CN102544009B - 一种高迁移率cmos集成单元 - Google Patents

一种高迁移率cmos集成单元 Download PDF

Info

Publication number
CN102544009B
CN102544009B CN201010578514.7A CN201010578514A CN102544009B CN 102544009 B CN102544009 B CN 102544009B CN 201010578514 A CN201010578514 A CN 201010578514A CN 102544009 B CN102544009 B CN 102544009B
Authority
CN
China
Prior art keywords
single crystal
indium gallium
germanium
crystal layer
gallium arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010578514.7A
Other languages
English (en)
Other versions
CN102544009A (zh
Inventor
孙兵
刘洪刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201010578514.7A priority Critical patent/CN102544009B/zh
Publication of CN102544009A publication Critical patent/CN102544009A/zh
Application granted granted Critical
Publication of CN102544009B publication Critical patent/CN102544009B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种高迁移率CMOS集成单元,属于半导体集成技术领域。该高迁移率CMOS集成单元将高电子迁移率的铟镓砷NMOSFET和高空穴迁移率的锗PMOSFET平面集成在单晶硅衬底上,可以实现具有不同沟道材料且特性优异的集成CMOS器件,具有取代传统硅基CMOS器件的潜力,在后摩尔时代具有实际的应用价值。该CMOS集成单元还可以与传统硅基器件和III-V族化合物半导体器件等器件集成在一起,实现多功能模块单片集成,降低功耗,提高性能。

Description

一种高迁移率CMOS集成单元
技术领域
本发明涉及半导体集成技术领域,尤其涉及一种高迁移率CMOS集成单元。
背景技术
半导体技术作为信息产业的核心和基础,被视为衡量一个国家科学技术进步和综合国力的重要标志。在过去的40多年中,以硅CMOS技术为基础的集成电路技术遵循摩尔定律通过缩小器件的特征尺寸来提高芯片的工作速度、增加集成度以及降低成本,集成电路的特征尺寸由微米尺度进化到纳米尺度。但是当MOS器件的栅长减小到90纳米后,栅氧化层的厚度将小于1.2纳米,摩尔定律开始面临来自物理与技术方面的双重挑战。
学术界与产业界普遍认为:采用高迁移率沟道材料替代传统硅材料将是CMOS技术的重要发展方向,其中锗与III-V族半导体沟道材料最有可能在近期实现大规模应用。锗的空穴迁移率高适合制备PMOSFET,而III-V族半导体材料的电子迁移率高适合制备NMOSFET,III-V族半导体材料中最具应用潜质的为铟镓砷材料,将铟镓砷NMOSFET和锗PMOSFET相结合的CMOS器件成为解决硅基CMOS遇到的问题有效途径。然而将铟镓砷NMOSFET和锗PMOSFET平面集成已经成为当前研究的重点与难点。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的主要目的在于提供一种高迁移率CMOS集成单元,以将铟镓砷NMOSFET和锗PMOSFET平面集成到单晶硅衬底上,实现具有不同沟道材料且特性优异的集成CMOS器件。
(二)技术方案
为达到上述目的,本发明提供了一种高迁移率CMOS集成单元,该高迁移率CMOS集成单元包括单晶硅衬底、缓冲层、势垒层、P型轻掺杂铟镓砷单晶层、N型重掺杂铟镓砷单晶层、第一阻挡层、第二阻挡层、第一N型重掺杂锗单晶层、第二N型重掺杂锗单晶层、N型轻掺杂锗单晶层、P型重掺杂锗单晶层、第三N型重掺杂锗单晶层、铟镓砷NMOSFET栅氧化层、铟镓砷NMOSFET栅金属层、铟镓砷NMOSFET栅侧墙、铟镓砷NMOSFET源漏引出电极、隔离区、锗PMOSFET栅钝化层、锗PMOSFET栅氧化层、锗PMOSFET栅金属层、锗PMOSFET栅侧墙和锗PMOSFET源漏引出电极,其中铟镓砷NMOSFET以所述P型轻掺杂铟镓砷单晶层为沟道和衬底材料;锗PMOSFET以所述N型轻掺杂锗单晶层为沟道和衬底材料;所述隔离区将所述铟镓砷NMOSFET和所述锗PMOSFET相隔离;所述单晶硅衬底位于所述高迁移率CMOS集成单元的底部;所述缓冲层叠置在所述单晶硅衬底之上;所述势垒层叠置在所述缓冲层之上;所述P型轻掺杂铟镓砷单晶层叠置在所述势垒层之上。
上述方案中,所述缓冲层用于过滤位错,释放应力,所述缓冲层是低温生长的砷化镓,其表面与所述势垒层材料的晶格相匹配,所述缓冲层厚度在1纳米至3微米之间;所述势垒层为砷化镓或铟镓磷的单晶层,铟镓磷中各原子数比值铟∶镓∶磷=0.5∶0.5∶1,所述势垒层的厚度在1纳米至2微米之间。
上述方案中,所述P型轻掺杂铟镓砷单晶层和所述N型重掺杂铟镓砷单晶层中铟、镓、砷原子数比值铟∶镓∶砷=x∶(1-x)∶1,x的取值范围可设置为0<x<0.6之间,所述P型轻掺杂铟镓砷单晶层的厚度在1纳米至100纳米之间。
上述方案中,所述第一阻挡层和所述第二阻挡层用于抑制其上下的锗单晶和铟镓砷单晶之间的互扩散掺杂效应,并改善所述铟镓砷NMOSFET栅介质层与沟道界面,减小界面态密度,同时所述第一阻挡层、所述P型轻掺杂铟镓砷单晶层和所述势垒层形成超晶格量子阱,有利于提高所述铟镓砷NMOSFET沟道电子迁移率;所述第一阻挡层和所述第二阻挡层为磷化铟、磷化镓、铟铝磷、铟镓磷、磷化铝或铝镓磷的单晶层,铟铝磷中各原子数比值铟∶铝∶磷=y∶(1-y)∶1,y的取值范围可设置为0<y<1之间,铟镓磷中各原子数比值铟∶镓∶磷=z∶(1-z)∶1,z的取值范围可设置为0<z<1之间,铝镓磷中各原子数比值铟∶镓∶磷=a∶(1-a)∶1,a的取值范围设置为0<a<1之间,所述第一阻挡层和所述第二阻挡层不同之处在于第一阻挡层为未掺杂单晶层,而所述第二阻挡层为N型重掺杂,所述第一阻挡层和所述第二阻挡层的厚度在3埃至20纳米之间。
上述方案中,所述铟镓砷NMOSFET的沟道和衬底为所述P型轻掺杂铟镓砷单晶层,P型轻掺杂元素为镁、铍、锌的一种或多种,所述铟镓砷NMOSFET的栅从下至上依次为所述第一阻挡层、所述铟镓砷NMOSFET栅氧化层和所述铟镓砷NMOSFET栅金属层,两侧为铟镓砷NMOSFET栅侧墙;所述第一阻挡层在所述P型轻掺杂铟镓砷单晶层之上,所述铟镓砷NMOSFET栅氧化层为高介电常数的氧化物,这些氧化物包括铝基、锆基、铪基、钆基、镓基、镧基、钽基氧化物,氧化物中的掺杂元素可以为铝、锆、铪、钆、镓、镧、钽、氮、磷,氧化物中掺杂元素的原子数量与总的金属元素的原子数量的比值=m∶(1-m),m的取值范围可设置为0≤m<1,所述铟镓砷NMOSFET栅氧化层的厚度在3埃至100纳米之间;所述铟镓砷NMOSFET栅金属层为氮化钽、氮化钛、金、钛、镍、铂或铝的一层或以上多种金属材料层多层组合而成,所述铟镓砷NMOSFET栅侧墙为二氧化硅、氮化硅或氮氧硅。
上述方案中,所述铟镓砷NMOSFET的源和漏从下至上依次为所述N型重掺杂铟镓砷单晶层、所述第二阻挡层、所述第二N型重掺杂锗单晶层、所述第三N型重掺杂锗单晶层和所述铟镓砷NMOSFET源漏引出电极组成,其中所述N型重掺杂铟镓砷单晶层、所述第二阻挡层和所述第三N型重掺杂锗单晶层的掺杂浓度相同,所述第二N型重掺杂锗单晶层的掺杂浓度为上述N型重掺杂铟镓砷单晶层掺杂浓度和所述第一N型重掺杂锗单晶层的掺杂浓度之和,重掺杂元素为氮、磷、硫、硒、碲的一种或多种,所述铟镓砷NMOSFET源漏引出电极是镍、金、镍硅、钯、钛、铜、铂、锌、镉的一层或多层金属化而成,所述N型重掺杂铟镓砷单晶层的厚度在3埃至50纳米之间,上表面与所述P型轻掺杂铟镓砷单晶层在同一水平面。
上述方案中,所述第一N型重掺杂锗单晶层和所述第二N型重掺杂锗单晶层的厚度相同,在3埃-50纳米之间;所述N型轻掺杂锗单晶层和所述第三N型重掺杂锗单晶层的厚度相同,在1纳米-200纳米之间,P型重掺杂锗单晶层的厚度小于所述N型轻掺杂锗单晶层的厚度。
上述方案中,所述锗PMOSFET以所述N型轻掺杂锗单晶层为N型轻掺杂沟道和衬底材料,掺杂元素可以为氮、磷、硫、硒、碲的一种或多种。所述锗PMOSFET的栅从下至上依次为所述锗PMOSFET栅钝化层、所述锗PMOSFET栅氧化层和所述锗PMOSFET栅金属层,两侧为所述锗PMOSFET栅侧墙,所述锗PMOSFET栅钝化层可以为硅、锗氧氮、氧化硅、氮化铝、铝氧氮,钝化所述锗PMOSFET的沟道界面,减小界面态密度,厚度在3埃-50纳米之间,所述锗PMOSFET栅氧化层可以为高介电常数的氧化物,包括铝基、锆基、铪基、钆基、镓基、镧基、钽基氧化物,氧化物中的掺杂元素可以为铝、锆、铪、钆、镓、镧、钽、氮、磷,氧化物中掺杂元素的原子数量与总的金属元素的原子数量的比值=n∶(1-n),n的取值范围可设置为0≤n<1,所述锗PMOSFET栅氧化层的厚度在3埃-100纳米之间,所述锗PMOSFET栅金属层可以为氮化钽、氮化钛、金、钛、镍、铂或铝的一层或以上多种金属材料层多层金属化而成,所述锗PMOSFET栅侧墙可以为二氧化硅、氮化硅或氮氧硅。
上述方案中,所述锗PMOSFET的源漏由所述P型重掺杂锗单晶层和所述锗PMOSFET源漏引出电极组成,所述P型重掺杂锗单晶层中的掺杂元素可以为硼、镁、铍、铝、镓、锌的一种或多种;所述锗PMOSFET源漏引出电极和所述铟镓砷NMOSFET源漏引出电极相同,可以是镍、金、硅、钯、钛、铜、铂、锌、镉的一层或多层金属化引出而成。
上述方案中,所述高迁移率CMOS集成单元中铟镓砷NMOSFET和锗PMOSFET由隔离区隔离开来。所述隔离区可以为二氧化硅、氮化硅或氮氧硅,所述隔离区的深度大于所述P型轻掺杂铟镓砷单晶层、所述第一阻挡层、所述第一N型重掺杂锗单晶层和所述N型轻掺杂锗单晶层的厚度之和。
上述方案中,所述铟镓砷NMOSFET和所述锗PMOSFET集成在单晶硅衬底上,所述铟镓砷NMOSFET和锗PMOSFET的源和漏的上表面处在同一平面。
上述方案中,所述铟镓砷NMOSFET的源和漏上表面比铟镓砷沟道上表面高,具有源漏提升的效果,源和漏从下至上依次由所述N型重掺杂铟镓砷单晶层、所述第二阻挡层、所述第二N型重掺杂锗单晶层和所述第三N型重掺杂锗单晶层构成。
上述方案中,所述铟镓砷NMOSFET和所述锗PMOSFET的源漏上表面都为锗单晶层,可以采用同种金属进行金属化引出,能够同时实现铟镓砷NMOSFET和锗PMOSFET源漏的金属化电极引出。
上述方案中,所述第一N型重掺杂锗单晶层在所述阻挡层和所述N型轻掺杂锗单晶层之间,用以防止锗PMOSFET的源漏、第一阻挡层、P型轻掺杂铟镓砷单晶层相通形成通路导致器件失效,所述第一N型重掺杂锗单晶层的厚度在在3埃至50纳米之间。
上述方案中,所述第一阻挡层、所述P型轻掺杂铟镓砷单晶层和所述势垒层形成超晶格量子阱,将载流子局限在所述P型轻掺杂铟镓砷单晶层沟道表面,减小散射,提高所述铟镓砷NMOSFET沟道电子迁移率。
(三)有益效果
从上述技术方案可以看出,本发明具有以下有益效果:
本发明提供的这种高迁移率CMOS集成单元,铟镓砷NMOSFET的源区和漏区与沟道不在同一水平面,具有源漏抬升的效果,有利于减小NMOSFET的源漏串联电阻,提高铟镓砷NMOSFET的特性。铟镓砷NMOSFET和锗PMOSFET的源漏的上表面处在同一平面,铟镓砷NMOSFET和锗PMOSFET为平面集成,有利于CMOS集成技术后续工艺的展开。铟镓砷NMOSFET和锗PMOSFET的源漏引出上表面都为锗单晶,可以采用同种金属化和同种金属进行引出,可以同时实现铟镓砷NMOSFET和锗PMOSFET源漏的金属化和电极引出,减少工艺步骤,降低成本。铟镓砷NMOSFET的栅介质由阻挡层和栅氧化物叠层组成,与直接将栅氧化物生长在沟道材料上相比,有阻挡层的栅介质能够有效降低沟道界面态密度,且阻挡层、P型轻掺杂铟镓砷单晶层、势垒层可以形成超晶格量子阱,减小沟道电子散射,提高电子迁移率。而且铟镓砷NMOSFET和锗PMOSFET是集成在单晶硅衬底和III-V族半导体材料上,该器件可以与传统硅基器件和III-V族器件集成在一起,实现多器件模块单片集成,降低功耗,提高性能。
附图说明
图1为本发明所提供的高迁移率CMOS集成单元的结构示意图;其中,1为单晶硅衬底;2为缓冲层;3为势垒层;4a为P型轻掺杂铟镓砷单晶层;4b为N型重掺杂铟镓砷单晶层;5a为第一阻挡层;5b为第二阻挡层;6a为第一N型重掺杂锗单晶层;6b为第二N型重掺杂锗单晶层;6c为N型轻掺杂锗单晶层;6d为P型重掺杂锗单晶层;6e为第三N型重掺杂锗单晶层;7为铟镓砷NMOSFET栅氧化层;8为铟镓砷NMOSFET栅金属层;9为铟镓砷NMOSFET栅侧墙;10为铟镓砷NMOSFET源漏引出电极;11为隔离区;12为锗PMOSFET栅钝化层;13为锗PMOSFET栅氧化层;14为锗PMOSFET栅金属层;15为锗PMOSFET栅侧墙;16为锗PMOSFET源漏引出电极。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本实施例具体描述本发明所提供的一种高迁移率CMOS集成单元。
如图1所示,本发明所提供的高迁移率CMOS集成单元,所述高迁移率CMOS集成单元包括单晶硅衬底1、缓冲层2、势垒层3、P型轻掺杂铟镓砷单晶层4a、N型重掺杂铟镓砷单晶层4b、第一阻挡层5a、第二阻挡层5b、第一N型重掺杂锗单晶层6a、第二N型重掺杂锗单晶层6b、N型轻掺杂锗单晶层6c、P型重掺杂锗单晶层6d、第三N型重掺杂锗单晶层6e、铟镓砷NMOSFET栅氧化层7、铟镓砷NMOSFET栅金属层8、铟镓砷NMOSFET栅侧墙9、铟镓砷NMOSFET源漏引出电极10、隔离区11、锗PMOSFET栅钝化层12、锗PMOSFET栅氧化层13、锗PMOSFET栅金属层14、锗PMOSFET栅侧墙15和锗PMOSFET源漏引出电极16。
如图1所示,所述单晶硅衬底1位于所述高迁移率CMOS集成单元的底部;所述缓冲层2叠置在所述单晶硅衬底1上;所述势垒层3叠置在所述缓冲层2上;所述P型轻掺杂铟镓砷单晶层4a叠置在所述势垒层3上。
如图1所示,所述缓冲层2的作用在于过滤位错,释放应力,所述缓冲层可以是低温生长的砷化镓,其表面与势垒层材料的晶格相匹配,所述缓冲层厚度为1微米;所述势垒层3可以为砷化镓,所述势垒层3的厚度为1.5微米;
如图1,所述高迁移率CMOS集成单元中铟镓砷NMOSFET的沟道和衬底为所述P型轻掺杂铟镓砷单晶层4a,掺杂元素为铍,掺杂浓度为5*1017cm-3,所述高迁移率CMOS集成单元中铟镓砷NMOSFET的栅从下至上依次为所述第一阻挡层5a、所述铟镓砷NMOSFET栅氧化层7和所述铟镓砷NMOSFET栅金属层8,两侧为所述铟镓砷NMOSFET栅侧墙9,所述第一阻挡层5a在所述P型轻掺杂铟镓砷单晶层4a之上,所述铟镓砷NMOSFET栅氧化层7为氧化铝,所述氧化铝层的厚度为10纳米;所述铟镓砷NMOSFET栅金属层8为氮化钽,所述铟镓砷NMOSFET栅侧墙9为二氧化硅。
如图1所示,所述高迁移率CMOS集成单元中铟镓砷NMOSFET的源和漏从下至上依次为所述N型重掺杂铟镓砷单晶层4b、所述第二阻挡层5b、所述第二N型重掺杂锗单晶层6b、所述第三N型重掺杂锗单晶层6e和所述铟镓砷NMOSFET源漏引出电极10组成,其中所述N型重掺杂铟镓砷单晶层4b、所述第二阻挡层5b和所述第三N型重掺杂锗单晶层6e的掺杂浓度基本相同,掺杂元素为硫,掺杂浓度为5*1019cm-3,所述第二N型重掺杂锗单晶层6b的掺杂浓度为1*1020cm-3,掺杂元素磷和硫各占一半;所述铟镓砷NMOSFET源漏引出电极10为镍,在金属化过程中,镍与锗反应生成锗化镍,形成欧姆接触;所述N型重掺杂铟镓砷单晶层4b的厚度为20纳米,所述N型重掺杂铟镓砷单晶层4b的上表面与所述P型轻掺杂铟镓砷单晶层4a在同一水平面。
如图1所示,所述P型轻掺杂铟镓砷单晶层4a和所述N型重掺杂铟镓砷单晶层4b中铟、镓、砷原子数比值铟∶镓∶砷=0.1∶0.9∶1,所述P型轻掺杂铟镓砷单晶层4a的厚度为60纳米;所述第一阻挡层5a和所述第二阻挡层5b为铟镓磷单晶层,铝镓磷中各原子数比值铟∶镓∶磷=0.5∶0.5∶1,所述第一阻挡层5a和所述第二阻挡层5b不同之处在于第一阻挡层5a为未掺杂,而所述第二阻挡层5b为N型重掺杂,所述第一阻挡层5a和所述第二阻挡层5b的厚度为3纳米;所述第一N型重掺杂锗单晶层6a和所述第二N型重掺杂锗单晶层6b的厚度相同为20纳米,所述第一N型重掺杂锗单晶层6a的掺杂元素为磷,掺杂浓度为5*1019cm-3;所述N型轻掺杂锗单晶层6c和所述第三N型重掺杂锗单晶层6e的厚度相同为60纳米。
如图1所示,所述高迁移率CMOS集成单元中锗PMOSFET以所述N型轻掺杂锗单晶层6c为沟道和衬底材料,掺杂元素为磷,掺杂浓度为5*1017cm-3。所述锗PMOSFET的栅从下至上依次为所述锗PMOSFET栅钝化层12、所述锗PMOSFET栅氧化层13和所述锗PMOSFET栅金属层14,两侧为所述锗PMOSFET栅侧墙15;所述锗PMOSFET栅钝化层12为锗氧氮,厚度为2纳米;所述锗PMOSFET栅氧化层13可以为氧化铝,所述锗PMOSFET栅氧化层13的厚度为10纳米;所述锗PMOSFET栅金属层14为氮化钛;所述锗PMOSFET栅侧墙15为二氧化硅。
如图1所示,所述高迁移率CMOS集成单元中锗PMOSFET的源和漏由所述P型重掺杂锗单晶层6d和所述锗PMOSFET源漏引出电极16组成,所述P型重掺杂锗单晶层6d中的掺杂元素为硼,掺杂浓度为5*1019cm-3,所述锗PMOSFET源漏引出电极16和所述铟镓砷NMOSFET源漏引出电极10相同也是镍,在制备过程中,镍与锗界面反应生成锗化镍,形成欧姆接触。
如图1所示,所述高迁移率CMOS集成单元中所述铟镓砷NMOSFET和所述锗PMOSFET由隔离区11隔离开来。所述隔离区11为二氧化硅,所述隔离区的深度为200纳米。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高迁移率CMOS集成单元,其特征在于,该高迁移率CMOS集成单元包括单晶硅衬底、缓冲层、势垒层、P型轻掺杂铟镓砷单晶层、N型重掺杂铟镓砷单晶层、第一阻挡层、第二阻挡层、第一N型重掺杂锗单晶层、第二N型重掺杂锗单晶层、N型轻掺杂锗单晶层、P型重掺杂锗单晶层、第三N型重掺杂锗单晶层、铟镓砷NMOSFET栅氧化层、铟镓砷NMOSFET栅金属层、铟镓砷NMOSFET栅侧墙、铟镓砷NMOSFET源漏引出电极、隔离区、锗PMOSFET栅钝化层、锗PMOSFET栅氧化层、锗PMOSFET栅金属层、锗PMOSFET栅侧墙和锗PMOSFET源漏引出电极,其中铟镓砷NMOSFET以所述P型轻掺杂铟镓砷单晶层为沟道和衬底材料;锗PMOSFET以所述N型轻掺杂锗单晶层为沟道和衬底材料;所述隔离区将所述铟镓砷NMOSFET和所述锗PMOSFET相隔离;所述单晶硅衬底位于所述高迁移率CMOS集成单元的底部;所述缓冲层叠置在所述单晶硅衬底之上;所述势垒层叠置在所述缓冲层之上;所述P型轻掺杂铟镓砷单晶层叠置在所述势垒层之上;
其中,所述单晶硅衬底位于所述高迁移率CMOS集成单元的底部;所述缓冲层叠置在所述单晶硅衬底上;所述势垒层叠置在所述缓冲层上;所述P型轻掺杂铟镓砷单晶层叠置在所述势垒层上;所述隔离区叠置在所述势垒层之上,所述隔离区将所述高迁移率CMOS集成单元在所述势垒层以上部分隔离成NMOSFET和PMOSFET两部分,所述NMOSFET在左边,所述PMOSFET在右边;
所述NMOSFET由所述P型轻掺杂铟镓砷单晶层的左边部分、所述N型重掺杂铟镓砷单晶层、所述第一阻挡层的左边部分、所述第二阻挡层、所述第二N型重掺杂锗单晶层、所述第三N型重掺杂锗单晶层、所述铟镓砷NMOSFET栅氧化层、所述铟镓砷NMOSFET栅金属层、所述铟镓砷NMOSFET栅侧墙和所述铟镓砷NMOSFET源漏引出电极组成;所述N型重掺杂铟镓砷单晶层叠置在所述P型轻掺杂铟镓砷单晶层的左边部分的两边之上;所述第一阻挡层的左边部分叠置在所述P型轻掺杂铟镓砷单晶层的左边部分的中间之上;所述第二阻挡层在所述第一阻挡层的左边部分的两侧;所述第二阻挡层叠置在所述N型重掺杂铟镓砷单晶层之上;所述第二N型重掺杂锗单晶层叠置在所述第二阻挡层之上;所述第三N型重掺杂锗单晶层在所述第二N型重掺杂锗单晶层之上;所述铟镓砷NMOSFET栅氧化层叠置在所述第一阻挡层的左边部分之上;所述铟镓砷NMOSFET栅金属层叠置在所述铟镓砷NMOSFET栅氧化层之上;所述铟镓砷NMOSFET栅侧墙叠置在所述第一阻挡层的左边部分的两边之上;所述铟镓砷NMOSFET栅侧墙在所述铟镓砷NMOSFET栅金属层和所述铟镓砷NMOSFET栅氧化层叠层的两侧;所述第二N型重掺杂锗单晶层和所述第三N型重掺杂锗单晶层叠层的两侧分别为所述隔离区和所述铟镓砷NMOSFET栅侧墙;
所述PMOSFET由所述P型轻掺杂铟镓砷单晶层的右边部分、所述第一阻挡层的右边部分、所述第一N型重掺杂锗单晶层、所述N型轻掺杂锗单晶层、所述P型重掺杂锗单晶层、所述锗PMOSFET栅钝化层、所述锗PMOSFET栅氧化层、所述锗PMOSFET栅金属层、所述锗PMOSFET栅侧墙和所述锗PMOSFET源漏引出电极组成;所述第一阻挡层的右边部分叠置在所述P型轻掺杂铟镓砷单晶层的右边部分之上;所述第一N型重掺杂锗单晶层叠置在所述第一阻挡层的右边部分之上;所述N型轻掺杂锗单晶层叠置在所述第一N型重掺杂锗单晶层之上;所述P型重掺杂锗单晶层叠置在所述N型轻掺杂锗单晶层的两边之上;所述锗PMOSFET栅钝化层叠置在所述N型轻掺杂锗单晶层的中间之上;所述锗PMOSFET栅氧化层叠置在所述锗PMOSFET栅钝化层之上;所述锗PMOSFET栅金属层叠置在所述锗PMOSFET栅氧化层之上;所述锗PMOSFET栅侧墙在所述锗PMOSFET栅钝化层、所述锗PMOSFET栅氧化层、所述锗PMOSFET栅金属层叠层的两侧;所述锗PMOSFET栅侧墙叠置在所述P型重掺杂锗单晶层之上;所述锗PMOSFET源漏引出电极叠置在所述P型重掺杂锗单晶层之上。
2.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述缓冲层用于过滤位错,释放应力,所述缓冲层是低温生长的砷化镓,其表面与所述势垒层材料的晶格相匹配,所述缓冲层厚度在1纳米至3微米之间;所述势垒层为砷化镓或铟镓磷的单晶层,铟镓磷中各原子数比值铟:镓:磷=0.5:0.5:1,所述势垒层的厚度在1纳米至2微米之间。
3.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述第一阻挡层和所述第二阻挡层的用于抑制其上下的锗单晶和铟镓砷单晶之间的互扩散掺杂效应,并改善所述铟镓砷NMOSFET栅介质层与沟道界面,减小界面态密度,同时所述第一阻挡层、所述P型轻掺杂铟镓砷单晶层和所述势垒层形成超晶格量子阱,有利于提高所述铟镓砷NMOSFET沟道电子迁移率;所述第一阻挡层和所述第二阻挡层为磷化铟、磷化镓、铟铝磷、铟镓磷、磷化铝或铝镓磷的单晶层,铟铝磷中各原子数比值铟:铝:磷=y:(1-y):1,y的取值范围可设置为0<y<1之间,铟镓磷中各原子数比值铟:镓:磷=z:(1-z):1,z的取值范围可设置为0<z<1之间,铝镓磷中各原子数比值铟:镓:磷=a:(1-a):1,a的取值范围设置为0<a<1之间,所述第一阻挡层和所述第二阻挡层不同之处在于第一阻挡层为未掺杂单晶层,而所述第二阻挡层为N型重掺杂,所述第一阻挡层和所述第二阻挡层的厚度在3埃至20纳米之间。
4.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述铟镓砷NMOSFET的源和漏上表面比铟镓砷沟道上表面高,具有源漏提升的效果,所述铟镓砷NMOSFET的源和漏从下至上依次为所述N型重掺杂铟镓砷单晶层、所述第二阻挡层、所述第二N型重掺杂锗单晶层、所述第三N型重掺杂锗单晶层和所述铟镓砷NMOSFET源漏引出电极组成。
5.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述铟镓砷NMOSFET和所述锗PMOSFET集成在单晶硅衬底上,所述铟镓砷NMOSFET和锗PMOSFET的源和漏的上表面处在同一平面。
6.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述铟镓砷NMOSFET和所述锗PMOSFET的源漏上表面都为锗单晶层,可以采用同种金属进行金属化引出,能够同时实现铟镓砷NMOSFET和锗PMOSFET源漏的金属化电极引出。
7.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述第一N型重掺杂锗单晶层在所述阻挡层和所述N型轻掺杂锗单晶层之间,用以防止锗PMOSFET的源漏、第一阻挡层、P型轻掺杂铟镓砷单晶层相通形成通路导致器件失效,所述第一N型重掺杂锗单晶层的厚度在在3埃至50纳米之间。
8.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述隔离区的深度大于所述P型轻掺杂铟镓砷单晶层、所述第一阻挡层、所述第一N型重掺杂锗单晶层和所述N型轻掺杂锗单晶层的厚度之和。
9.根据权利要求1所述的高迁移率CMOS集成单元,其特征在于,所述第一阻挡层、所述P型轻掺杂铟镓砷单晶层和所述势垒层形成超晶格量子阱,将载流子局限在所述P型轻掺杂铟镓砷单晶层沟道表面,减小散射,提高所述铟镓砷NMOSFET沟道电子迁移率。
CN201010578514.7A 2010-12-08 2010-12-08 一种高迁移率cmos集成单元 Expired - Fee Related CN102544009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010578514.7A CN102544009B (zh) 2010-12-08 2010-12-08 一种高迁移率cmos集成单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010578514.7A CN102544009B (zh) 2010-12-08 2010-12-08 一种高迁移率cmos集成单元

Publications (2)

Publication Number Publication Date
CN102544009A CN102544009A (zh) 2012-07-04
CN102544009B true CN102544009B (zh) 2014-03-26

Family

ID=46350496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010578514.7A Expired - Fee Related CN102544009B (zh) 2010-12-08 2010-12-08 一种高迁移率cmos集成单元

Country Status (1)

Country Link
CN (1) CN102544009B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931068A (zh) * 2012-11-23 2013-02-13 中国科学院微电子研究所 一种锗基mosfet栅介质的制备方法
US9508640B2 (en) 2013-07-12 2016-11-29 GlobalFoundries, Inc. Multiple via structure and method
DE102015120089A1 (de) 2015-11-19 2017-05-24 Osram Opto Semiconductors Gmbh Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips
CN106098689B (zh) * 2016-06-08 2019-07-16 中国科学院微电子研究所 一种三维集成cmos集成单元
CN109950151B (zh) * 2017-12-20 2022-02-15 中芯国际集成电路制造(上海)有限公司 Pmos晶体管及其形成方法
CN113035934B (zh) * 2021-03-12 2022-07-05 浙江集迈科微电子有限公司 GaN基HEMT器件及其制备方法
CN114268324B (zh) * 2021-12-17 2023-09-29 无锡中微亿芯有限公司 一种异质集成串并转换电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901766A (zh) * 2009-06-01 2010-12-01 中国台湾积体电路制造股份有限公司 集成电路结构及其形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393733B2 (en) * 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US7518196B2 (en) * 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US9006707B2 (en) * 2007-02-28 2015-04-14 Intel Corporation Forming arsenide-based complementary logic on a single substrate
US7759142B1 (en) * 2008-12-31 2010-07-20 Intel Corporation Quantum well MOSFET channels having uni-axial strain caused by metal source/drains, and conformal regrowth source/drains

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901766A (zh) * 2009-06-01 2010-12-01 中国台湾积体电路制造股份有限公司 集成电路结构及其形成方法

Also Published As

Publication number Publication date
CN102544009A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102544009B (zh) 一种高迁移率cmos集成单元
US9911866B2 (en) Field effect transistor
CN103094338B (zh) 半导体器件及其制造方法
KR20130009640A (ko) 반도체 장치
US11973198B2 (en) Device detecting abnormality of secondary battery and semiconductor device
KR101957315B1 (ko) 반도체 장치
CN106098689B (zh) 一种三维集成cmos集成单元
CN102184853B (zh) 肖特基二级管的制作方法
CN102569364B (zh) 一种高迁移率衬底结构及其制备方法
Sugiura et al. On-chip carrier-selective contact photovoltaic cell
US11777502B2 (en) Logic circuit and semiconductor device formed using unipolar transistor
US12040795B2 (en) Logic circuit formed using unipolar transistor, and semiconductor device
CN102354708B (zh) 具有悬空源漏的隧穿场效应晶体管结构及其形成方法
Kim et al. Capacitor-Less 4F DRAM Using Vertical InGaAs Junction for Ultimate Cell Scalability
TW200520208A (en) Memory cell structure having nitride layer with reduced charge loss and method for fabricating same
US11296701B2 (en) Single-polarity level shifter circuit and semiconductor device
Singh et al. Drain current and transconductance analysis of GaN GAA nanowire FET with high K dielectric
CN106298878A (zh) 一种双栅mosfet结构及其制备方法
CN102931193A (zh) 一种高迁移率cmos集成单元
CN102723336B (zh) 一种双多晶SOI应变SiGe回型沟道BiCMOS集成器件及制备方法
CN102117835A (zh) 一种具有超陡亚阈值斜率的阻变场效应晶体管及其制备方法
TWI806418B (zh) 雙重磊晶的金氧半場效電晶體製作方法
Yasuda et al. Design Methodology of Body-Biasing Scheme for Low Power System LSI With Multi-$ V_ {\rm th} $ Transistors
CN102738149B (zh) 一种基于平面应变SiGe HBT器件的BiCMOS集成器件及制备方法
Afrin et al. Implementation of CMOS Logic Gates Using ASiNR-based TFET

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140326

CF01 Termination of patent right due to non-payment of annual fee