CN102664188B - 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管 - Google Patents

一种具有复合缓冲层的氮化镓基高电子迁移率晶体管 Download PDF

Info

Publication number
CN102664188B
CN102664188B CN201210142937.3A CN201210142937A CN102664188B CN 102664188 B CN102664188 B CN 102664188B CN 201210142937 A CN201210142937 A CN 201210142937A CN 102664188 B CN102664188 B CN 102664188B
Authority
CN
China
Prior art keywords
gan
layer
alinn
buffer layer
compound buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210142937.3A
Other languages
English (en)
Other versions
CN102664188A (zh
Inventor
杜江锋
赵子奇
马坤华
尹江龙
于奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201210142937.3A priority Critical patent/CN102664188B/zh
Publication of CN102664188A publication Critical patent/CN102664188A/zh
Application granted granted Critical
Publication of CN102664188B publication Critical patent/CN102664188B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

一种具有复合缓冲层的氮化镓基高电子迁移率晶体管,属于半导体器件领域。该晶体管包含衬底(108),氮化铝成核层(107),氮化镓沟道层(201),氮化铝***层(105),铝镓氮势垒层(104)以及势垒层上形成的源极(101)、漏极(102)和栅极(103),其中源极(101)和漏极(102)与铝镓氮势垒层(104)形成欧姆接触,栅极(103)与铝镓氮势垒层(104)形成肖特基接触,其特征是,它还包含一层位于氮化镓沟道层(201)和氮化铝成核层(107)之间的铝铟氮/氮化镓复合缓冲层(202),以抑制电子在缓冲层内的输运,降低器件缓冲层泄漏电流,提升器件击穿电压与输出功率。

Description

一种具有复合缓冲层的氮化镓基高电子迁移率晶体管
技术领域
一种具有复合缓冲层旳氮化镓基高电子迁移率晶体管,属于半导体器件领域,可以有效降低器件的泄漏电流和提高器件击穿电压。
技术背景
氮化镓基高电子迁移率晶体管(GaN HEMT)不但具有氮化镓材料禁带宽度大、临界击穿电场高、电子饱和漂移速度高、耐高温、抗辐射和良好的化学稳定性等优异特性,同时氮化镓材料可以与铝镓氮(AlGaN)等材料形成具有高浓度和高迁移率的二维电子气沟道,因此特别适用于高压、大功率和高温应用,是电力电子应用最具潜力的晶体管之一。
图1为已有技术GaN HEMT结构剖面图,主要包括衬底(108),氮化铝(AlN)成核层(107),氮化镓(GaN)缓冲层(106),氮化铝(AlN)***层(105),铝镓氮(AlGaN)势垒层(104)以及势垒层上形成的源极(101)、漏极(102)和栅极(103),其中源极(101)和漏极(102)与AlGaN势垒层(104)形成欧姆接触,栅极(103)与AlGaN势垒层(104)形成肖特基接触。但是对于普通GaN HEMT而言,当器件承受耐压时,从源极(101)注入的电子可以经过GaN缓冲层(106)到达漏极(102),形成漏电通道,过大的缓冲层泄漏电流会导致器件提前击穿,使器件的击穿电压远低于理论预期,限制了GaN HEMT的输出能力。
在本发明提出以前,为降低器件缓冲层泄漏电流,提高器件击穿电压,通常使用以下方法来实现高阻态缓冲层设计:
1、在GaN缓冲层(106)内掺入碳、铁等杂质[Eldad Bahat-Treidel et al.,“AlGaN/GaN/GaN:CBack-Barrier HFETs With Breakdown Voltage of Over1kV and Low RON×A”,Transactions onElectron Devices,VOL.57,No.11,3050-3058(2010)]。碳、铁等杂质会在氮化镓材料内引入深能级电子陷阱,俘获从源极注入至缓冲层内的电子,从而降低缓冲层的泄漏电流,但是该技术对器件击穿电压提升有限,无法充分发挥氮化镓材料的耐压优势,该同时碳、铁等杂质引入的深能级陷阱同样会导致诸如器件输出电流下降、电流崩塌效应和反应速度下降等缺点。
2、使用AlGaN等背势垒缓冲层结构[Oliver Gilt et al.,“Normally-off AlGaN/GaN HFET withp-type GaN Gate and AlGaN Buffer”,Integrated Power Electronics Systems,2010]。AlGaN等背势垒的使用增大了从沟道二维电子气到缓冲层的势垒高度,从而降低了器件缓冲层泄漏电流,但是该技术同样对器件击穿电压提升有限,未能充分体现氮化镓材料的耐压优势,同时AlGaN背势垒不仅在缓冲层和沟道之间由于晶格失配引入陷阱,而且缓冲层中AlGaN和势垒层中AlGaN具有相反的极化效应,会降低沟道二维电子气浓度,增大器件导通电阻。
3、使用AlGaN/GaN或AlN/GaN等复合缓冲层结构[Manabu Yanagihara et al.,“Recentadvances in GaN transistors for future emerging application”,Phys.Status Solidi A,Vol.206,No.6,1221-1227(2009)]。AlGaN/GaN或AlN/GaN复合结构在缓冲层内引入超晶格能带结构,相比缓冲层掺杂和铝镓氮背势垒结构,该结构可以进一步抑制电子在缓冲层内的输运,提升器件击穿电压,但由于AlGaN和AlN材料与GaN材料的晶格失配同样会破坏缓冲层的晶体结构,引入陷阱和极化电荷,降低器件性能。
4、在[王晓亮等,宽带隙氮化镓基异质结场效应晶体管结构及制作方法,CN100555660C]中公布了一种使用铝(铟)镓氮(AlxInyGazN)超晶格缓冲层的氮化镓基场效应晶体管结构。该结构可以降低材料的晶格缺陷和提高沟道二维电子气迁移率。但是所述的氮化镓基异质结场效应晶体管使用了晶格常数不同的AlxInyGazN超晶格缓冲层,会在缓冲层内引入新的失配应力,引入陷阱和极化电荷。同时它还包括一层位于铝(铟)镓氮超晶格层和高迁移率氮化镓层之间的非有意掺杂或有意掺杂氮化镓高阻层,该高阻层虽然可以减小电子向缓冲层的泄漏,但是对器件击穿电压的提升有限,不能充分发挥氮化镓材料的优势,同时该高阻层内的深能级陷阱会造成器件输出电流下降、电流崩塌效应和反应速度下降。
发明内容
本发明的目的是为了抑制电子在缓冲层内的输运,降低器件泄漏电流,从而使器件具有更高的击穿电压,本发明提出了一种使用铝铟氮/氮化镓(AlInN/GaN)复合缓冲层耐压结构的GaN HEMT。与以上方法相比,本发明的主要优势有:(1)在缓冲层内引入超晶格能带结构,阻挡电子向缓冲层内部渗透,降低缓冲层泄漏电流;(2)通过精确控制AlInN中In摩尔组分,可以做到AlInN材料和GaN材料晶格的完美匹配,避免了由于应力引入的缺陷和陷阱;(3)不使用非有意掺杂或有意掺杂的GaN高阻缓冲层,在降低缓冲层泄露电流的同时避免了GaN高阻缓冲层内深能级陷阱对器件性能的影响。
本发明提供的氮化镓基高电子迁移率晶体管结构如图2所示,主要包括衬底(108),AlN成核层(107),GaN沟道层(201),AlN***层(105),AlGaN势垒层(104)以及势垒层上形成的源极(101)、漏极(102)和栅极(103),其中源极(101)和漏极(102)与势垒层(104)形成欧姆接触,栅极(103)与势垒层(104)形成肖特基接触,其特征是,它还包括一层位于GaN沟道层(201)和AlN成核层(107)之间的AlInN/GaN复合缓冲层(202)。该复合缓冲层在AlN成核层(107)之上按GaN/AlInN……GaN/AlInN重复排列直到复合缓冲层所需的厚度,该缓冲层厚度为1μm~8μm。其中AlInN单层厚度为1nm~10nm,GaN单层厚度为10nm~50nm。AlInN/GaN复合缓冲层(202)中AlInN层内In摩尔组分为17%~18%,以确保AlInN材料与GaN材料晶格常数相同。
根据本发明提供的氮化镓基高电子迁移率晶体管,所述衬底可以是蓝宝石(Al2O3)、碳化硅(SiC)或者硅(Si);所述AlN成核层(107)的厚度为10nm到3μm,所述GaN沟道层(201)厚度为5nm到2μm;所述AlN***层(105)厚度为1nm到5nm;所述AlGaN势垒层(104)厚度为10nm到50nm。
根据本发明提供的GaN HEMT,所述AlInN/GaN复合缓冲层(202)的能带结构如图3所示,此时缓冲层内的电子输运过程可分为横向输运(沿x方向)和纵向输运(沿y方向),与已有技术GaN缓冲层(106)或AlGaN背势垒相比,电子在y方向的输运受到了限制,其主要的输运机制有两种:第一,热激发传导,即电子获得足够的能量跃迁过AlInN势垒(图中过程a),但在沿着y方向的运动过程中,会与晶格相互作用重新落回到氮化镓势阱中,此时电子需要再一次获得能量才能继续向缓冲层内部输运;第二,多阱连续共振遂穿传导(图中过程b),即电子依次遂穿过多个势阱向缓冲层内部运动,通过合理设计缓冲层参数,可以降电子的这种遂穿几率降至零。这就降低了电子在缓冲层内的渗透深度,减小了器件缓冲层泄漏电流,从而提高了器件击穿电压。
附图说明
图1是己有技术GaN HEMT结构示意图。主要包括衬底(108),AlN成核层(107),GaN缓冲层(106),AlN***层(105),AlGaN势垒层(104)以及势垒层上形成的源极(101)、漏极(102)和栅极(103),其中源极(101)和漏极(102)与势垒层(104)形成欧姆接触,栅极(103)与势垒层(104)形成肖特基接触。
图2是本发明提供的氮化镓基高电子迁移率晶体管结构示意图。主要包括衬底(108),AlN成核层(107),AlInN/GaN复合缓冲层(202),GaN沟道层(201),AlN***层(105),AlGaN势垒层(104)以及势垒层上形成的源极(101)、漏极(102)和栅极(103)。
图3是本发明提供的GaN HEMT中AlInN/GaN复合缓冲层能带结构与电子纵向输运机制示意图,其中Eg-AlInN为AlInN材料禁带宽度,Eg-GaN为GaN材料禁带宽度。
图5a是本发明提供的GaN HEMT与已有技术GaN HEMT转移特性比较,其中横坐标为栅极电压(Vg),纵坐标为源漏电流(Ids),实线为本发明晶体管图2使用AlInN/GaN复合缓冲层(202)结构的转移特性,虚线为已有技术晶体管图1使用GaN缓冲层(106)结构的转移特性,器件源漏电压(Vds)为10V。
图5b是本发明提供的GaN HEMT与已有技术GaN HEMT截止状态下源漏泄漏电流比较,其中其中横坐标为栅极电压(Vg),纵坐标为源漏泄露电流(Ileak),实线为本发明晶体管图2使用AlInN/GaN复合缓冲层(202)结构的泄漏电流,虚线为已有技术晶体管图1使用GaN缓冲层(106)结构的泄漏电流,器件源漏电压(Vds)为10V。
图6a是本发明带有AlInN/GaN复合缓冲层(202)的垂直器件结构示意图。主要包括衬底(108)、AlInN/GaN复合缓冲层(202)、GaN沟道层(201)以及阳极(601)和阴极(602)两个电极,其中阳极(601)和GaN沟道层(201)、阴极(602)和衬底(108)均形成欧姆接触。
图6b是图6a所示的垂直器件结构电流电压特性比较,其中横坐标为阳极电压(VA),纵坐标为阳极电流(IA),,实线为本发明使用AlInN/GaN复合缓冲层(202)结构的电压电流特性,虚线为巳有技术使用GaN缓冲层(106)结构的电压电流特性。
具体实施方案
在本发明中,所述AlInN/GaN复合缓冲层(202)结构中AlInN单层厚度,GaN单层厚度和缓冲层总厚度可以根据具体器件指标要求,使用SENTAURUS、?MEDICI等器件仿真软件确定,以使器件在截止状态下的缓冲层泄漏电流达到最小,最大地提升器件的耐压能力。
为验证本发明中所述的AlInN/GaN复合缓冲层(202)结构抑制泄漏电流的效果,分别对使用AlInN/GaN复合缓冲层(202)和GaN缓冲层(106)的GaN HEMT进行了仿真。使用AlInN/GaN复合缓冲层(202)的GaN HEMT中,GaN沟道层(201)厚度为30nm,AlInN/GaN复合缓冲层(202)厚度为3μm,AlInN/GaN复合缓冲层(202)内AlInN单层厚度为5nm,GaN单层厚度为20nm;使用GaN缓冲层(106)的GaN HEMT中,GaN缓冲层(106)厚度为3μm。两种器件其他参数完全相同,具体参数值如表1所示,器件转移特性如图5a所示。
从器件转移特性比较可以看出,使用AlInN/GaN复合缓冲层(202)结构的GaN HEMT具有更好的夹断特性,同时在相同的二维电子气浓度下表现出更大的输出电流(栅极电压Vg为1V时,AlInN/GaN复合缓冲层(202)GaN HEMT输出电流为1.30A/mm,而GaN缓冲层(106)GaN HEMT输出电流为1.09A/mm),说明AlInN/GaN复合缓冲层(202)结构具有更好的二维电子气限域性和更小的缓冲层泄漏电流。
图5b为截止状态下,使用AlInN/GaN复合缓冲层(202)与GaN缓冲层(106)的GaN HEMT源漏泄露电流比较,从图中可以看出,在截止状态下,使用AlInN/GaN复合缓冲层(202)的GaN HEMT源漏泄露电流(实线)比使用GaN缓冲层(106)的GaN HEMT(虚线)下降了约7个数量级,说明AlInN/GaN复合缓冲层(202)有效地抑制了电子在缓冲层内的输运,降低器件缓冲层泄漏电流。
表1器件仿真结构参数
器件参数 参数值
栅长 0.5μm
栅漏间距 2μm
栅源间距 0.5μm
Si衬底厚度 0.5μm
AlN成核层厚度 10nm
AlN***厚度 1nm
AlGaN势垒层厚度 25nm
沟道二维电子气浓度 1×1013cm-2
源漏电压 10V
为进一步验证AlInN/GaN复合缓冲层(202)结构抑制缓冲层泄漏电流的效果,分别对图6a所示使用本发明AlInN/GaN复合缓冲层(202)和使用已有技术GaN缓冲层(106)垂直器件结构的电流-电压进行了仿真。其中GaN沟道层(201)厚度均为30nm,硅衬底厚度均为0.5μm,使用AlInN/GaN复合缓冲层(202)的垂直结构中,AlInN/GaN复合缓冲层(202)厚度为0.5μm,AlInN/GaN复合缓冲层(202)内AlInN单层厚度为5nm,GaN单层厚度为20nm;使用GaN缓冲层(106)的GaN HEMT中,GaN缓冲层(106)厚度为0.5μm。
器件仿真结果如图6b所示:巳有技术GaN缓冲层(106)结构其泄漏电流很大(虚线),电流随着电压的增大而线性增大直至饱和;而0.5μm厚的AlInN/GaN复合缓冲层则有效地抑制了泄漏电流(实线),直到200V左右器件的电流才开始缓慢增大。

Claims (4)

1.一种具有复合缓冲层的氮化镓基高电子迁移率晶体管,包含有衬底(108),氮化铝(AlN)成核层(107),氮化镓(GaN)沟道层(201),氮化铝(AlN)***层(105),铝镓氮(AlGaN)势垒层(104)以及势垒层上形成的源极(101)、漏极(102)和栅极(103),其中源极(101)和漏极(102)与AlGaN势垒层(104)形成欧姆接触,栅极(103)与AlGaN势垒层(104)形成肖特基接触,其特征是:在位于GaN沟道层(201)和AlN成核层(107)之间有一层铝铟氮/氮化镓(AlInN/GaN)复合缓冲层(202),并在该复合缓冲层(202)中,AlInN层内铟摩尔组分为17%~18%,以确保AlInN材料与GaN材料晶格常数相同。
2.根据权利要求1所述的一种具有复合缓冲层的氮化镓基高电子迁移率晶体管,其特征是;所述AlInN/GaN复合缓冲层(202)位于AlN成核层(107)之上,按GaN/AlInN……GaN/AlInN重复排列直到复合缓冲层所需的厚度。
3.根据权利要求2所述的一种具有复合缓冲层的氮化镓基高电子迁移率晶体管,其特征是:所述AlInN/GaN复合缓冲层(202)总厚度为1μm~8μm。
4.根据权利要求3所述的一种具有复合缓冲层的氮化镓基高电子迁移率晶体管,其特征是:所述AlInN/GaN复合缓冲层(202)中AlInN单层厚度为1nm~10nm,GaN单层厚度为10nm~50nm。
CN201210142937.3A 2012-05-10 2012-05-10 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管 Expired - Fee Related CN102664188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210142937.3A CN102664188B (zh) 2012-05-10 2012-05-10 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210142937.3A CN102664188B (zh) 2012-05-10 2012-05-10 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管

Publications (2)

Publication Number Publication Date
CN102664188A CN102664188A (zh) 2012-09-12
CN102664188B true CN102664188B (zh) 2014-07-23

Family

ID=46773643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210142937.3A Expired - Fee Related CN102664188B (zh) 2012-05-10 2012-05-10 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管

Country Status (1)

Country Link
CN (1) CN102664188B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832241B (zh) * 2012-09-14 2016-04-27 电子科技大学 一种具有横向p-n结复合缓冲层结构的氮化镓基异质结场效应晶体管
JP2015053328A (ja) * 2013-09-05 2015-03-19 富士通株式会社 半導体装置
CN104051522B (zh) * 2014-07-02 2018-05-11 苏州晶湛半导体有限公司 一种增强型氮化物半导体器件及其制造方法
CN104157679B (zh) * 2014-08-27 2017-11-14 电子科技大学 一种氮化镓基增强型异质结场效应晶体管
WO2018120363A1 (zh) * 2016-12-31 2018-07-05 华南理工大学 基于Si衬底的GaN基增强型HEMT器件及其制造方法
CN106711212B (zh) * 2016-12-31 2018-12-11 华南理工大学 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件及其制造方法
CN108428741B (zh) * 2017-02-14 2021-12-14 英诺赛科(珠海)科技有限公司 氮化镓半导体器件及其制作方法
US9953977B1 (en) 2017-04-13 2018-04-24 International Business Machines Corporation FinFET semiconductor device
CN113659006B (zh) * 2021-08-05 2024-05-24 王晓波 一种基于第三代半导体GaN材料的HEMT外延器件及其生长方法
CN118140313A (zh) * 2021-10-28 2024-06-04 华为技术有限公司 集成电路、其制备方法、功率放大器及电子设备
CN114156380B (zh) * 2021-11-30 2023-09-22 华灿光电(浙江)有限公司 提高内量子效率的发光二极管外延片及其制备方法
CN117199122A (zh) * 2022-05-26 2023-12-08 华为技术有限公司 半导体器件、电子芯片和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355951B1 (en) * 1997-07-24 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Field effect semiconductor device
CN1692499A (zh) * 2002-12-04 2005-11-02 昂科公司 基于氮化镓的装置和制造方法
CN100397655C (zh) * 2004-12-02 2008-06-25 中国科学院半导体研究所 提高氮化镓基高电子迁移率晶体管性能的结构及制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814434B (zh) * 2010-03-04 2011-08-17 中国电子科技集团公司第五十五研究所 一种制造氮面极性AlN/AlInN复合背势垒氮化镓场效应管的方法
JP5706102B2 (ja) * 2010-05-07 2015-04-22 ローム株式会社 窒化物半導体素子
CN101901758B (zh) * 2010-06-24 2012-05-23 西安电子科技大学 基于m面SiC衬底的非极性m面GaN薄膜的MOCVD生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355951B1 (en) * 1997-07-24 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Field effect semiconductor device
CN1692499A (zh) * 2002-12-04 2005-11-02 昂科公司 基于氮化镓的装置和制造方法
CN100397655C (zh) * 2004-12-02 2008-06-25 中国科学院半导体研究所 提高氮化镓基高电子迁移率晶体管性能的结构及制作方法

Also Published As

Publication number Publication date
CN102664188A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
CN102664188B (zh) 一种具有复合缓冲层的氮化镓基高电子迁移率晶体管
US8933461B2 (en) III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
Liu et al. AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement
CN102947921B (zh) 半导体器件
JP6732131B2 (ja) 半導体デバイス及び半導体デバイスを設計する方法
Wuerfl et al. Reliability issues of GaN based high voltage power devices
US20150255547A1 (en) III-Nitride High Electron Mobility Transistor Structures and Methods for Fabrication of Same
CN107731902B (zh) 第iii族氮化物常关晶体管的层结构
CN102820325B (zh) 一种具有背电极结构的氮化镓基异质结场效应晶体管
CN104916633A (zh) 半导体装置
CN104201202B (zh) 一种具有复合势垒层的氮化镓基异质结场效应管
CN106298911B (zh) 一种双结型栅氮化镓异质结场效应管
CN103123934B (zh) 具势垒层的氮化镓基高电子迁移率晶体管结构及制作方法
CN102832241A (zh) 一种具有横向p-n结复合缓冲层结构的氮化镓基异质结场效应晶体管
CN104269433B (zh) 具有复合沟道层的氮化镓基增强型异质结场效应晶体管
CN102856373B (zh) 高电子迁移率晶体管
CN103579326B (zh) 一种具有纵向复合缓冲层的氮化镓基高电子迁移率晶体管
Yang et al. High channel conductivity, breakdown field strength, and low current collapse in AlGaN/GaN/Si $\delta $-Doped AlGaN/GaN: C HEMTs
US20180076287A1 (en) Semiconductor device and semiconductor substrate
CN108878524B (zh) 一种氮化镓基高电子迁移率晶体管
Zhang et al. Boosted high-temperature electrical characteristics of AlGaN/GaN HEMTs with rationally designed compositionally graded AlGaN back barriers
CN106206708A (zh) 半导体装置
CN110310981B (zh) 氮面增强型复合势垒层氮化镓基异质结场效应管
CN103474455A (zh) 一种具有复合金属栅的氮化镓基高电子迁移率晶体管
US9887267B2 (en) Normally-off field effect transistor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140723

Termination date: 20160510

CF01 Termination of patent right due to non-payment of annual fee