CN102792449A - 半导体晶体管 - Google Patents

半导体晶体管 Download PDF

Info

Publication number
CN102792449A
CN102792449A CN2011800118563A CN201180011856A CN102792449A CN 102792449 A CN102792449 A CN 102792449A CN 2011800118563 A CN2011800118563 A CN 2011800118563A CN 201180011856 A CN201180011856 A CN 201180011856A CN 102792449 A CN102792449 A CN 102792449A
Authority
CN
China
Prior art keywords
insulating film
gate insulating
gan
dielectric film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800118563A
Other languages
English (en)
Other versions
CN102792449B (zh
Inventor
神林宏
上野胜典
野村刚彦
佐藤义浩
寺本章伸
大见忠弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Fuji Electric Co Ltd
Original Assignee
Tohoku University NUC
Advanced Power Device Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Advanced Power Device Research Association filed Critical Tohoku University NUC
Publication of CN102792449A publication Critical patent/CN102792449A/zh
Application granted granted Critical
Publication of CN102792449B publication Critical patent/CN102792449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明的半导体晶体管具备:由GaN系的半导体构成的活性层、以及形成于活性层上的栅极绝缘膜。栅极绝缘膜具有:形成于活性层上且包含从由Al2O3、HfO2、ZrO2、La2O3、以及Y2O3构成的群中选出的1种以上的化合物在内的第1绝缘膜、以及形成于第1绝缘膜上且由SiO2构成的第2绝缘膜。

Description

半导体晶体管
技术领域
本发明涉及半导体晶体管,更具体而言,涉及具有由GaN系半导体构成的活性层的半导体晶体管。
背景技术
氮化镓系半导体晶体管(以下,GaN系半导体晶体管)例如具有:由GaN系半导体构成的活性层、以及形成于活性层上的栅极绝缘膜。作为该栅极绝缘膜,使用了SiO2、Al2O3、SiNx、GaOx、HfO2等。
关于GaN系半导体晶体管,若将SiO2用于栅极绝缘膜,则SiO2的Si会向GaN中扩散,这是公知的。与此相对,在特开2008-277640号公报中,记载了取代将SiO2用于栅极绝缘膜,而以单体的方式使用Al2O3的技术。
在特开2008-277640号公报所记载的技术中,虽然能防止SiO2的Si向GaN中扩散,但是由Al2O3构成的栅极绝缘膜与由SiO2构成的栅极绝缘膜相比,膜质不够。膜质不够例如是指泄漏电流高、击穿电压(break-downvoltage)低等。
发明的概要
发明要解决的课题
本发明者们发现了若在GaN系半导体晶体管中将SiO2用于栅极绝缘膜,则会产生不仅SiO2的Si向GaN中扩散、而且反过来杂质从GaN向SiO2中扩散的互扩散现象。若产生互扩散现象,则界面准位变高,GaN系半导体/栅极绝缘膜的界面特性会劣化。本发明者们不断锐意研究的结果是,发现了互扩散现象起因于构成栅极绝缘膜的化合物的氧化力。
另外,本发明者们发现了,构成栅极绝缘膜的化合物在Eg(带隙)上仅仅比构成活性层的GaN宽是不够的,还必须存在ΔEc(导带侧势垒:conduction band barrier)以及ΔEv(价带侧势垒:valence band barrier)。
然而,GaN系半导体是所谓的宽带隙半导体的一种,其在高温环境下的使用值得期待。若假定高温环境下的使用,则列举带隙比GaN系半导体更宽、且高温特性更良好的SiO2、Al2O3来作为构成GaN系半导体晶体管的栅极绝缘膜的化合物。
Al2O3的氧化力比SiO2强。故而,若以Al2O3来形成栅极绝缘膜,则即使处于高温环境下,也能防止从GaN系半导体向Al2O3的杂质扩散等从而界面特性变得良好。但Al2O3难以形成高质量的膜质。
由于SiO2的带隙比Al2O3宽,因此击穿电压变高,膜质变良好。但由于SiO2的氧化力比Al2O3小,因此会因杂质扩散等而使界面特性变得不良好。故在GaN系半导体晶体管中无论使用SiO2还是Al2O3来作为栅极绝缘膜,都难以使GaN系半导体/栅极绝缘膜的界面特性、以及栅极绝缘膜的膜质这两者均良好。
在特开2008-103408号公报中记载了在GaN系半导体上形成有由SiNx构成的第1栅极绝缘膜、且在第1栅极绝缘膜上形成有由绝缘击穿强度比SiNx大的Al2O3或者SiO2构成的第2栅极绝缘膜的GaN系半导体晶体管。
在特开2008-103408号公报中,尝试了将栅极绝缘膜设为复合膜(混合膜)、在第1栅极绝缘膜中使GaN系半导体/栅极绝缘膜的界面特性良好、且在第2栅极绝缘膜中得到高的击穿电压。但是,SiNx的带隙是5.3eV,相对于GaN的带隙(Eg=3.3ev)不够大,而且ΔEv非常小。故而,即使使用SiNx来作为GaN系半导体的栅极绝缘膜,也可以说难以使GaN系半导体/栅极绝缘膜的界面特性、以及栅极绝缘膜的膜质均良好。
发明内容
本发明的目的在于,提供GaN系半导体/栅极绝缘膜的界面特性、以及栅极绝缘膜的膜质均良好的半导体晶体管。
用于解决课题的手段
为了达成上述目的,本发明提供一种半导体晶体管,具备:活性层,其由GaN系的半导体构成;和栅极绝缘膜,其具有包含从由标准生成焓的绝对值比228kJ/mol大的绝缘膜构成的群中选出的1种以上的化合物在内的第1绝缘膜、以及形成于所述第1绝缘膜上且由SiO2构成的第2绝缘膜。
另外,提供一种半导体晶体管,具备:活性层,其由GaN系的半导体构成;和栅极绝缘膜,其具有形成于所述活性层上且包含从由Al2O3、HfO2、ZrO2、La2O3、以及Y2O3构成的群中选出的1种以上的化合物在内的第1绝缘膜、以及形成于所述第1绝缘膜上且由SiO2构成的第2绝缘膜。
发明效果
根据本发明的半导体晶体管,GaN系半导体/栅极绝缘膜的界面特性、以及栅极绝缘膜的膜质均变得良好。
附图说明
图1是表示本发明的实施方式所涉及的GaN系半导体晶体管的构成的截面图。
图2是例示各化合物的氧化力的说明图。
图3是例示各化合物的能带(band)结构的说明图。
图4A是表示本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
图4B是表示本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
图4C是表示本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
图4D是表示本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
图5是示意地表示在GaN系半导体晶体管的制造工序中所使用的成膜装置的图。
图6A是表示接着图4D的、本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
图6B是表示本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
图6C是表示本发明的实施方式所涉及的GaN系半导体晶体管的制造工序的图。
具体实施方式
以下,参照附图来详细说明本发明的例示的实施方式。图1是表示本发明的实施方式所涉及的半导体晶体管的构成的截面图。半导体晶体管11是具有由GaN系半导体构成的活性层的GaN系半导体晶体管。半导体晶体管11具有:形成于基板1上的缓冲层2、使用III族氮化物半导体而形成于缓冲层2上的p型的活性层(p-GaN)3、以及形成于活性层3上的由第1以及第2绝缘膜6、7构成的栅极绝缘膜。
进而,半导体晶体管11具有:在活性层3上隔着上述栅极绝缘膜而形成的栅极电极8g;以及与栅极电极8g对应地形成,且与源极电极10s以及漏极电极10d分别欧姆接触的n+型源极区域5s以及n+型漏极区域5d。
在此,针对栅极绝缘膜进行说明。栅极绝缘膜是由第1以及第2绝缘膜6、7构成的混合膜。第1绝缘膜6形成于活性层3上,包含从由Al2O3、HfO2、ZrO2、La2O3、以及Y2O3构成的群中所选择的1种以上的化合物。第2绝缘膜7形成于第1绝缘膜6上,由SiO2构成。
本发明者们发现了若在GaN系半导体晶体管中将SiO2用于栅极绝缘膜,则会产生不仅SiO2的Si会向GaN中扩散,而且反过来杂质会从GaN向SiO2中扩散的互扩散现象,进而发现了互扩散现象起因于构成栅极绝缘膜的化合物的氧化力。若产生互扩散现象,则界面准位变高,GaN系半导体/栅极绝缘膜的界面特性会劣化。故而,要抑制互扩散现象,需要使用氧化力大于SiO2的化合物来作为栅极绝缘膜。
图2示出了各化合物的氧化力。氧化力通过金属-氧结合的平均1mol的标准生成焓(Standard Enthalpy of Formation)来表现,图中,纵轴是ΔHf0〔KJ/mol〕的绝对值。如图2所示,SiO2的氧化力是228,ZrO2的氧化力是275,Al2O3的氧化力是279,HfO2的氧化力是286,La2O3的氧化力是299,Y2O3的氧化力是318。由此,Al2O3、HfO2、ZrO2、La2O3、以及Y2O3的氧化力大于SiO2的氧化力。
另外,本发明者们还着眼于化合物的能带结构。其结果是,发现了:构成GaN系半导体晶体管的栅极绝缘膜的化合物的Eg(带隙)比构成活性层3的GaN更宽,且必须存在ΔEc(导带侧势垒)以及ΔEv(价带侧势垒)。此外,若构成栅极绝缘膜的化合物的Eg比GaN更宽、且存在ΔEv以及ΔEc,则击穿电压变高,膜质变良好。
图3示出了各化合物的能带结构。首先,GaN将CB(导带:conductionband)以及VB(价带:valence band)作为基准,以Eg=3.3ev而示出。SiO2通过对3.3ev相加ΔEv以及ΔEc的值,来得到Eg=9.0ev。同样,HfO2、ZrO2的Eg是6.0ev,Al2O3的Eg是8.8ev,La2O3的Eg是6.0ev,Y2O3的Eg是5.6ev。由此,SiO2的Eg最大是显而易见的。
也就是,在半导体晶体管11中,为了使栅极绝缘膜与活性层3之间的界面特性良好,通过氧化力比SiO2大的化合物来形成了第1绝缘膜6,进而,为了使栅极绝缘膜的膜质良好,通过带隙比第1绝缘膜6大的化合物来形成了第2绝缘膜7。
以下,说明半导体晶体管11的制造方法。首先,如图4A所示,通过有机金属化学气相沉积生长(MOCVD)法来在蓝宝石、SiC、Si、GaN等的基板1上,依次生长由AlN或GaN构成的厚度20nm程度的缓冲层2、以及厚度1μm程度的p-GaN层3。作为p型掺杂剂,例如使用Mg,其掺杂剂浓度例如设为1×1016~1×1017/cm3。此外,在基板1上进行生长的GaN等不局限于MOCVD法,还可以利用氢化物气相外延生长(HVPE)法、分子束外延生长(MBE)法等其他的生长法。
接下来,如图4B所示,在p-GaN层3上涂敷光刻胶(photoresist)4,并对其进行曝光、显影来在源极区域和漏极区域形成开口,然后,通过该开口来注入n型掺杂剂例如硅,从而形成n+型源极区域5s、n+型漏极区域5d。在此情况下,n型掺杂剂浓度例如设为1×1018~2×1020/cm3
在通过溶剂去除了光刻胶4后,如图4C所示,通过等离子自由(plasmafree)的触媒化学气相沉积生长(Cat-CVD)法,来使作为第1绝缘膜6的氧化铝膜(Al2O3)例如生长至5nm~10nm的厚度。Cat-CVD法例如使用图5所示那样的成膜装置21来进行。
成膜装置21,如图5所示,具备腔体22。在腔体22中,设有排气口23和基板输送口24。另外,在腔体22内,配置有用于载置基板1的基板载置台25、气体排放器26、以及线状的触媒体27。气体排放器26将从外部导入的反应(原料)气体向着基板载置台25喷出。触媒体27由钨构成,并被配置于基板载置台25与气体排放器26之间。
在此,将形成了p-GaN层3的基板1载置于基板载置台25,对腔体22内进行减压,进而对触媒体27从交流电源(未图示)通电流,以成为上升至1800℃~1900℃程度的温度的状态。在此状态下,从气体排放器26向p-GaN层3排放原料气体。原料气体由触媒体27分解而生成活性种,在p-GaN层3的表面形成氧化铝膜(第1绝缘膜)6。
接下来,如图4D所示,在氧化铝膜6之上形成作为第2绝缘膜7的氧化硅膜(SiO2膜)至50nm~100nm程度的厚度。
接下来,如图6A所示,在氧化硅膜7上形成导电膜8。尽管一般使用多晶硅来作为导电膜8,但不局限于此,还可以是Ni/Al或WSi等的金属膜。在为多晶硅的情况下,掺入As、P(磷)、B(硼)等来通过CVD法进行生长,在为金属膜的情况下通过溅射等来形成。
进而,在导电膜8上涂敷光刻胶9,并对其曝光、显影,在使其残留于栅极区域的同时,从源极区域5s、漏极区域5d之上去除。
然而,如图6B所示,对图形化后的光刻胶9进行掩模(mask)并对导电膜8、氧化硅膜7以及氧化铝膜6进行蚀刻,以使残留于栅极区域中的导电膜8作为栅极电极8g。栅极电极8g之下的氧化硅膜7以及氧化铝膜6作为栅极绝缘膜发挥功能。
接下来,如图6C所示,在去除了光刻胶9后,通过利用了其他的光刻胶(未图示)的剥离(lift-off)法,如图1所示,来在源极区域5s上形成源极电极10s的同时,在漏极区域5d上形成漏极电极10d。源极电极10s、漏极电极10d由Ti/Al、Ti/AlSi、Mo等的膜构成,对构成漏极区域5d、源极区域5s的n+-GaN层进行欧姆接触。经以上的工序,能制造图1所示的半导体晶体管11。
在本实施方式的半导体晶体管11中,将栅极绝缘膜设为了由第1以及第2绝缘膜6、7构成的混合膜,并通过从由氧化力比SiO2大的Al2O3、HfO2、ZrO2、La2O3、以及Y2O3构成的群中所选择的1种以上的化合物来形成了第1绝缘膜6,另外,通过作为带隙比第1绝缘膜6大的化合物的SiO2来形成了第2绝缘膜7。
故而,在半导体晶体管11中,通过第1绝缘膜6,GaN系的半导体/栅极绝缘膜的界面特性变得良好,通过第2绝缘膜7,得到高的击穿电压,且栅极绝缘膜的膜质变得良好。因此,在半导体晶体管11中,能使GaN系半导体/栅极绝缘膜的界面特性、以及栅极绝缘膜的膜质均良好。
另外,半导体晶体管11想定的不是作为所谓的信号***的LSI,而是作为例如汽车或家电用电源电路等的功率设备来使用。故而,通过使栅极绝缘膜成为混合膜来使膜厚变大,能优选地适用于功率设备。
以上对本发明基于其优选的实施方式进行了说明,但本发明的半导体晶体管不仅仅局限于上述实施方式的构成,以上述实施方式的构成为基础实施了各种修正以及变更而得到的构成也包含在本发明的范围内。
此外,将日本申请2010-045547的公开的全部内容作为参照而援引至本说明书。
将本说明书中所记载的全部的文献、专利申请、以及技术规格与具体且分别记述将各自的文献、专利申请、以及技术规格作为参照而援引的情况相同程度地,作为参照而援引至本说明书中。
符号说明
1:基板
2:缓冲层
3:活性层
4、9:光刻胶
5s:源极区域
5d:漏极区域
6:氧化铝膜(第1绝缘膜)
7:氧化硅膜(第2绝缘膜)
8:导电膜
8g:栅极电极
10s:源极电极
10d:漏极电极
11:半导体晶体管

Claims (2)

1.一种半导体晶体管,具备:
活性层,其由GaN系的半导体构成;和
栅极绝缘膜,其具有包含从由标准生成焓的绝对值比228kJ/mol大的绝缘膜构成的群中选出的1种以上的化合物在内的第1绝缘膜、以及形成于所述第1绝缘膜上且由SiO2构成的第2绝缘膜。
2.一种半导体晶体管,具备:
活性层,其由GaN系的半导体构成;和
栅极绝缘膜,其具有形成于所述活性层上且包含从由A12O3、HfO2、ZrO2、La2O3、以及Y2O3构成的群中选出的1种以上的化合物在内的第1绝缘膜、以及形成于所述第1绝缘膜上且由SiO2构成的第2绝缘膜。
CN201180011856.3A 2010-03-02 2011-03-02 半导体晶体管 Active CN102792449B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-045547 2010-03-02
JP2010045547A JP5506036B2 (ja) 2010-03-02 2010-03-02 半導体トランジスタ
PCT/JP2011/054815 WO2011108615A1 (ja) 2010-03-02 2011-03-02 半導体トランジスタ

Publications (2)

Publication Number Publication Date
CN102792449A true CN102792449A (zh) 2012-11-21
CN102792449B CN102792449B (zh) 2016-03-09

Family

ID=44542262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180011856.3A Active CN102792449B (zh) 2010-03-02 2011-03-02 半导体晶体管

Country Status (5)

Country Link
US (1) US9875899B2 (zh)
EP (1) EP2544240B1 (zh)
JP (1) JP5506036B2 (zh)
CN (1) CN102792449B (zh)
WO (1) WO2011108615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425620A (zh) * 2013-09-03 2015-03-18 三星电子株式会社 半导体器件及其制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054250A (ja) 2014-09-04 2016-04-14 豊田合成株式会社 半導体装置、製造方法、方法
JP6337726B2 (ja) 2014-09-29 2018-06-06 株式会社デンソー 半導体装置およびその製造方法
JP6657963B2 (ja) * 2016-01-05 2020-03-04 富士電機株式会社 Mosfet
US10388564B2 (en) * 2016-01-12 2019-08-20 Micron Technology, Inc. Method for fabricating a memory device having two contacts
JP6406274B2 (ja) * 2016-02-05 2018-10-17 株式会社デンソー 半導体装置
JP7056408B2 (ja) * 2017-06-30 2022-04-19 富士電機株式会社 窒化ガリウム系半導体装置および窒化ガリウム系半導体装置の製造方法
JP6931572B2 (ja) * 2017-08-29 2021-09-08 株式会社アルバック ゲート絶縁膜の形成方法、および、ゲート絶縁膜
CN111052397B (zh) * 2017-10-31 2023-07-14 株式会社爱发科 薄膜晶体管及其制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308319A (ja) * 2000-04-20 2001-11-02 Fujitsu Ltd 絶縁ゲート型化合物半導体装置
CN1372327A (zh) * 2001-02-27 2002-10-02 松下电器产业株式会社 半导体器件及其制备方法
CN1697181A (zh) * 2004-05-14 2005-11-16 国际商业机器公司 互补金属-氧化物-半导体结构及其制作方法
JP2007165493A (ja) * 2005-12-13 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体を用いたヘテロ構造電界効果トランジスタ
JP2008053554A (ja) * 2006-08-25 2008-03-06 Osaka Univ 電子デバイスとその製造方法
CN101150144A (zh) * 2006-09-22 2008-03-26 中国科学院微电子研究所 一种氮化镓基场效应管及其制作方法
JP2008103408A (ja) * 2006-10-17 2008-05-01 Furukawa Electric Co Ltd:The 窒化物化合物半導体トランジスタ及びその製造方法
CN101246902A (zh) * 2008-03-24 2008-08-20 西安电子科技大学 InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
CN101320734A (zh) * 2007-06-08 2008-12-10 罗姆股份有限公司 半导体装置及其制作方法
JP2009059946A (ja) * 2007-08-31 2009-03-19 Fujitsu Ltd 化合物半導体装置およびその製造方法
JP2009302435A (ja) * 2008-06-17 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057158A (ja) * 2000-08-09 2002-02-22 Sony Corp 絶縁性窒化物層及びその形成方法、半導体装置及びその製造方法
US20030129446A1 (en) * 2001-12-31 2003-07-10 Memscap Le Parc Technologique Des Fontaines Multilayer structure used especially as a material of high relative permittivity
JP4177803B2 (ja) * 2004-10-21 2008-11-05 株式会社東芝 半導体装置の製造方法
US8421119B2 (en) * 2006-09-13 2013-04-16 Rohm Co., Ltd. GaN related compound semiconductor element and process for producing the same and device having the same
JP2008277640A (ja) 2007-05-02 2008-11-13 Toshiba Corp 窒化物半導体素子
US20100117118A1 (en) * 2008-08-07 2010-05-13 Dabiran Amir M High electron mobility heterojunction device
JP5173667B2 (ja) 2008-08-11 2013-04-03 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、無線基地局及び方法
JP5496635B2 (ja) * 2008-12-19 2014-05-21 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
JP2011029483A (ja) * 2009-07-28 2011-02-10 Renesas Electronics Corp 半導体装置およびその製造方法
US8193523B2 (en) * 2009-12-30 2012-06-05 Intel Corporation Germanium-based quantum well devices
JP5839804B2 (ja) * 2011-01-25 2016-01-06 国立大学法人東北大学 半導体装置の製造方法、および半導体装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308319A (ja) * 2000-04-20 2001-11-02 Fujitsu Ltd 絶縁ゲート型化合物半導体装置
CN1372327A (zh) * 2001-02-27 2002-10-02 松下电器产业株式会社 半导体器件及其制备方法
CN1697181A (zh) * 2004-05-14 2005-11-16 国际商业机器公司 互补金属-氧化物-半导体结构及其制作方法
JP2007165493A (ja) * 2005-12-13 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体を用いたヘテロ構造電界効果トランジスタ
JP2008053554A (ja) * 2006-08-25 2008-03-06 Osaka Univ 電子デバイスとその製造方法
CN101150144A (zh) * 2006-09-22 2008-03-26 中国科学院微电子研究所 一种氮化镓基场效应管及其制作方法
JP2008103408A (ja) * 2006-10-17 2008-05-01 Furukawa Electric Co Ltd:The 窒化物化合物半導体トランジスタ及びその製造方法
CN101320734A (zh) * 2007-06-08 2008-12-10 罗姆股份有限公司 半导体装置及其制作方法
JP2009059946A (ja) * 2007-08-31 2009-03-19 Fujitsu Ltd 化合物半導体装置およびその製造方法
CN101246902A (zh) * 2008-03-24 2008-08-20 西安电子科技大学 InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
JP2009302435A (ja) * 2008-06-17 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P.D.YE等: ""GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric"", 《APPLIED PHYSICAL LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425620A (zh) * 2013-09-03 2015-03-18 三星电子株式会社 半导体器件及其制造方法

Also Published As

Publication number Publication date
EP2544240A4 (en) 2013-08-28
US9875899B2 (en) 2018-01-23
EP2544240A1 (en) 2013-01-09
US20130032819A1 (en) 2013-02-07
JP2011181752A (ja) 2011-09-15
CN102792449B (zh) 2016-03-09
JP5506036B2 (ja) 2014-05-28
EP2544240B1 (en) 2017-01-11
WO2011108615A1 (ja) 2011-09-09

Similar Documents

Publication Publication Date Title
He et al. Recent advances in GaN‐based power HEMT devices
CN102792449A (zh) 半导体晶体管
US10396192B2 (en) HEMT transistors with improved electron mobility
US9048174B2 (en) Compound semiconductor device having gallium nitride gate structures
CN108604597B (zh) 具有al(1-x)sixo栅极绝缘体的增强模式iii-氮化物器件
CN102365763B (zh) GaN缓冲层中的掺杂剂扩散调制
US9443969B2 (en) Transistor having metal diffusion barrier
US10026808B2 (en) Semiconductor device including insulating film that includes negatively charged microcrystal
US8803158B1 (en) High electron mobility transistor and method of forming the same
US10490644B2 (en) Hybrid gate dielectrics for semiconductor power devices
CN111384178B (zh) 半导体器件以及用于制造此类半导体器件的方法
US10297456B2 (en) Dielectric structures for nitride semiconductor devices
JP6673125B2 (ja) 半導体装置
CN110809819B (zh) 半导体装置及半导体装置的制造方法
JP6784201B2 (ja) Mis型半導体装置とその製造方法
JP5059793B2 (ja) バイポーラトランジスタの製造方法
TW201209926A (en) Metal gate transistor and method for fabricating the same
KR20130137983A (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: FURUKAWA ELECTRIC CO., LTD.

Free format text: FORMER OWNER: ADVANCED POWER DEVICE RESEARCH ASSOCIATION

Effective date: 20140421

Owner name: FUJI ELECTRIC CO., LTD. TOKOKU UNIV.

Free format text: FORMER OWNER: TOKOKU UNIV.

Effective date: 20140421

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140421

Address after: Tokyo, Japan

Applicant after: Furukawa Electric Co., Ltd.

Applicant after: Fuji Electric Co., Ltd.

Applicant after: Tokoku University of National University Corp.

Address before: Kanagawa County, Japan

Applicant before: Advanced Power Device Research Association

Applicant before: Tokoku University of National University Corp.

ASS Succession or assignment of patent right

Owner name: FUJI ELECTRIC CO., LTD.

Free format text: FORMER OWNER: FURUKAWA ELECTRIC CO., LTD.

Effective date: 20141211

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20141211

Address after: Kawasaki, Kanagawa, Japan

Applicant after: Fuji Electric Co., Ltd.

Applicant after: Tokoku University of National University Corp.

Address before: Tokyo, Japan

Applicant before: Furukawa Electric Co., Ltd.

Applicant before: Fuji Electric Co., Ltd.

Applicant before: Tokoku University of National University Corp.

C14 Grant of patent or utility model
GR01 Patent grant