CN102482599A - 航空燃料油组合物 - Google Patents

航空燃料油组合物 Download PDF

Info

Publication number
CN102482599A
CN102482599A CN2010800386810A CN201080038681A CN102482599A CN 102482599 A CN102482599 A CN 102482599A CN 2010800386810 A CN2010800386810 A CN 2010800386810A CN 201080038681 A CN201080038681 A CN 201080038681A CN 102482599 A CN102482599 A CN 102482599A
Authority
CN
China
Prior art keywords
oil
base material
aviation fuel
fuel oil
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800386810A
Other languages
English (en)
Other versions
CN102482599B (zh
Inventor
小山成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Publication of CN102482599A publication Critical patent/CN102482599A/zh
Application granted granted Critical
Publication of CN102482599B publication Critical patent/CN102482599B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • C10L1/2235Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/228Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles
    • C10L1/2283Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles containing one or more carbon to nitrogen double bonds, e.g. guanidine, hydrazone, semi-carbazone, azomethine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明的航空燃料油组合物含有第一基材和第二基材,所述第一基材是经过对第一原料油或者第二原料油进行氢化处理的工序而获得的、沸点范围140~280℃的馏分,所述第一原料油含有含硫烃化合物和来源于动植物油脂的含氧烃化合物,所述第二原料油是该第一原料油与精制原油而获得的石油系基材的混合油;第二基材是由重质油裂化装置获得的沸点范围140~280℃的馏分。

Description

航空燃料油组合物
技术领域
本发明涉及航空燃料油组合物。
背景技术
作为防止全球变暖的对策,生物质所具有的能量的有效利用受到广泛关注。其中,植物来源的生物质能源可以通过植物生长过程中的光合作用有效利用从大气中的二氧化碳固定的碳,因此,从生命周期的观点来看,具有不增加大气中的二氧化碳的、所谓碳中和(carbon neutral)的性质。另外,从石油资源的枯竭、原油价格高涨的观点来看,作为石油替代能源的生物质燃料是非常有前景的。
这种生物质能源的利用在运输用燃料的领域中也进行了各种研究。例如,如果能使用动植物油来源的燃料作为柴油机燃料,则通过其与柴油机的高能量效率的协同效果,预期可在削减二氧化碳排出量中发挥有效的作用。作为利用动植物油的柴油机燃料,一般已知有脂肪酸甲酯油(根据Fatty Acid MethylEster的首字母简称为“FAME”)。FAME通过碱催化剂等的作用使作为动植物油的通用结构的甘油三酯与甲醇发生酯交换反应来制造。该FAME不仅作为柴油机燃料被研究,而且在航空燃料油,所谓的喷气燃料中的利用也被研究。航空器的燃料用量庞大,且受到近年来原油价格高涨的显著影响。在这种形势下,生物质燃料作为具有不仅防止全球变暖的作用而且具有可用作石油代替燃料的作用的重要项目受到关注。目前,多家航空公司试验性地实施了FAME与石油系喷气燃料的混合利用。
然而,如下述专利文献1中所述,制造FAME的工艺被指出了以下问题:需要处理副产的甘油,另外生成油的洗涤等需要花费成本、能量。
另外,FAME存在低温性能、氧化稳定性上的担忧。尤其,航空燃料在高空飞行时暴露于极低温度,因此,实际情况是,设定非常严格的低温性能规格,而利用FAME时,不得已将其与石油系喷气燃料混合利用,且不得不将其混合量设定为低浓度。另外,关于氧化稳定性,作为航空燃料规格虽然规定添加抗氧化剂,但考虑到作为基材本身的稳定性,与低温性能同样,不得不将其混合比例限定在低浓度。
与此相对,以动植物油脂为原料,在氢气、催化剂的存在下,在高温高压下,使这些原料反应而获得烃的制造技术引人注目。通过该方法获得的烃与FAME不同,不含氧、不饱和键,具有与石油系烃燃料同等的性状,因此,可以在比FAME更高的浓度下使用。然而,用这些方法获得的烃一般密度低,即使在用于航空燃料的情况下,也存在高浓度混合时的密度降低、与此相随的燃油耗费恶化的问题。
现有技术文献
专利文献
专利文献1:日本特开2005-154647号公报
发明内容
发明要解决的问题
本发明是鉴于上述实情而做出的,其目的是提供生命周期特性优异且实现优异的燃料消耗率的航空燃料油组合物。
用于解决问题的方案
为了解决上述问题,本发明提供一种航空燃料油组合物,其特征在于,该组合物含有第一基材和第二基材,所述第一基材是经过对第一原料油或第二原料油进行氢化处理的工序而获得的、沸点范围140~280℃的馏分,所述第一原料油含有含硫烃化合物和来源于动植物油脂的含氧烃化合物,所述第二原料油是该第一原料油与精制原油而获得的石油系基材的混合油;第二基材是由重质油裂化装置获得的沸点范围140~280℃的馏分。
优选的是,上述第二基材在15℃下的密度为800kg/m3以上且840kg/m3以下。
另外,优选的是,上述第一基材是经过以下工序获得的:在氢气的存在下,使用在由含有选自铝、硅、锆、硼、钛和镁中的两种以上的元素而构成的多孔性无机氧化物形成的载体上负载选自元素周期表第6族(IUPAC)(旧VIB族)和第8~10族(IUPAC)(旧VIII族)元素中的一种以上的金属而形成的催化剂,在氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比150~1500NL/L、反应温度150~480℃的条件下,对上述第一或第二原料油进行氢化处理。
进一步优选的是,上述第一基材是经过以下工序获得的:在氢气的存在下,使用在由多孔性无机氧化物形成的载体上负载选自元素周期表第8~10族元素中的金属而形成的催化剂,在氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比250~1500NL/L、反应温度150~380℃的条件下,对由氢化处理上述第一或第二原料油的工序而获得的氢化处理油进一步进行异构化处理,其中所述多孔性无机氧化物是由选自铝、硅、锆、硼、钛、镁和沸石中的物质构成的。
本发明的航空燃料油组合物可以进一步含有第三基材,其为精制原油而获得的航空燃料油基材、合成系航空燃料油基材或它们的混合物。
另外,本发明的航空燃料油组合物可以进一步含有选自抗氧化剂、抗静电剂、金属减活剂和防冻剂中的一种以上的添加剂。
另外,本发明的航空燃料油组合物优选满足JIS K2209“航空涡轮机燃料油(Aviation turbine fuel oil)”的标准值。
发明的效果
根据本发明,提供了能兼顾由碳中和特性获得的优异生命周期特性与优异的燃料耗费率、且有助于一次能源多样化的环境低负荷型航空燃料油组合物。
具体实施方式
以下详细说明本发明的优选实施方式。
在本发明中,使用含有含硫烃化合物和来源于动植物油脂的含氧烃化合物的原料油(第一原料油),或含有该第一原料油和精制原油而获得的石油系基材的原料油(第二原料油)。其中,在以下的说明中,根据情况,有时将第一和第二原料油统称为“原料油”。
作为动植物油脂,例如,可列举出牛脂、菜籽油、亚麻荠油(Camelina Oil)、大豆油、棕榈油、特定的微细藻类产生的油脂类或烃等。特定的微细藻类是指具有将体内的一部分营养成分转化为烃或油脂的形式的性质的藻类,例如,可列举出小球藻属(Chlorella)、栅藻属(Scenedesmus)、螺旋藻属(Spirulina)、眼虫属(Euglena)、布朗葡萄藻属(Botryococcus braunii)、微细绿藻属(Pseudochoricystis ellipsoidea)。已知的是,小球藻属、栅藻属、螺旋藻属、眼虫属生产油脂类,而布朗葡萄藻属、微细绿藻属生产烃类。在本发明中,作为动植物油脂,可以使用任何油脂,也可以是这些油脂使用后的废油。另外,还可以使用从微细藻类提取的蜡酯类、油脂精制中副产的游离脂肪酸等。即,本发明的动植物油脂中包含上述油脂的废油、从微细藻类提取的蜡酯类、油脂精制中副产的游离脂肪酸等。从碳中和的观点来看,植物来源的油脂类是优选的,从氢化处理后的煤油馏分收率的观点考虑,脂肪酸碳链的碳原子数为10~14的各脂肪酸基的构成比率(脂肪酸组成)高的油脂类是优选的,作为从该观点考虑的植物油脂,可列举出椰子油、棕榈仁油和亚麻荠油等,作为特定的微细藻类生产的油脂类,可列举出眼虫属生产的油脂类。其中,上述油脂可以单独使用一种,或者可以将两种以上混合使用。
予以说明,脂肪酸组成为:使用装配有氢火焰离子化检测器(FID)的升温气相色谱仪,按照标准油脂分析试验法(日本油化学会制定)(1993)“2.4.21.3-77脂肪酸组成(FID升温气相色谱法)”,对根据标准油脂分析试验法(日本油化学会制定)(1991)“2.4.20.2-91脂肪酸甲酯的制备方法(三氟化硼-甲醇法)”制备的甲酯所求出的值,是指构成油脂的各脂肪酸基的构成比率(质量%)。
对原料油中含有的含硫烃化合物没有特别限制,具体而言,可列举出硫醚、二硫醚、多硫醚、硫醇、噻吩、苯并噻吩、二苯并噻吩和它们的衍生物等。原料油中含有的含硫烃化合物可以是单一的化合物,或者可以是两种以上的混合物。此外,含有硫成分的石油系烃馏分也可以作为含硫烃化合物使用。
原料油中含有的硫成分,以原料油总量为基准,按硫原子换算优选为1~50质量ppm,更优选为5~30质量ppm,进一步优选为10~20质量ppm。按硫原子换算的含量低于1质量ppm时,存在难以稳定地维持脱氧活性的倾向。另一方面,超过50质量ppm时,氢化精制工序中排出的轻质气体中的硫浓度增加,而且,氢化精制油中含有的硫成分含量倾向于增加,作为柴油机等的燃料使用时,担心其对发动机废气净化装置的不良影响。其中,本发明的硫成分是指按照JIS K 2541“硫成分试验方法”或ASTM-5453中记载的方法测定的硫成分的质量含量。
原料油中含有的含硫烃化合物可以与动植物油脂来源的含氧烃化合物预先混合,再将该混合物引入到氢化精制装置的反应器中,或者,可以在向反应器中引入来源于动植物油脂的含氧烃化合物时在反应器的前段供给原料油中含有的含硫烃化合物。
另外,作为第二原料油中含有的、精制原油所获得的石油系基材,可列举出通过原油的常压蒸馏或减压蒸馏获得的馏分或通过原油的氢化脱硫、加氢裂化、流化催化裂化、催化重整等反应获得的馏分等。这些馏分可以在原料油中含有一种或两种以上。此外,精制原油而获得的石油系基材可以是化学品来源的化合物、经由费托反应获得的合成油。
对第二原料油中精制原油等所获得的石油系基材的含有比例没有特别限制,优选为20~70体积%,更优选为30~60体积%。
本发明的第一基材是经由对原料油(第一或第二原料油)进行氢化处理的工序获得的、沸点范围140~280℃的馏分。
氢化处理优选包括以下的氢化处理工序。在本发明的氢化处理工序中,作为氢化处理条件,优选的是,在氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比150~1500NL/L的条件下进行,更优选的是氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比150~1500NL/L的条件,进一步优选的是氢气压力3~10.5MPa、液体空间速度0.25~1.0h-1、氢/油比300~1000NL/L的条件。这些条件均为左右反应活性的因素,例如,氢气压力和氢/油比不足上述下限值时,有可能导致反应性的降低、急速的活性降低,而氢气压力和氢/油比超过上述上限值时,有可能需要压缩机等过大的设备投资。液体空间速度越低,往往越有利于反应,但低于上述下限值时,需要极大的反应塔容积,从而趋向于需要过大设备投资,另一方面,超过上述上限时,反应倾向于不充分进行。
反应温度可以任意地设定,以获得原料油重质馏分的目标裂解率或目标馏分收率。作为反应器总体的平均温度,一般优选为150~480℃的范围,理想的是200~400℃,进一步理想的是260~360℃的范围。反应温度低于150℃时,反应有可能不充分进行,而超过480℃时,存在裂解过度地进行,导致液体产物收率降低的倾向。
作为氢化处理的催化剂,使用在由含有选自铝、硅、锆、硼、钛和镁中的两种以上的元素而构成的多孔性无机氧化物形成的载体上负载选自元素周期表第6族和第8~10族元素中的金属而形成的催化剂。
作为氢化处理催化剂的载体,使用含有选自铝、硅、锆、硼、钛和镁中的两种以上的元素而构成的多孔性无机氧化物。一般是含有氧化铝的多孔性无机氧化物,作为其他的载体构成成分,可列举出二氧化硅、氧化锆、氧化硼、二氧化钛、氧化镁等。优选的是含有氧化铝和选自其他构成成分中的至少一种以上的复合氧化物。另外,作为该其他成分,也可以含有磷。除氧化铝以外的成分的合计含量优选为1~20重量%,更优选的是2~15重量%。除氧化铝以外的成分的合计含量不足1重量%时,不能获得充分的催化剂表面积,活性有可能变低;另一方面,含量超过20重量%时,载体的酸性增高,有可能因焦块生成而导致活性降低。含有磷作为载体构成成分时,其含量按氧化物换算优选为1~5重量%,更优选为2~3.5重量%。
对作为除氧化铝以外的载体构成成分即二氧化硅、氧化锆、氧化硼、二氧化钛、氧化镁的前体的原料没有特别限制,可以使用通常的含有硅、锆、硼、钛或镁的溶液。例如,对于硅,可以使用硅酸、水玻璃、硅溶胶等,对于钛,可以使用硫酸钛、四氯化钛、各种醇盐等,对于锆,可以使用硫酸锆、各种醇盐等,对于硼,可以使用硼酸等。对于镁,可以使用硝酸镁等。作为磷,可以使用磷酸或磷酸的碱金属盐等。
这些除氧化铝以外的载体构成成分的原料在载体焙烧之前的任一工序中添加的方法是理想的。例如,可以将这些构成成分预先添加在铝水溶液中之后,作为含有这些构成成分的氢氧化铝凝胶,也可以将其添加到配制的氢氧化铝凝胶中,或者可以在向市售的氧化铝中间体、勃姆石粉末中添加水或酸性水溶液并混炼的工序中添加,但在配制氢氧化铝凝胶的阶段中使这些构成成分共存的方法是更理想的。这些除氧化铝以外的载体构成成分的效果表现机制还未能弄清楚,推测其与铝形成了复合氧化物状态,认为这导致载体表面积的增加、或者与活性金属产生某些相互作用,从而对活性产生影响。
作为氢化处理催化剂的活性金属,含有选自元素周期表第6族和第8~10族金属中的至少一种金属,优选含有选自第6族和第8~10族中的两种以上的金属。例如,可列举出Co-Mo、Ni-Mo、Ni-Co-Mo、Ni-W等,在氢化处理时,将这些金属转化为硫化物的状态之后使用。
活性金属的含量,例如,W与Mo的合计负载量按氧化物换算相对于催化剂重量优选为12~35重量%,更优选为15~30重量%。W与Mo的合计负载量低于12重量%时,由于活性位点数目减少,具有活性降低的可能性,而超过35重量%时,金属没有有效地分散,同样地有可能导致活性降低。另外,Co与Ni的合计负载量按氧化物换算相对于催化剂重量优选为1.5~10重量%,更优选为2~8重量%。Co与Ni的合计负载量低于1.5重量%时,不能获得充分的助催化效果,活性有可能降低,而超过10重量%时,金属没有有效地分散,同样地有可能导致活性降低。
在上述氢化处理催化剂的任一催化剂中,对将活性金属负载于载体上的方法没有特别限制,可以使用通常的用于制造脱硫催化剂的公知的方法。通常优选采用将含有活性金属的盐的溶液浸渍到催化剂载体上的方法。另外,优选采用平衡吸附法、孔隙填充法(pore-filling method)或初湿浸渍法(Incipient-wetness)等。例如,孔隙填充法是预先测定载体的孔容,浸渍与该孔容相同容积的金属盐溶液的方法,对浸渍方法没有特别限制,可以根据金属负载量、催化剂载体的物性用适当的方法浸渍。
氢化处理的反应器形式可以是固定床方式。即,可以采取氢气相对于原料油为对流或并流的任何一种形式,另外,可以是具有多个反应塔、将对流、并流组合的形式。常用形式是降流式,可以采用气液两相并流形式。另外,反应器可为单个或组合多个,也可以采用一个反应器内部划分为多个催化剂床的结构。在本发明中,反应器内经氢化处理的氢化处理油经过气液分离工序、精馏工序等被分离为规定的馏分。此时,为了除去伴随反应而生成的水、一氧化碳、二氧化碳、硫化氢等副产气体,可以在多个反应器之间或产物回收工序中设置气液分离设备或其他副产气体除去装置。作为除去副产物的装置,可优选地列举出高压分离器等。
一般,氢气伴随通过加热炉之前或通过加热炉之后的原料油从最初的反应器的入口引入,除此以外,为了控制反应器内的温度,并尽可能在全体反应器内维持氢气压力,也可以在催化剂床之间、多个反应器之间引入。这样引入的氢气称之为淬火氢(quench hydrogen)。此时,淬火氢相对于伴随原料油引入的氢气的比例优选为10~60体积%,更优选为15~50体积%。淬火氢的比例少于10体积%时,后段反应部位的反应有可能不充分进行,而超过60体积%时,反应器入口附近的反应有可能不充分进行。
在制造本发明的航空燃料油基材的方法中,对原料油进行氢化处理时,为了抑制氢化处理反应器中的热值,可以使原料油中含有特定量的再循环油。再循环油的含量相对于来源于动植物油脂的含氧烃化合物,优选为0.5~5质量倍,可以根据氢化处理反应器的最高使用温度在上述范围内确定适当比率。这是基于如下理由:在假设两者的比热相同的情况下,将两者按1对1混合时的温度上升为单独使来源于动植物油脂的物质反应时的一半,因此,如果在上述范围内,则能够使反应热充分降低。另外,再循环油的含量多于含氧烃化合物的5质量倍时,含氧烃化合物的浓度降低,反应性降低,另外,配管等的流量增加,负荷增大。另一方面,再循环油的含量少于含氧烃化合物的0.5质量倍时,不能充分抑制温度上升。
对于原料油与再循环油的混合方法没有特别限制,例如,可以预先混合,将该混合物引入到氢化处理装置的反应器中,或者,可以在将原料油引入到反应器中时在反应器的前段供给再循环油。此外,可以将多个反应器串联连接,引入到反应器之间,或者,还可以在单独的反应器内分割催化剂层,引入到催化剂层之间。
另外,再循环油优选含有进行原料油的氢化处理后除去副产的水、一氧化碳、二氧化碳、硫化氢等而获得的氢化处理油的一部分。此外,优选含有从氢化处理油中分馏的轻质馏分、中间馏分或重质馏分各自的异构化处理物的一部分,或者,从将氢化处理油进一步异构化处理而获得的物质中分馏的一部分中间馏分。
在本发明的氢化处理中,优选包括将上述氢化处理工序中获得的氢化处理油进一步进行异构化处理的工序。
作为异构化处理的原料油的氢化处理油中含有的硫成分含量优选为1质量ppm以下,更优选为0.5质量ppm以下。硫成分含量超过1质量ppm时,有可能妨碍氢化异构化的进行。而且,根据同样的理由,对于与氢化处理油一起引入的、含有氢气的反应气体,也要求硫成分浓度充分低,优选为1体积ppm以下,更优选为0.5体积ppm以下。
异构化处理工序理想的是在氢气的存在下在氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比250~1500NL/L的条件下进行,更理想的是在氢气压力2.5~10MPa、液体空间速度0.5~2.0h-1、氢/油比380~1200NL/L的条件下进行,进一步理想的是在氢气压力3~8MPa、液体空间速度0.8~1.8h-1、氢/油比350~1000NL/L的条件下进行。这些条件均为左右反应活性的因素,例如,氢气压力和氢/油比不足上述下限值时,有可能导致反应性降低或急速的活性降低,氢气压力和氢/油比超过上述上限值时,有可能需要压缩机等过大的设备投资。液体空间速度越低,对反应往往越有利,但在低于上述下限的情况下,存在需要极大的反应塔容积,需要过大的设备投资的倾向,另一方面,超过上述上限时,存在反应不充分进行的倾向。
异构化处理工序的反应温度可以任意地设定,以获得原料油重质馏分的目标裂解率或目标馏分收率,优选为150~380℃的范围,更优选为240~380℃的范围,特别优选为250~365℃的范围。反应温度低于150℃时,有可能无法进行充分的氢化异构化反应,而高于380℃时,有可能进行过度裂解或其他副反应,从而导致液体产物收率降低。
作为异构化处理的催化剂,可以使用在由多孔性无机氧化物形成的载体上负载选自元素周期表第8~10族元素中的一种以上的金属而形成的催化剂,该多孔性无机氧化物由选自铝、硅、锆、硼、钛、镁和沸石中的物质构成。
用作异构化处理催化剂的载体的多孔性无机氧化物,可列举出氧化铝、二氧化钛、氧化锆、氧化硼、二氧化硅或沸石,在本发明中,优选由二氧化钛、氧化锆、氧化硼、二氧化硅和沸石中的至少一种与氧化铝构成的材料。对其制造方法没有特别限制,可以使用与各元素对应的各种溶胶、盐化合物等状态的原料,采用任意制备法。此外,可以先制备二氧化硅-氧化铝、二氧化硅-氧化锆、氧化铝-二氧化钛、二氧化硅-二氧化钛、氧化铝-氧化硼等复合氢氧化物或复合氧化物,然后在氧化铝凝胶、其他氢氧化物状态或适当的溶液状态下在制备工序的任意工序中添加和制备。氧化铝与其他氧化物的比率对载体而言可采取任意的比例,氧化铝优选为90质量%以下,更优选为60质量%以下,进一步优选为40质量%以下,且优选为10质量%以上,更优选为20质量%以上。
沸石是结晶性铝硅酸盐,可列举出八面沸石(faujasite)、五硅环沸石(pentasil)、丝光沸石(mordenite)等,可以使用通过规定的水热处理和/或酸处理超稳定化的沸石或调整了沸石中的氧化铝含量的沸石。优选使用八面沸石、丝光沸石,特别优选使用Y型、β型。Y型优选为超稳定化的,通过水热处理超稳定化的沸石除了固有的
Figure BDA0000139446430000121
以下的称之为微孔(micropore)的细孔结构以外,还形成了
Figure BDA0000139446430000122
范围的新的细孔。水热处理条件可以使用公知的条件。
作为异构化处理催化剂的活性金属,使用选自元素周期表第8~10族的元素中的一种以上的金属。在这些金属中,优选使用选自Pd、Pt、Rh、Ir、Au、Ni中的一种以上的金属,更优选组合使用。作为适合的组合,例如,可列举出Pd-Pt、Pd-Ir、Pd-Rh、Pd-Au、Pd-Ni、Pt-Rh、Pt-Ir、Pt-Au、Pt-Ni、Rh-Ir、Rh-Au、Rh-Ni、Ir-Au、Ir-Ni、Au-Ni、Pd-Pt-Rh、Pd-Pt-Ir、Pt-Pd-Ni等。其中,更优选Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Rh、Pt-Ir、Rh-Ir、Pd-Pt-Rh、Pd-Pt-Ni、Pd-Pt-Ir的组合,进一步优选Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Ir、Pd-Pt-Ni、Pd-Pt-Ir的组合。
作为以催化剂质量为基准的活性金属的合计含量,按金属计,优选为0.1~2质量%,更优选为0.2~1.5质量%,进一步优选为0.5~1.3质量%。金属的合计负载量低于0.1质量%时,存在活性位点减少,不能获得充分的活性的倾向。另一方面,超过2质量%时,存在金属没有有效地分散,不能获得充分的活性的倾向。
在上述异构化处理催化剂的任何一种催化剂中,对将活性金属负载于载体上的方法没有特别限制,可以使用通常用于制造脱硫催化剂的公知的方法。通常优选采用将含有活性金属的盐的溶液浸渍到催化剂载体上的方法。另外,优选采用平衡吸附法、孔隙填充法或初湿浸渍法等。例如,孔隙填充法是预先测定载体的孔容,浸渍与该孔容相同容积的金属盐溶液的方法,对浸渍方法没有特别限制,可以根据金属负载量、催化剂载体的物性用适当的方法浸渍。
本发明中使用的上述异构化处理催化剂优选在供给于反应之前,预先对催化剂中含有的活性金属进行还原处理。对还原条件没有特别限制,可通过在氢气流下在200~400℃的温度下处理来还原。优选在240~380℃的范围进行处理。还原温度不足200℃时,活性金属的还原未充分进行,有可能无法发挥氢化脱氧和氢化异构化活性。另外,还原温度超过400℃时,活性金属凝集,同样有可能无法发挥活性。
异构化处理的反应器形式可以是固定床方式。即,可以采取氢气相对于原料油为对流或并流的任何一种形式,另外,可以是具有多个反应塔、将对流、并流组合的形式。通常的形式为降流式,可以采用气液两相并流形式。另外,反应器可为单个或组合多个,也可以采用一个反应器内部划分为多个催化剂床的结构。
一般,氢气伴随通过加热炉之前或通过加热炉之后的原料油从最初的反应器的入口引入,除此以外,为了控制反应器内的温度,并尽可能在全体反应器内维持氢气压力,也可以在催化剂床之间、多个反应器之间引入。这样引入的氢气称之为淬火氢。此时,淬火氢相对于伴随原料油引入的氢气的比例理想的是10~60体积%,更理想的是15~50体积%。淬火氢的比例少于10体积%时,后段反应部位的反应有可能不充分进行,而超过60体积%时,反应器入口附近的反应有可能不充分进行。
异构化处理工序后所得的异构化处理油根据需要可以在精馏塔中分馏为多个馏分。例如,可以分馏为气体,石脑油馏分等轻质馏分,煤油、轻油馏分等中间馏分,残渣成分等重质馏分。在该情况下,轻质馏分与中间馏分的分馏温度优选为100~200℃,更优选为120~180℃,进一步优选为120~160℃,更进一步优选为130~150℃。中间馏分与重质馏分的分馏温度优选为250~360℃,更优选为250~320℃,进一步优选为250~300℃,更进一步优选为250~280℃。通过将所生成的这种轻质烃馏分的一部分在水蒸汽重整装置中重整,可以制造氢气。由于用于水蒸汽重整的原料为生物质来源的烃,因此,这样制造的氢气具有碳中和的特征,可以减低环境负荷。另外,将异构化处理油分馏而获得的中间馏分可以适宜地作为航空燃料油基材使用。
另外,本发明的航空燃料油组合物中含有的第二基材是由重质油裂化装置获得的、沸点范围140~280℃的馏分。用于获得第二基材的重质油裂化装置可以使用以来自常压蒸馏装置的常压残油、来自减压蒸馏装置的减压残油为原料的流化催化裂化装置,以来自减压蒸馏装置的减压残油为原料的加氢裂化装置、热分解装置等普通装置,由它们制造的航空燃料油馏分在15℃下的密度优选为800kg/m3以上且840kg/m3以下,更优选为810kg/m3以上且840kg/m3以下,进一步优选为820kg/m3以上且0.84kg/m3以下。该密度低于800kg/m3时,抑制第二基材与上述动植物油脂类的氢化处理油混合时的密度降低的效果变小,因而不优选。另外,超过840kg/m3时,因芳香族成分含有率升高等引起燃烧性恶化,同样也不优选。其中,在JIS K2209“航空涡轮机燃料油”中,作为密度规格的上限值被规定为0.8398g/cm3(839.8kg/m3)。
本发明的航空燃料油基材可以仅含有上述第一基材和第二基材,也可以进一步含有精制原油而获得的航空燃料油基材、合成系航空燃料油基材或它们的混合物作为第三基材。第三基材中包括普通石油精制工序中获得的航空燃料油馏分,以由氢气与一氧化碳构成的合成气体为原料、经由费托反应等获得的合成系航空燃料油基材等。合成系航空燃料油基材的特征是几乎不含芳香族成分,以饱和烃为主要成分,且烟点高。其中,作为合成气体的制造方法,可以使用公知的方法,对其没有特别限制。
另外,本发明的航空燃料油组合物可以进一步含有以往在航空燃料油中添加的各种添加剂。作为添加剂,选自抗氧化剂、抗静电剂、金属减活剂和防冻剂中的一种以上添加剂是优选的。
作为抗氧化剂,为了抑制航空燃料油中胶质(gum)的产生,在不超过24.0mg/l的范围内,可以添加N,N-二异丙基对苯二胺,75%以上的2,6-二叔丁基苯酚与25%以下的叔丁基苯酚和三叔丁基苯酚的混合物,72%以上的2,4-二甲基-6-叔丁基苯酚与28%以下的单甲基叔丁基苯酚和二甲基叔丁基苯酚的混合物,55%以上的2,4-二甲基-6-叔丁基苯酚与45%以下的叔丁基苯酚和二叔丁基苯酚的混合物,2,6-二叔丁基-4-甲基苯酚等。
作为抗静电剂,为了防止因航空燃料油在燃料配管***内部高速流动时与配管内壁摩擦所产生的静电的蓄积、提高导电率,可以在不超过3.0mg/l的范围内,添加Octel Corporation制造的STADIS450等。
作为金属减活剂,为了不使航空燃料油中含有的游离金属成分反应导致燃料变得不稳定,可以在不超过5.7mg/l的范围内,添加N,N-二亚水杨基-1,2-丙二胺等。
作为防冻剂,为了防止航空燃料油中含有的微量的水冻结而堵塞配管,可以在0.1~0.15体积%的范围内,添加乙二醇单甲醚等。
本发明的航空燃料油组合物在不偏离本发明的范围内,可以进一步适当配合抗静电剂、腐蚀抑制剂和杀菌剂等任意添加剂。
本发明的航空燃料油组合物优选满足JIS K2209“航空涡轮机燃料油”的标准值。
本发明的航空燃料油组合物在15℃下的密度从燃料耗费率的观点来看,优选为775kg/m3以上,更优选为780kg/m3以上。另一方面,从燃烧性的观点来看,优选为839kg/m3以下,更优选为830kg/m3以下,进一步优选为820kg/m3以下。其中,这里所述的15℃下的密度是指根据JIS K2249“原油和石油制品-密度试验方法和密度-质量-体积换算表”测定的值。
对于本发明的航空燃料油组合物的蒸馏性状而言,从蒸发特性的观点考虑,10体积%馏出温度优选为204℃以下,更优选为200℃以下。终点从燃烧特性(燃尽性)的观点考虑优选为300℃以下,更优选为290℃以下,进一步优选为280℃以下。其中,这里所述的蒸馏性状是指根据JIS K2254“石油制品-蒸馏试验方法”测定的值。
从防止因燃料引入***等中生成析出物而导致的不良情况的观点考虑,本发明的航空燃料油组合物中实际存在的胶质成分优选为7mg/100ml以下,更优选为5mg/100ml以下,进一步优选为3mg/100ml以下。
其中,这里所述的实际存在的胶质成分是指根据JISK2261“汽油和航空燃料油实际存在胶质试验方法”测定的值。
从燃料耗费率的观点考虑,本发明的航空燃料油组合物的净热值(Net Calorific Value)优选为42.8MJ/kg以上,更优选为45MJ/kg以上。其中,这里所述的净热值是根据JIS K2279“原油和燃料油热值试验方法”测定的值。
从燃料配管的流动性和实现均匀的燃料喷射的观点考虑,本发明的航空燃料油组合物在-20℃下的运动粘度优选为8mm2/s以下,更优选为7mm2/s以下,进一步优选为5mm2/s以下。其中,这里所述的运动粘度是指根据JIS K2283“原油和石油制品的运动粘度试验方法”测定的值。
从燃料罐、配管的腐蚀性的观点考虑,本发明的航空燃料油组合物的铜板腐蚀优选为1以下。此处所述的铜板腐蚀是指根据JIS K2513“石油制品-铜板腐蚀试验方法”测定的值。
从燃烧性(防止煤烟产生)的观点考虑,本发明的航空燃料油组合物的芳香族成分优选为25体积%以下,更优选为20体积%以下。此处所述的芳香族成分是指根据JIS K2536“燃料油烃成分试验方法(荧光指示剂吸附法)”测定的值。
从燃烧性(防止煤烟产生)的观点考虑,本发明的航空燃料油组合物的烟点优选为25mm以上,更优选为27mm以上,进一步优选为30mm以上。其中,此处所述的烟点是指根据JISK2537“燃料油烟点试验方法”测定的值。
从腐蚀性的观点考虑,本发明的航空燃料油组合物的硫成分优选为0.3质量%以下,更优选为0.2质量%以下,进一步优选为0.1质量%以下。另外,同样从腐蚀性的观点出发,硫醇硫成分优选为0.003质量%以下,更优选为0.002质量%以下,进一步优选为0.001质量%以下。其中,这里所述的硫成分是指根据JISK2541“原油和石油制品硫成分试验方法”测定的值,硫醇硫成分是指根据JIS K2276“硫醇硫成分试验方法(电位差滴定法)”测定的值。
从安全性的观点考虑,本发明的航空燃料油组合物的闪点优选为38℃以上,更优选为40℃以上,进一步优选为45℃以上。其中,这里所述的闪点是指根据JIS K2265“原油和石油制品-闪点试验方法-泰格密闭式闪点试验方法”求出的值。
从腐蚀性的观点考虑,本发明的航空燃料油组合物的总酸值优选为0.1mgKOH/g以下,更优选为0.08mgKOH/g以下,进一步优选为0.05mgKOH/g以下。其中,这里所述的总酸值是根据JIS K2276“总酸值试验方法”测定的值。
从防止飞行时低温暴露下的燃料冻结而导致的燃料供给减少的观点出发,本发明的航空燃料油组合物的凝固点(freezingpoint)优选为-47℃以下,更优选为-48℃以下,进一步优选为-50℃以下。其中,这里所述的凝固点是指根据JIS K2276“凝固点试验方法”测定的值。
从防止因高温暴露时生成析出物而导致的燃料过滤器闭塞等观点考虑,本发明的航空燃料油组合物的热稳定性优选如下:A法下的压力差为10.1kPa以下,预热管堆积物评价值小于3,B法下的压力差为3.3kPa以下,预热管堆积物评价值小于3。其中,这里所述的热稳定性是指根据JIS K2276“热稳定性试验方法A法、B法”测定的值。
为了防止因低温暴露时析出溶解水而导致的故障,本发明的航空燃料油组合物的水溶解度优选如下:分离状态为2以下,界面状态为1b以下。其中,这里所述的水溶解度是指根据JISK2276“水溶解度试验方法”测定的值。
含有本发明的以动植物油脂为原料制造的环境低负荷型基材的航空燃料油基材和航空燃料组合物的燃烧性、氧化稳定性、生命周期CO2排出特性均是优异的。
实施例
以下,根据实施例来进一步具体说明本发明,但本发明不受以下的实施例的任何限制。
(催化剂的制备)
<催化剂A>
向3000g浓度5质量%的铝酸钠水溶液中添加18.0g水玻璃3号,加入到于65℃下保温的容器中。另一方面,在于65℃下保温的其它容器中,制备在3000g浓度2.5质量%的硫酸铝水溶液中添加6.0g磷酸(浓度85%)的溶液,向该溶液中滴加上述含有铝酸钠的水溶液。以混合溶液的pH达到7.0的时间点为终点,通过过滤器滤取所得浆料状的产物,获得饼状的浆料。
将该饼状的浆料转移到装有回流冷凝器的容器中,添加150ml蒸馏水与10g 27%氨水溶液,在75℃下加热搅拌20小时。将该浆料投入到混炼装置中,加热至80℃以上,边除去水分,边进行混炼,获得粘土状的混炼物。通过挤出成型机将所得混炼物挤出为直径1.5mm的圆筒形状,在110℃下干燥1小时之后,在550℃下焙烧,获得成型载体。
将50g所得成型载体投入到茄形烧瓶中,边用旋转蒸发仪脱气,边将含有17.3g三氧化钼、13.2g硝酸镍(II)六水合物、3.9g磷酸(浓度85%)和4.0g苹果酸的浸渍溶液注入到烧瓶内。将浸渍后的试料在120℃下干燥1小时后,在550℃下焙烧,获得催化剂A。催化剂A的物性示于表1中。
<催化剂B>
将50g的二氧化硅-氧化铝比(质量比)为70∶30的二氧化硅-氧化铝载体投入到茄形烧瓶中,边用旋转蒸发仪脱气,边将四氨合氯化铂(II)水溶液注入到烧瓶内。将浸渍后的试料在110℃下干燥后,在350℃下焙烧,获得催化剂B。催化剂B上的铂的负载量以催化剂总量为基准时为0.5质量%。催化剂B的物性示于表1中。
(实施例1)
在具有表2所示性状的植物油脂1中添加二甲基硫醚使得硫成分含量(按硫原子换算)为10质量ppm,制备原料油A。使用表1所示的催化剂A在表3所示的条件a下对该原料油A进行氢化处理。使用表1所示的催化剂B在表3所示的条件b下对经氢化处理的油进行异构化处理。由异构化处理后的异构化处理油获得的140~280℃的馏分作为基材1。基材1的性状示于表4中。在该基材1中混合30体积%的具有表2所示性状的由流化催化裂化装置获得的催化裂化煤油,制备了航空燃料油组合物1。
(实施例2)
在具有表2所示性状的植物油脂2中添加二甲基硫醚使得硫成分含量(按硫原子换算)为10质量ppm,制备原料油B。使用表1所示的催化剂A在表3所示的条件c下对该原料油B进行氢化处理。使用表1所示的催化剂B在表3所示的条件b下对由氢化处理油获得的140~280℃的馏分进行异构化处理。将异构化处理后的异构化处理油分馏为140~280℃的馏分,获得基材2。基材2的性状示于表4中。在该基材2中混合30体积%的具有表2所示性状的由重油加氢裂化装置获得的加氢裂化煤油,制备了航空燃料油组合物2。
(实施例3)
在实施例2中所述的航空燃料油组合物2中混合30体积%的具有表2所示性状的、精制原油而获得的石油系航空燃料油基材,制备航空燃料油组合物3。
(比较例1)
将具有表2所示性状的植物油脂1酯化而获得的脂肪酸烷基酯的性状同样地示于表4中。这些脂肪酸烷基酯是通过与甲醇的反应而获得的甲酯化合物,此处使用在碱催化剂(甲醇钠)的存在下进行70℃、1小时左右的搅拌,与烷基醇直接反应,获得酯化合物的酯交换反应。在该脂肪酸甲酯化合物中混合30体积%的实施例1中所述的催化裂化煤油,制备航空燃料油组合物4。
(比较例2)
将70体积%实施例1的基材1与30体积%的具有表2所示性状的、精制原油而获得的石油系航空燃料油基材混合,制备航空燃料油组合物5。
(比较例3)
作为比较例3的航空燃料油,准备以往的代表性的市售石油系航空燃料油。
其中,在实施例1~3、比较例1、2中均添加下述添加剂。
抗氧化剂(2,6-二叔丁基苯酚,2,6-ditertiary-butyl-phenol)20质量ppm(燃料组合物总量基准)
抗静电剂(STADIS 450)2.0mg/L(燃料组合物总量基准)
(原料油、航空燃料油基材和航空燃料油的一般性状)
表2、表4和表5中所示的原料油、航空燃料油基材和航空燃料油的一般性状是根据以下方法测定的值。
15℃下的密度(密度15℃)是指根据JIS K2249“原油和石油制品-密度试验方法和密度-质量-体积换算表”测定的值。
30℃下的运动粘度是指根据JIS K2283“原油和石油制品-运动粘度试验方法和粘度指数计算方法”测定的值。
元素分析C(质量%)、H(质量%)是指根据ASTMD5291“Standard Test Methods for Instrumental Determination ofCarbon,Hydrogen,and Nitrogen in Petroleum Products andLubricants(石油制品和润滑剂中碳、氢和氮的仪器测定标准试验方法)”中规定的方法测定的值。
氧成分是指根据UOP649-74“Total Oxygen in OrganicMaterials by Pyrolysis-Gas Chromatographic Technique(有机材料中的总氧的热解气相色谱技术测定法)”等方法测定的值。
硫成分是指根据JIS K2541“原油和石油制品硫成分试验方法”测定的值。
酸值是指根据JIS K2501“石油制品和润滑油-中和值试验方法”的方法测定的值。
油脂中的脂肪酸基的构成比率是指根据上述标准油脂分析试验法(日本油化学会制定)(1993)“2.4.21.3-77脂肪酸组成(FID升温气相色谱法)”求出的值。
闪点是指根据JIS K2265“原油和石油制品-闪点试验方法-泰格密闭式闪点试验方法”求出的值。
蒸馏性状是指根据JIS K2254“石油制品-蒸馏试验方法”测定的值。
芳香族成分是指根据JIS K2536“燃料油烃成分试验方法(荧光指示剂吸附法)”测定的值。
总酸值是指根据JIS K2276“石油制品-航空燃料油试验方法-总酸值试验方法”测定的值。
凝固点是指根据JIS K2276“石油制品-航空燃料油试验方法-凝固点试验方法”测定的值。
烟点是指根据JIS K2537“燃料油烟点试验方法”测定的值。
热稳定性是指根据JIS K2276“石油制品-航空燃料油试验方法-热稳定性试验方法A法、B法”测定的值。
净热值是指根据JIS K2279“原油和燃料油热值试验方法”测定的值。
燃油耗费表示每单位容积的热值,是指密度乘以净热值而算出的值。
(生命周期特性)
本实施例中所述的生命周期特性(生命周期CO2计算)根据以下方法计算。
生命周期CO2分为伴随航空器利用航空燃料油飞行(燃料燃烧)所产生的CO2和燃料制造中从原料开采到燃料加油为止所产生的CO2来计算。
伴随燃烧所产生的CO2(以下称为“Tank to Wheel CO2”)使用环境省的定义值(喷气燃料:2.5kg-CO2/L),换算为每单位热值的排出量来使用。另外,从开采到燃料向燃料罐加油所产生的CO2(以下称为“Well to Tank CO2”)以原料和原油资源的开采、运输、加工、配送直到向车辆加油这一系列流程中的CO2排出量的总和来计算。另外,在计算“Well to Tank CO2”时,考虑下述(1B)~(5B)所示的二氧化碳的排出量进行演算。作为所述演算所需的数据,使用了本发明人等所拥有的炼油厂运行实绩数据。
(1B)伴随各种处理装置、锅炉等设备的燃料使用的二氧化碳排出量。
(2B)在使用氢气的处理中,伴随氢气制造装置的重整反应的二氧化碳排出量。
(3B)在经由催化裂化装置等的伴随连续催化剂再生的装置情况下,伴随催化剂再生的二氧化碳的排出量。
(4B)航空燃料组合物在横滨制造或起岸、从横滨配送到仙台、在仙台向燃烧设备加油时的二氧化碳排出量。
(5B)动植物油脂和来源于动植物油脂的成分的原产地为马来西亚及其周边区域,在横滨进行制造时的二氧化碳排出量。
予以说明,使用了动植物油脂和来源于动植物油脂的成分时,适用于所谓的京都议定书中的来源于这些燃料的二氧化碳不作为排出量计算的规则。在本计算中,对于燃烧时产生的“Tank to Wheel CO2”,应用该规则。
从表5可以看出,含有对动植物油脂来源的原料进行氢化处理而获得的航空燃料油基材的航空燃料油,与代表性石油系航空燃料油相比,具有包括燃料耗费在内的、不逊色的一般性状,另一方面,其生命周期特性优异,且正在成为有助于防止全球变暖的、代替石油的新型航空燃料油。
[表1]
Figure BDA0000139446430000251
[表2]
[表3]
Figure BDA0000139446430000261
[表4]
Figure BDA0000139446430000262
[表5]
Figure BDA0000139446430000271

Claims (7)

1.一种航空燃料油组合物,其特征在于,其含有第一基材和第二基材,
所述第一基材是经过对第一原料油或第二原料油进行氢化处理的工序而获得的、沸点范围140~280℃的馏分,所述第一原料油含有含硫烃化合物和来源于动植物油脂的含氧烃化合物,所述第二原料油是该第一原料油和精制原油而获得的石油系基材的混合油;
第二基材是由重质油裂化装置获得的、沸点范围140~280℃的馏分。
2.根据权利要求1所述的航空燃料油组合物,其特征在于,所述第二基材在15℃下的密度为800kg/m3以上且840kg/m3以下。
3.根据权利要求1或2所述的航空燃料油组合物,其特征在于,所述第一基材是经过以下工序获得的:在氢气的存在下,使用在由多孔性无机氧化物形成的载体上负载选自元素周期表第6族和第8~10族元素中的一种以上的金属而形成的催化剂,在氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比150~1500NL/L、反应温度150~480℃的条件下,对所述第一原料油或第二原料油进行氢化处理,其中所述多孔性无机氧化物含有选自铝、硅、锆、硼、钛和镁中的两种以上的元素而构成。
4.根据权利要求1~3中任一项所述的航空燃料油组合物,其特征在于,所述第一基材是经过以下工序获得的:在氢气的存在下,使用在由多孔性无机氧化物形成的载体上负载选自元素周期表第8~10族元素中的金属而形成的催化剂,在氢气压力2~13MPa、液体空间速度0.1~3.0h-1、氢/油比250~1500NL/L、反应温度150~380℃的条件下,对由氢化处理所述第一原料油或第二原料油的工序而获得的氢化处理油进一步进行异构化处理,其中所述多孔性无机氧化物由选自铝、硅、锆、硼、钛、镁和沸石中的物质构成。
5.根据权利要求1~4中任一项所述的航空燃料油组合物,其特征在于,其还含有第三基材,其为精制原油而获得的航空燃料油基材、合成系航空燃料油基材或它们的混合物。
6.根据权利要求1~5中任一项所述的航空燃料油组合物,其特征在于,其还含有选自抗氧化剂、抗静电剂、金属减活剂和防冻剂中的一种以上的添加剂。
7.根据权利要求1~6中任一项所述的航空燃料油组合物,其特征在于,所述航空燃料油组合物满足JIS K2209“航空涡轮机燃料油”的标准值。
CN201080038681.0A 2009-08-31 2010-08-30 航空燃料油组合物 Expired - Fee Related CN102482599B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009200695A JP5530134B2 (ja) 2009-08-31 2009-08-31 航空燃料油組成物
JP2009-200695 2009-08-31
PCT/JP2010/064700 WO2011024997A1 (ja) 2009-08-31 2010-08-30 航空燃料油組成物

Publications (2)

Publication Number Publication Date
CN102482599A true CN102482599A (zh) 2012-05-30
CN102482599B CN102482599B (zh) 2014-12-24

Family

ID=43628088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080038681.0A Expired - Fee Related CN102482599B (zh) 2009-08-31 2010-08-30 航空燃料油组合物

Country Status (11)

Country Link
US (2) US20120198757A1 (zh)
EP (1) EP2474598A4 (zh)
JP (1) JP5530134B2 (zh)
KR (1) KR20120073237A (zh)
CN (1) CN102482599B (zh)
AU (1) AU2010287445B2 (zh)
BR (1) BR112012008143A2 (zh)
MY (1) MY179485A (zh)
SG (1) SG178490A1 (zh)
TW (1) TW201120205A (zh)
WO (1) WO2011024997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456562A (zh) * 2018-04-21 2018-08-28 东营华亚国联航空燃料有限公司 航空活塞式发动机燃料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525786B2 (ja) 2009-08-31 2014-06-18 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
JP5330935B2 (ja) * 2009-08-31 2013-10-30 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物
BR112013026994A2 (pt) * 2011-04-22 2016-12-27 Univ North Dakota métodos para produzir um composto aromático e para produzir um combustível de aviação
RU2495083C1 (ru) * 2012-08-22 2013-10-10 Открытое акционерное общество "Всероссийский научно-исследовательский институт по переработки нефти" (ОАО "ВНИИ НП") Способ получения углеводородного топлива для ракетной техники
WO2016064695A1 (en) * 2014-10-21 2016-04-28 Shell Oil Company Catalyst and process for deoxygenation and conversion of bio-derived feedstocks
JP2016089095A (ja) * 2014-11-07 2016-05-23 株式会社ユーグレナ 燃料油及びその製造方法
US20170022425A1 (en) * 2015-07-24 2017-01-26 Uop Llc Staged catalyst loading for pyrolysis oil hydrodeoxygenation
KR101750230B1 (ko) 2016-04-08 2017-06-23 한국에너지기술연구원 촉매를 이용하여 비식용 유지로부터 고품질의 탄화수소 제조 방법
US20180184601A1 (en) * 2017-01-03 2018-07-05 Earl Brian Graffius Self-Watering Insert For A Plant Container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308569A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp A重油組成物
JP2007332360A (ja) * 2006-05-17 2007-12-27 Nippon Oil Corp ガソリン組成物
JP2008239876A (ja) * 2007-03-28 2008-10-09 Nippon Oil Corp 軽油組成物
US20080244962A1 (en) * 2007-04-06 2008-10-09 Ramin Abhari Process for Co-Producing Jet Fuel and LPG from Renewable Sources

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533938A (en) * 1967-09-06 1970-10-13 Ashland Oil Inc Jet fuel from blended conversion products
US5766274A (en) * 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
GB2355725A (en) * 1999-10-29 2001-05-02 Exxon Research Engineering Co Jet fuels with improved flow properties
JP4567961B2 (ja) 2003-11-27 2010-10-27 株式会社レボインターナショナル 油脂からのデイーゼル燃料油製造プロセス
US8022258B2 (en) * 2005-07-05 2011-09-20 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
JP4878824B2 (ja) * 2005-11-30 2012-02-15 Jx日鉱日石エネルギー株式会社 環境低負荷型燃料の製造方法および環境低負荷型燃料
JP5189740B2 (ja) * 2006-05-17 2013-04-24 Jx日鉱日石エネルギー株式会社 水素化精製方法
JP4914643B2 (ja) * 2006-05-17 2012-04-11 Jx日鉱日石エネルギー株式会社 水素化精製方法及び環境低負荷型ガソリン基材
CA2691612C (en) * 2006-06-30 2016-05-03 University Of North Dakota Method for cold stable biojet fuel
US7982077B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308569A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp A重油組成物
JP2007332360A (ja) * 2006-05-17 2007-12-27 Nippon Oil Corp ガソリン組成物
JP2008239876A (ja) * 2007-03-28 2008-10-09 Nippon Oil Corp 軽油組成物
US20080244962A1 (en) * 2007-04-06 2008-10-09 Ramin Abhari Process for Co-Producing Jet Fuel and LPG from Renewable Sources

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456562A (zh) * 2018-04-21 2018-08-28 东营华亚国联航空燃料有限公司 航空活塞式发动机燃料及其制备方法

Also Published As

Publication number Publication date
SG178490A1 (en) 2012-04-27
EP2474598A1 (en) 2012-07-11
TW201120205A (en) 2011-06-16
JP5530134B2 (ja) 2014-06-25
JP2011052068A (ja) 2011-03-17
AU2010287445B2 (en) 2016-04-14
WO2011024997A1 (ja) 2011-03-03
CN102482599B (zh) 2014-12-24
US20120198757A1 (en) 2012-08-09
AU2010287445A1 (en) 2012-03-08
MY179485A (en) 2020-11-08
US20140115954A1 (en) 2014-05-01
EP2474598A4 (en) 2013-05-22
BR112012008143A2 (pt) 2016-03-01
KR20120073237A (ko) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102482600A (zh) 燃料油基材及含有其的航空燃料组合物
CN102482599B (zh) 航空燃料油组合物
CN102482595A (zh) 航空燃料油基材的制造方法及航空燃料油组合物
JP5339863B2 (ja) 航空燃料油組成物の製造方法
US9464250B2 (en) Process for producing aviation fuel base oil
CN102159671B (zh) 烃油的制造方法
JP5117089B2 (ja) 軽油組成物の製造方法
JP5288742B2 (ja) 軽油組成物の製造方法
JP5072006B2 (ja) 軽油組成物の製造方法
JP5117088B2 (ja) 軽油組成物の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141224

Termination date: 20160830