectric device of block form (bulk form), efficient is merely 8 to 12%, and the thermoelectric device of said block form is available at present or is about to occur.
Quality factor: thermoelectric figure of merit ZT is expressed as ZT=(S 2* the * T of σ/k), wherein S is a Seebeck coefficient, and T is an absolute temperature, and σ is that resistivity and k are thermal conductivities.
Lead telluride: PbTe is except Bi 2Te 3One of the most frequently used thermoelectric material.PbTe is normally used for generating because this material demonstrates its highest ZT under the temperature between 400 ℃ to 500 ℃, and have about 200 ℃ to about 500 ℃ valid function scope.
Nanometer: the meaning is part per billion or 0.000000001 prefix.For instance, the ultraviolet wavelength that is used for etch silicon is the hundreds of nanometer.The symbol of nanometer is nm.
Quantum confinement:, quantum confinement just takes place when making charge carrier (carriers of electricity) (electronics or hole) when being confined in the space through the size that reduces conductor.For instance, through the degree of freedom with charge carrier be limited to the perpendicular direction of membrane plane on propagate, extremely thin conducting film has reduced the degree of freedom of charge carrier.This film is called as two-dimensional structure, and the charge carrier in this type film is called as quantum limit in one direction.It can promptly move in membrane plane on two other directions.
Seebeck coefficient: when material stands thermal gradient, just produce electromotive force in the material, and electromotive force often is expressed as every Kelvin's microvolt (μ V/K).The thermoelectric power of material or Seebeck coefficient have great role when measuring its ZT factor.
Thermal conductivity: thermal conductivity is the intrinsic property of material, and it has stipulated the heat that material transmitted of the unit's of passing cross section and unit thickness for the unit temperature gradient.Although thermal conductivity is the intrinsic properties of medium, it depends on the measurement temperature.The thermal conductivity of air is big more about 50% than the thermal conductivity of steam, and the thermal conductivity of liquid water is about 25 times of air.The solid especially thermal conductivity of metal is thousands of times of air.
The present invention relates to nanostructure, it is called as " nano wire ", " optical cable ", " array ", " heterostructure " or " composite material " at this paper, and it comprises a plurality of one dimension fibres.Nano wire according to the present invention generally includes the heterostructure (like glass) of material different at least a thermoelectric active material and a kind of other The Nomenclature Composition and Structure of Complexes, wherein between them, forms interface or contact.In order to utilize the advantage of quantum confinement, this thermoelectricity active material is reduced to nano-scale on thickness or diameter.In this way, the thermoelectrical efficiency of thermoelectric active material is enhanced.This thermoelectricity active material also is called as " thermoelectric material " in this article.Clad material preferably includes suitable glass, and such as the glass that comprises amorphous materials, the constituting atom of said amorphous materials does not have long-range orderization.
Of the present invention relating in one aspect to through the nano wire of developing the quantum limit that can present high ZT value produces practical thermoelectric method.Like top explanation, through multiply by absolute temperature T, such as the temperature of thermoelectric device hot junction, the equation of thermoelectric figure of merit Z can become nondimensional.Reach a conclusion nondimensional thermoelectric figure of merit, ZT=(S thus 2* the * T of σ/k) can be used to estimate the performance and the energy conversion efficiency of any thermoelectric material or device.
For the nano wire of PbTe,, adopt ZT=(S if the bulk thermal conductivities (bulk thermal conductivity) of consideration PbTe (k) 2* the * T of σ/k), the ZT factor under the 750K still very high (being that ZT is about 2.0 or bigger).The ZT factor increases along with temperature between about 300K and 750K.For PbTe base thermoelectric nano-wire, S 2* the value of σ is tended to be issued to peak value in the certain level that the ZT factor increases along with reducing of nanowire width.Yet, reach a certain nanowire width after, the ZT factor begins to reduce and descend along with nanowire width.Chemical Measurement through changing Pb and Te perhaps passes through to add some less composition/impurity, and PbTe base nano-wire as herein described can be adjusted into easily shows n type or p type conduction.
The many thermoelectric materials that comprise PbTe are responsive to oxygen, and oxygen can reduce thermoelectricity capability.Because this reason, it is favourable having such thermoelectric material: it is protected from oxygen contamination by sealing and quilt in the target environment scope.Certainly, be intended to acting element and environment if thermoelectric device can not tolerate it, it is not a viable commercial.
Although PbTe is preferred thermoelectric material, can use other thermoelectric material, such as Bi 2Te 3, SiGe, ZnSb, Zn 22 and Cd 0.8Sb 3, and do not depart from the scope of the present invention.This thermoelectric material originally can be for any form easily, such as particle or powder.
In case the nanowire cables of tensile fiber adopts said method production, then measures conductivity (σ) and thermoelectric power (S), and location parameter S 2* the deviation of σ.The measuring parameter S 2* σ multiply by probe temperature (in K) and divided by known thermal conductivity (k), obtains the ZT value of the nano wire that the present invention produces.
Adopt vanderburg (van der Pauw) four point probe instrument test not contain the glass-clad that embeds nano wire and show that this sample resistance is very big, make this instrument not measure any conductance.Equally, because the high resistivity of glass-clad adopts conventional method (as adopting the Seebeck coefficient mensuration system by the MMR Technologies sale of California Moutain View) to measure thermoelectricity and does not produce any result.Yet the conductivity and the thermoelectric power that embed the optical cable of PbTe are measured easily, and this shows that the measured value of conductivity and thermoelectric power is attributable to the continuous nano wire along cable length.
The preferred thermoelectric material of nanowire cables of the present invention is PbTe, and this is because its favourable thermoelectricity capability and rational cost.Utilize the known bulk thermal conductivity value of PbTe, the ZT ((S that under 750K, calculates 2* the * T of σ/k))>2.5.The S of PbTe 2* σ demonstrates the clear and definite trend that is issued to peak value in a certain nanowire width.The best known ZT factor of supposing body PbTe be about 0.5, about 2.0 or bigger gained ZT factor be considered to owing to quantum confinement is significantly increased.The ZT factor increases along with reducing of nanowire width until reaching this maximum, and the ZT factor begins to reduce along with further reducing of nanowire width then.Such as those skilled in the art understanding, other thermoelectric material with suitable thermoelectric properties is (like Bi 2Te 3) can be used, and do not depart from the scope of the present invention.
According to the present invention, the maximum gauge of nano wire preferably below about 200nm, most preferably arrives between about 100nm at about 5nm.In nanowire cross-section is not that term in context " diameter " is meant the mean value of the minimum and maximum axial length of nanowire cross-section, the longitudinal axis quadrature of this plane and nano wire under the situation of circle.Diameter is that the nano wire of the extremely about 100nm of about 50nm can adopt the method for the thermoelectric material in the drawn glass covering as mentioned below to prepare.
Optical cable as herein described preferably is manufactured into the homogeneity that demonstrates height from the diameter of end to an end.According to certain embodiments of the present invention, the maximum gauge of glass-clad can change in about scope below 10% of cable length.For more coarse application, the diameter of nano wire can change in bigger scope (for example 5-500nm, this depends on application).On electricity, the resistance of glass is preferably than the big several magnitude of thermoelectric material that adopts this glass to coat.Optical cable is usually based on the semiconductive silk thread, and wherein the doping of this silk thread and composition mainly are to control through the composition that changes thermoelectric material, demonstrate the silk thread of p-type or n-type pyroelectric behavior with generation.Advantageously, this optical cable can the cost effective and efficient manner be used for producing good thermoelectric device.
According to the present invention; The thermoelectric material that the method for the thermoelectric material in a kind of drawn glass covering relates to the drawn glass covering to be forming the single fiber (individual fibers) (or ultimate fibre (monofiber)) of thermoelectric material, and it is preferably about 500 microns or littler of diameter.Such as those of ordinary skills understanding, this ultimate fibre can have about diameter more than 500 microns, and does not depart from the scope of the present invention.Through the filamentary fibre bundle that stretches repeatedly, optic cable diameter can be contracted to 5-100nm, and the concentration of silk thread can increase to ~ 109/cm in the optical cable cross section 2Or it is bigger.Such optical cable advantageously demonstrates quantum confinement, is used to provide the thermopower generation efficiency of enhancing.
This in glass-clad the method for stretching thermoelectric material can further comprise this optical cable pack is stretched several times together and continuously again, comprise the multi-fiber cable of the thermoelectric fiber of glass-clad with generation.For instance, the material of formation optical cable fiber can comprise PbTe or Bi 2Te 3The gained optical cable comprises the multi-fiber cable with numerous single fibers, and said single fiber is through glass-clad and insulated from each other.Specific glass-clad can be chosen to contain a specific composition, so that mate physics, chemistry, heat and the mechanical performance of selected thermoelectric material.The resistivity of this glass-clad is preferably than the high several magnitude of metal, alloy or semi-conducting material that forms thermoelectric fiber.The suitable commercial glass that is used for major applications includes but not limited to heat resistant glass, Vycor glass and quartz glass.
The further aspect according to the present invention, the metal, alloy or the semi-conducting material that form fiber are changed so that optical cable is n-type or p-type, make single optical cable can be used as the n-type and the p-type assembly of thermoelectric device.Through the thickness or the extremely predetermined scope of diameter that reduce fiber, this optical cable can be induced and presented quantum confinement, therefore increases the efficient of thermoelectric power generation.
The method of the thermoelectric material in the drawn glass covering:
With reference to figure 1, the thermoelectric fiber that vertical tube furnace 10 is used for the drawn glass covering provides heat.Particularly; Vertical tube furnace 10 comprises center cavity 11; Be used to accept to comprise the prefabricated component 12 of glass tube 14, said glass tube 14 is sealed at the transverse cross-sectional area that reduces 18 places to form vacuum space 20, and said vacuum space 20 part at least is filled with thermoelectric material 22.This smelting furnace is used at preparation melting heat electric material 22 and glass tube 14 being used to produce the thermoelectric fiber 24 of glass-clad to be drawn one or more additional times operation.
Continuation is with reference to figure 1, and vertical tube furnace 10 comprises smelting furnace cover 26, heat insulator 28 and hush tube 30.The suitable material of hush tube 30 comprises that conducting metal is such as aluminium.Vertical tube furnace 10 further comprises and is embedded in one or more heater coil 34.More accurately; Heater coil 34 is arranged between hush tube 30 and the heat insulator 28; And refractory cement 38 is arranged between heater coil 34 and the heat insulator, will inwardly importing the hot-zone 40 that is formed in the hush tube 30 through the heat that heater coil 34 is produced.Heater coil 34 is provided with lead-in wire 44, and it can be insulated with ceramics insulator 48.In addition, thermocouple probe 50 is provided, and is used to measure the temperature in the hot-zone 40, and it can comprise about one inch length.
To describe a kind of method of the thermoelectric active material 22 that stretches now, said thermoelectric active material 22 comprises the array of the metal, alloy or the semiconductor rods that are embedded in the glass-clad.At first, select suitable thermoelectric material 22.The preferred thermoelectric material of the present invention comprises and originally is the PbTe of particle form.Other suitable thermoelectric material includes but not limited to Bi 2Te 3, SiGe and ZnSb.Next step relates to the suitable material of selecting to be used to form glass tube 14.Glass material preferably is selected to have than the big slightly tensile fiber temperature range of thermoelectric material melt temperature (for example, for PbTe, >=920 ℃).Vertical tube furnace 10 is used to an end of sealed glass tube 14 then.Alternatively, blowtorch or other firing equipment can be used to sealed glass tube 14 and produce vacuum space 20.
After with the sealing of an end of glass tube 14, following step comprises thermoelectric particle is incorporated into the inside of vacuum space 20 and is connected to vacuum pump this pipe of finding time through the openend with glass tube.In vacuum pump work, the mid portion of glass tube 14 is heated, and makes this glass in vacuum lower part fusing and subside.The glass tube of partial melting provides the ampoule 54 that is included in the thermoelectric material 22 that will use in the stretched operation first time.Next step that end that relates to the ampoule that comprises thermoelectric material 22 54 is incorporated into 10 li of vertical tube furnace.In the execution mode of being illustrated, tubular furnace 10 is constructed to, and makes ampoule 54 introduced by vertical, and that end that wherein comprises thermoelectric material 22 in the ampoule 54 is arranged in the hot-zone 40 of next-door neighbour's heater coil 34.
In case ampoule 54 is arranged in the vertical tube furnace 10 rightly, then temperature raises, and making the glass that surrounds thermoelectric particle just be fused into is enough to stretch, and like what in the traditional glass wire-drawer-tower, carried out, itself is known in the art.As discussed above, the composition of glass preferably is selected as, and makes the tensile fiber temperature range bigger slightly than the fusing point of thermoelectric particle.For instance, if PbTe is selected as thermoelectric material, have the glass of the PbTe fiber that is embedded in wherein so for stretching, heat resistant glass is the material that is fit to.Physics, machinery and the hot property of glass tube 14 and thermoelectric material 22 will have influence to the performance of gained optical cable.The glass that shows the minimum deflection of these performances with respect to the performance of thermoelectric material 22 preferably is selected as clad material.
Above-mentioned glass tube 14 can comprise commercial available heat-resistant glass tube, and it has the external diameter of 7mm and the internal diameter of 2.75mm, and wherein said pipe is filled the PbTe particle on about 3.5 inches length.The finding time under vacuum, to spend the night of glass tube 14 and reaching near 30 millitorrs (mtorr).After finding time, comprise thermoelectric material 22 glass tube 14 part with blowtorch mild heat a few minutes to remove some residual gass, glass tube 14 is sealed under the vacuum that is higher than thermoelectric material 22 levels then.
In operation, vertical tube furnace 10 is used to the thermoelectric fiber of drawn glass covering.Vertical tube furnace 10 comprises the hot-zone 40 of about 1 inch weak point, and wherein prefabricated component 12 is arranged in 10 li of vertical tube furnace, wherein the end of pipe be positioned at hot-zone 40 the below a bit.Smelting furnace is in about 1030 ℃ of following times, and the weight of pipe lower end is enough to make glass tube 14 to extend below in himself weight.When the lower end of glass tube 14 appeared at the lower opening of smelting furnace, it can be caught manually by pliers and stretch.Prefabricated component 10 can periodically manually be advanced to replenish the preform material that is consumed in the tensile fiber process.Fiber 24 is preferably incorporated in the diameter between about 70 microns and about 200 microns.The other execution mode according to the present invention can carry out stretched operation with automatic wire-drawer-tower, and this automatic wire-drawer-tower produces very small variation on diameter.
The further execution mode according to the present invention, short fiber part can be through the stretching heterostructure and then with the heterostructure fracture or be cut into shorter fragment and form.As an example, these shorter fragments can be processed to about 3 inches length.These fragments are inner at another heat-resistant glass tube by bundle then, and the one of which end uses vertical tube furnace as stated or uses the blowtorch sealing.When the ultimate fibre of suitable number was filled in the pipe, openend linked to each other with vacuum pump, and mid portion is heated.This heating makes glass tube subside, and therefore seals this pipe and is formed for the ampoule of stretched operation for the second time, and stretching the said second time produces the optical cable with numerous multicore fibers.Behind second time stretched operation, fiber is collected and places the hole of another sealed tube.When the ultimate fibre of suitable number was equipped with in this hole, this prefabricated component was evacuated under vacuum and is sealed.Fiber to this twice stretching carries out tensile fiber then.Repeat this process as required, to obtain the final thermoelectric material diameter of about 100nm.
Nanowire properties:
In order to characterize the characteristic electron of body (bulk) nano wire and heterogeneous structural nano line, importantly confirm the X ray diffracting characteristic of the thermoelectric material of glass-clad.Fig. 2 has described the X-ray diffractogram of the PbTe base optical cable of constructed according to the principles of the present invention, and wherein the characteristic spectrum of PbTe is coated on the X-ray diffractogram of glass.Particularly, X-ray diffractogram clearly illustrates that the existence at PbTe peak and does not have other peak, shows that therefore this glass material did not both react with PbTe, also became opaque during tensile fiber.These peaks are that the peak of PbTe crystal is unique distinctive.
Fig. 3 has described the PbTe base optical cable 60 of glass-clad, and it adopts aforesaid stretching to embed the method construct of the thermoelectric active material in the glass-clad.Particularly, optical cable 60 comprises numerous a plurality of ultimate fibres 64, said ultimate fibre 64 by bunchy and fusion to form the optical cable of any length (or button) basically.This button can be by fracture, cut-out or mode segmentation in addition, to produce numerous shorter optical cables with predetermined length.Fig. 4 is the amplification view along the PbTe base optical cable 60 of Fig. 3 glass-clad of line 3A-3A intercepting.Optical cable 60 comprises numerous ultimate fibres 64, has the width of about 5.2mm, and the list of employing PbTe fiber stretches and produces under the temperature of about 300K.
According to preferred implementation of the present invention, optical cable 60 by pack together, and the multi-fiber cable that stretches again and have numerous single thermoelectric fiber several times with generation continuously, said single thermoelectric fiber is through glass-clad and mutually insulated.Fig. 5 is the cutaway view of the PbTe base optical cable 60 of glass-clad after the PbTe fiber stretches for the second time.The optical cable of this succeeding stretch has the width of about 2.78mm.Fig. 6 is the cutaway view of the PbTe base optical cable 60 of glass-clad after the PbTe fiber stretches for the third time, and wherein said optical cable has the width of about 2.09mm.
Fig. 3-6 diagram along with silk thread concentration in the optical cable increase to ~ 10 9/ cm 2, the development of microstructure.These microstructures can be observed with light microscope and scanning electron microscopy.As an example, energy-dispersive spectroscopy can be used for showing clearly the existence of PbTe line in the glass matrix.
Thermoelectric property characterization:
Another aspect of the present invention relates to along the continuity and the electrical connectivity that embed the fiber of glass on the whole length of optical cable.Through measuring the resistance of optical cable under the different-thickness, electrical connectivity is proved easily.According to the preferred embodiment of the present invention, wherein do not embed high about 7 to 8 one magnitude of resistance of the continuous thermoelectric fiber of resistance ratio of the glass-clad of any thermoelectric wires.
The sample that is used to measure the electrical connectivity of thermoelectric wires is the PbTe of " button " form, and it prepares from prefabricated component in that one of tensile fiber step is back.With reference to figure 7-9, the resistance that is embedded in the thermoelectric wires in the glass is approximately 1 ohm or littler.On the other hand, the resistance of glass-clad that does not have thermoelectric wires is greater than 10 8Ohm, high about 8 one magnitude of its resistance than the optical cable that embeds PbTe.This difference of resistivity shows, adopts the thermoelectric wires of the glass-clad of methods described herein stretching to present the electrical connectivity of appearance from an end to the other end.
Fig. 7 is the chart of DC (direct current) resistance of PbTe optical cable 60 after diagram PbTe fiber stretches for the first time, and wherein the resistance of this optical cable (ohm) is mapped to electric current (ampere).Particularly, the DC resistance of optical cable 60 increases along with electric current and stably reduces.Fig. 8 is stretch the for the second time chart of DC resistance of back optical cable 60 of diagram PbTe fiber, and the chart of the DC resistance of Fig. 9 to be diagram PbTe fiber stretch for the third time back PbTe optical cable 60.
The preferred cable of producing according to principle of the present invention preferably includes at least one thermoelectric fiber that embeds in the electrical insulating material, and wherein said thermoelectric material demonstrates quantum limit.According to the preferred embodiment of the present invention, the width of each fiber is substantially equal to the width of thermoelectric material monocrystalline, and wherein each fiber has essentially identical crystal orientation (crystal orientation).Preferred optical cable comprises numerous fusions or sintering fiber together, makes to have the Electricity Federation general character between all fibres.Alternatively, between the some fibre of this optical cable but be not to have the Electricity Federation general character between whole fibers.
The glass-clad of this optical cable preferably includes electrical insulating material, and it comprises the glass structure of two yuan, ternary or higher composition, such as heat resistant glass, borosilicate, alumino-silicate, quartz and lead telluride-silicate (lead telluride-silicate).Thermoelectric material can be selected from metal, semimetal, alloy and semiconductor, makes this thermoelectric material demonstrate electrical connectivity and quantum confinement along the optical cable predetermined length from several nanometers to several miles.The ZT factor of this optical cable is preferably at least 0.5, and more preferably at least 1.5, most preferably at least 2.5.
Therefore, can find out that the thermoelectric device of the nano wire form that produces through quantum confinement is provided.It will be appreciated by those skilled in the art that; The present invention can implement through the mode except that said various execution modes and preferred implementation; It is to set forth and unrestricted that said execution mode been described in purpose in this specification, and the present invention is only limited by appended claim.The equivalent of the embodiment that should be noted that in this specification to be discussed also can embodiment of the present invention.

Claims (9)

1. be used in the composite fibre in the thermoelectric device, it comprises:
The electrical insulation glass host material;
Embed the numerous fibers in the said insulating glass host material;
Each fiber in wherein said numerous fiber comprises thermoelectric material; And the ZT factor of wherein said composite fibre is at least 1.5.
2. the composite fibre that is used in the thermoelectric device as claimed in claim 1 is wherein at some fibre but have electrical connectivity between the not all fiber.
3. the composite fibre that is used in the thermoelectric device as claimed in claim 1, wherein said insulating glass host material comprise the glass structure of two yuan, ternary or higher composition.
4. the composite fibre that is used in the thermoelectric device as claimed in claim 1, wherein said fiber stretches automatically or manually stretches with the fiber wire-drawer-tower.
5. the composite fibre that is used in the thermoelectric device as claimed in claim 1, wherein each fiber has 1 nanometer to the diameter between 500 nanometers.
6. the composite fibre that is used in the thermoelectric device as claimed in claim 1, wherein each fiber has the length between 2 microns to 2 feet.
7. the composite fibre that is used in the thermoelectric device as claimed in claim 1, wherein said thermoelectric material is selected from: PbTe; Bi 2Te 3SiGe; And ZnSb.
8. the composite fibre that is used in the thermoelectric device as claimed in claim 1, the said ZT factor of wherein said thermoelectric device is at least 2.5.
9. thermoelectric device, it comprises:
The electrical insulation glass host material;
Numerous fibers, said numerous fibers coat with said insulating glass host material along its length;
Each fiber in wherein said numerous fiber comprises the PbTe thermoelectric material; And wherein the ZT factor of composite fibre is at least 1.5.
CN2012102300904A 2005-12-09 2006-12-05 High density nanowire arrays in a glassy matrix, and methods for drawing the same Pending CN102820419A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/299,283 US7559215B2 (en) 2005-12-09 2005-12-09 Methods of drawing high density nanowire arrays in a glassy matrix
US11/299,283 2005-12-09
US11/301,285 US20070131269A1 (en) 2005-12-09 2005-12-09 High density nanowire arrays in glassy matrix
US11/301,285 2005-12-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2006800459957A Division CN101326650B (en) 2005-12-09 2006-12-05 Preparation method of high density nanowire arrays in glassy matrix

Publications (1)

Publication Number Publication Date
CN102820419A true CN102820419A (en) 2012-12-12

Family

ID=38163403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102300904A Pending CN102820419A (en) 2005-12-09 2006-12-05 High density nanowire arrays in a glassy matrix, and methods for drawing the same

Country Status (9)

Country Link
EP (1) EP1958272A4 (en)
JP (1) JP5199114B2 (en)
KR (1) KR101319157B1 (en)
CN (1) CN102820419A (en)
BR (1) BRPI0620554A2 (en)
CA (1) CA2631366A1 (en)
IL (1) IL191802A (en)
MY (1) MY144334A (en)
WO (1) WO2007070299A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742958B2 (en) * 2006-04-04 2011-08-10 株式会社デンソー Method for manufacturing thermoelectric conversion element
GB0812483D0 (en) * 2008-07-08 2009-01-07 Bae Systems Plc Electrical Circuit Assemblies and Structural Components Incorporating same
JP5056673B2 (en) * 2008-08-26 2012-10-24 株式会社デンソー Thermoelectric conversion element and manufacturing method thereof
JP5083145B2 (en) * 2008-09-24 2012-11-28 株式会社デンソー Thermoelectric conversion element
WO2013119284A2 (en) * 2011-11-08 2013-08-15 Ut-Battelle, Llc Manufacture of thermoelectric generator structures by fiber drawing
JP6157715B2 (en) * 2013-03-13 2017-07-05 マサチューセッツ インスティテュート オブ テクノロジー Production of dynamic intra-fiber particles with precise dimensional control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US20030047204A1 (en) * 2001-05-18 2003-03-13 Jean-Pierre Fleurial Thermoelectric device with multiple, nanometer scale, elements
US6670539B2 (en) * 2001-05-16 2003-12-30 Delphi Technologies, Inc. Enhanced thermoelectric power in bismuth nanocomposites

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2454620C2 (en) * 1974-11-18 1976-09-16 Kraftwerk Union Ag METHOD OF MANUFACTURING A COAXIAL THERMOCOUPLE SEMI-PRODUCT
US4652288A (en) * 1984-08-04 1987-03-24 Horiba, Ltd. Method of producing infrared image guide
US5215565A (en) * 1987-04-14 1993-06-01 Sumitomo Electric Industries, Ltd. Method for making superconductor filaments
JP2958451B1 (en) * 1998-03-05 1999-10-06 工業技術院長 Thermoelectric conversion material and method for producing the same
JP3032826B2 (en) * 1998-03-05 2000-04-17 工業技術院長 Thermoelectric conversion material and method for producing the same
US6711918B1 (en) * 2001-02-06 2004-03-30 Sandia National Laboratories Method of bundling rods so as to form an optical fiber preform
KR20020073748A (en) * 2001-03-16 2002-09-28 (주)옵토네스트 Method for fabricating optical fiber preform by MCVD and nonlinear optical fiber using the same
US6812395B2 (en) * 2001-10-24 2004-11-02 Bsst Llc Thermoelectric heterostructure assemblies element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US6670539B2 (en) * 2001-05-16 2003-12-30 Delphi Technologies, Inc. Enhanced thermoelectric power in bismuth nanocomposites
US20030047204A1 (en) * 2001-05-18 2003-03-13 Jean-Pierre Fleurial Thermoelectric device with multiple, nanometer scale, elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICOLAE L.LEPORDA,ANATOL D.GROZAV: "LONG GLASS-COATED SEMIMETALLIC AND SEMICONDUCTING WIRES PREPARED BY TWO DIFFERENT LIQUID PHASE METHODS", 《MOLDAVIAN JOURNAL OF THE PHYSICAL SCIENCES》 *

Also Published As

Publication number Publication date
CA2631366A1 (en) 2007-06-21
JP5199114B2 (en) 2013-05-15
WO2007070299A2 (en) 2007-06-21
KR20080091136A (en) 2008-10-09
EP1958272A4 (en) 2011-09-28
IL191802A0 (en) 2008-12-29
AU2006324440A1 (en) 2007-06-21
WO2007070299A3 (en) 2008-04-24
EP1958272A2 (en) 2008-08-20
JP2009518866A (en) 2009-05-07
IL191802A (en) 2013-10-31
KR101319157B1 (en) 2013-10-17
BRPI0620554A2 (en) 2017-11-21
MY144334A (en) 2011-08-29

Similar Documents

Publication Publication Date Title
CN101326650B (en) Preparation method of high density nanowire arrays in glassy matrix
US7559215B2 (en) Methods of drawing high density nanowire arrays in a glassy matrix
US8143151B2 (en) Nanowire electronic devices and method for producing the same
US7465871B2 (en) Nanocomposites with high thermoelectric figures of merit
CN102820419A (en) High density nanowire arrays in a glassy matrix, and methods for drawing the same
KR20100056478A (en) Nanostructures having high performance thermoelectric properties
WO2001093343A2 (en) Nanostructured thermoelectric materials and devices
JP2011514670A (en) Energy conversion device
WO2003096438A2 (en) Self-assembled quantum dot superlattice thermoelectric materials and devices
KR20140116668A (en) Natural superlattice structured thermoelectric materials
JPH11317548A (en) Thermoelectric conversion material and manufacture thereof
US8658880B2 (en) Methods of drawing wire arrays
AU2006324440B2 (en) High density nanowire arrays in a glassy matrix, and methods for drawing the same
US20070084499A1 (en) Thermoelectric device produced by quantum confinement in nanostructures
WO2006005126A1 (en) Reversible thermoelectric nanomaterials
Joshi Study of thermoelectric properties of nanostructured p-type Si-Ge, Bi-Te, Bi-Sb, and Half-Heusler bulk materials
Ferre Llin Thermoelectric properties on Ge/Si1− xGex superlattices
Littleton et al. Thermoelectric Figure of Merit, ZT, of Single Crystal Pentatellurides (MTe 5-X Se x: M= Hf, Zr and x= 0, 0.25)
Joshi Study of thermoelectric properties of nanostructured p-type Silicon-Germanium, Bismuth-Tellurium, Bismuth-Antimony, and halfheusler bulk materials
WO2007047451A2 (en) Thermoelectric device produced by quantum confinement in nanostructures, and methods therefor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121212