CN102473532A - 用于高能量密度超级电容器的多孔氧化碳纳米复合物电极 - Google Patents

用于高能量密度超级电容器的多孔氧化碳纳米复合物电极 Download PDF

Info

Publication number
CN102473532A
CN102473532A CN2010800355846A CN201080035584A CN102473532A CN 102473532 A CN102473532 A CN 102473532A CN 2010800355846 A CN2010800355846 A CN 2010800355846A CN 201080035584 A CN201080035584 A CN 201080035584A CN 102473532 A CN102473532 A CN 102473532A
Authority
CN
China
Prior art keywords
storage device
metal oxide
carbon
fake capacitance
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800355846A
Other languages
English (en)
Inventor
路春
K.黄
R.J.鲁卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Power Generations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Power Generations Inc filed Critical Siemens Power Generations Inc
Publication of CN102473532A publication Critical patent/CN102473532A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/22Devices using combined reduction and oxidation, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

通过使用具有导电碳网络(15)的纳米复合物电极提供高能量密度超级电容器,所述导电碳网络具有大于2000m2/g的表面面积和赝电容金属氧化物(16),诸如MnO2。导电碳网络(15)被合并到多孔金属氧化物结构中以引入足够的导电性,使得金属氧化物(16)的本体被用于电荷存储,和/或导电碳网络(15)的表面用金属氧化物布置,用以增加表面面积和在纳米复合物电极中的赝电容金属氧化物的量以用于电荷存储。

Description

用于高能量密度超级电容器的多孔氧化碳纳米复合物电极
相关申请的交叉引用
本申请按照35 U.S.C.§119(e)要求标题为POROUS GRAPHENE OXIDE NANOCOMPOSITE ELECTRODES FOR HIGH NEERGY DENSITY SUPERCAPACITORS的于2009年8月11日提交的美国临时专利申请序号61/232,831的优先权。
技术领域
本发明涉及用于具有高功率密度和高能量密度两者的超级电容器的氧化碳纳米复合物电极。
背景技术
在过去二十年期间,存储电能的需求在便携式的、运输和负载调整和中央备份应用的领域中显著增加。现有电化学能量存储***只是太昂贵以致不能渗透主要的新市场。需要仍更高的性能,并且优选环境可接受的材料。在电能存储科学和技术中的转换改变被大量需求来以对于主要市场扩大必要的更低成本和更长寿命允许更高和更快的能量存储。这些改变中的大多数需要新的材料和/或更大的氧化还原能力的示范方面的创新设想,该更大的氧化还原能力更加快速地和可逆地与阳离子和/或阴离子反应。
电池组到目前为止是存储电能的最通常的形式,其范围从标准每天铅酸电池到在美国专利号4,078,125中由Brown教导的用于核潜艇的外来铁-银电池组、到在美国专利号6,399,247B1中由Kitayama教导的镍金属氢化物(NiMH)电池组、到在美国专利号3,977,901(Buzzelli)中和Isenberg在美国专利号4,054,729中教导的金属空气电池、以及到在美国专利号7,396,612B2中由Ohata教导的锂离子电池组。这些后面的金属空气、镍金属氢化物和锂离子电池组电池需要液态电解质***。
电池组的范围在尺寸方面从在表中所使用的纽扣电池到百万瓦特负载调节应用。电池组一般是有效的存储装置,具有通常超过输入能量的90%的输出能量,除了在最高能量密度时以外。可再充电的电池组多年来从铅酸通过镍镉和镍金属氢化物(NiMH)发展到了锂离子。NiMH电池组是用于诸如计算机和手机的电子设备的初始模块,但是它们几乎完全从那个市场被锂离子电池组取代,因为后者的较高能量存储容量。当今,NiMH技术是在氢化物电动车辆中所使用的主要电池组,但是可能要被更高电能和现在更低成本锂电池组取代,如果后者的安全性和寿命能够被改善的话。在高级的电池组中,锂离子是用于大多可再充电的电子设备的占优势的电源。
电池组、超级电容器和在较少的程度上燃料电池是用于能量存储的主要电化学装置。因为超级电容器一般显示高功率密度、长的寿命和快速的响应,所以超级电容器在能量存储领域起至关重要的作用。超级电容器对于其普遍应用的主要限制之一是其在与燃料电池和电池组相比时较慢的能量密度。因此,超级电容器的增加的能量密度已经是科学和工业界中的焦点。
图1是具有多孔电极的现有超级电容器的示意图。多孔电极材料10被沉积在导电集流器11上,并且其孔用电解质12填充。两个电极被组装在一起并且利用通常由陶瓷和具有高介电常数的聚合物制成的分离器13分离。确定能量密度的因子在以下方程中展示:
,其中
E=能量密度
C:电容
V:工作电压
ε:分离器的介电常数
A:电极的活性表面面积
d:电双层的厚度。
因为超级电容器的能量密度部分地由其电极的活性表面面积决定,所以包括活性碳的高表面面积材料已经在电极中被采用。另外,已经发现,一些氧化物显示出赝电容特性,使得氧化物通过物理表面吸附和化学本体吸收存储电荷。因此,赝电容氧化物被积极地采用用于超级电容器。不幸地,氧化物显示出低导电性,使得所述氧化物必须由诸如活性碳的导电组件支撑。
图2示出来自美国国防后勤局的明显图表,该图表图解现有技术高能量密度低功率密度燃料电池、铅酸、NiCd电池组、中间范围(mid-range)锂电池组、双层电容器、顶端高功率密度低能量密度超级电容器和铝电解电容器。图2示出它们在功率密度(w/kg)和能量密度(Wh/kg)方面的关系。
作为14示出的超级电容器处于非常高的功率密度(W/kg)和中等能量密度(Wh/kg)的独特位置。
包含金属氧化物和含碳材料的超级电容器电极可以基于金属盐、水基、酒精相互作用通过将活性碳添加到沉淀的金属氢氧化物凝胶来制成,如由1997年的美国专利号5,658,355(Cottevieille等人)所教导的。整个被混合到添加有粘合剂的电极膏中。后来,Manthiram等人在美国专利号6,331,282 B1中通过将通过由用于电池组和超级电容器应用的碘化锂还原的高锰酸钠产生的碘氧化锰与诸如碳的导电材料混合来利用所述碘氧化锰。
一组专利、即美国专利号6,339,528B1和6,616,875B1(Lee等人两者)教导了高锰酸钾对碳或者活性碳的吸收并且与乙酸锰溶液混合来形成无定形氧化锰,该无定形氧化锰被研磨成粉末并且与粘合剂混合来提供具有适用于超级电容器的高电容的电极。美国专利号6,510,042B1(Lee等人)教导了具有集流器的金属氧化物赝电容器,所述集流器包含导电材料和在集流器上涂布有导电聚合物的金属氧化物的活性材料。
所需要的是利用新颖构造的新的和改进的超级电容器,该超级电容器具有与铅酸、NiCd和锂电池组一样好并且几乎类似于燃料电池的能量密度,同时具有类似于铝电解电容器的功率密度、周围环境温度运行、快速响应和长循环寿命。
本发明的主要目标是提供供应上述需要的超级电容器。
发明内容
通过提供包括多孔氧化石墨烯纳米复合物电极的电化学存储装置来满足上面的需要和达到目标,所述多孔氧化石墨烯纳米复合物电极包括1)具有大于2000m2/g的表面面积的多孔导电石墨烯碳网络,和2)赝电容金属氧化物(诸如由网络支撑的MnO2)的涂层,其中网络和涂层形成多孔纳米复合物电极,如在图3中示意性图解的那样。图3示出包含赝电容氧化物16和孔隙17的电子导电网络15。在图4中,这些元件被分别示出为15’、16’和17’。石墨烯碳导电网络15’可以被合并到赝电容氧化物构架(skeleton)18的孔隙中,如在图4中示意性示出的那样。石墨烯碳导电网络15’的表面可以被涂布有相同的或不同的赝电容氧化物16’。所形成的复合物能够以物理方式和化学方式两者存储能量。
石墨烯是密集地封装在蜂窝晶格中的碳原子20的平面板19,如随后在图6中所图解的那样,通常是一个碳原子厚。该平面板具有大于2000m2/g、优选地从大约2000m2/g至大约3000m2/g、通常2500m2/g至2000m2/g的及其高的表面面积并且比银更好地导电。MnO2由于用于能量存储的附加本体参与而具有高电容(MnO2+K+(钾离子)+e-=MnOOK)。石墨烯可以由活性碳、无定形碳和碳纳米管代替并且MnO2可以由NiO、RuO2、SrO2、SrRuO3代替。
在本发明中,新设计的纳米复合物电极通过直接支撑具有高表面面积石墨烯碳和/或涂层的氧化物允许采用增加量的赝电容氧化物,使得石墨烯碳包含在赝电容构架的孔隙内或合并(“布置(decorate)”)到赝电容构架的孔隙中。石墨烯碳的表面面积通过给石墨烯碳涂布相同的或不同的赝电容氧化物而进一步增加。在此术语“纳米复合物电极”被定义为意味着,至少各个组件之一具有小于100纳米(nm)的颗粒尺寸。电极多孔性范围从30容积百分比至65容积百分比多孔的。优选地,两个纳米复合物电极被设备在分离器的每一侧,并且每个电极接触外部集流器。如在此所使用的术语“被布置”、“布置”是指被涂布/包含在内或被合并到其中。
附图说明
为了更好地理解本发明,可以参照如在附图中所示的本发明示范性的优选实施例,其中:
图1是具有多孔电极的现有超级电容器的现有技术示意图;
图2是图解范围从燃料电池到锂电池组到超级电容器的电化学装置的能量密度对功率密度的来自美国国防后勤局的图表;
图3是包含支撑赝电容氧化物的导电网络的预想的纳米复合物之一的示意表示,该图最好地示出了广泛的发明;
图4是包含赝电容氧化物构架的其他预想的纳米复合物的示意表示,所述赝电容氧化物构架的孔隙与涂布有赝电容氧化物的导电网络合并;
图5示出与当前技术相比具有多孔纳米复合物电极的高能量密度(HED)超级电容器的所计划的性能;
图6图解一个原子厚石墨烯的理想化平面板,其中碳原子20被密集地封装在蜂窝晶格中;
图7A和7B示出与当前超级电容器和锂离子电池组相比具有多孔石墨烯MnO2纳米复合物电极的超级电容器的所计划的能量和功率密度;
图8示出在千克纳米复合物中石墨烯和MnO2的量,其中10nm和70nm MnO2对于情况I和II被分别涂布在石墨烯表面上;和
图9是示出在以纳米复合物电极为特征的超级电容器中的组件布置的示意图。
具体实施方式
本发明描述在超级电容器中为增加其能量密度用作电极的所设计的纳米复合物。如在图3中示意性示出的那样,赝电容氧化物16由导电网络15支撑,所述赝电容氧化物的实际应用由其有限的导电性妨碍。孔隙示出为17。在另一方面,如在图4中所示,纳米复合物可以通过用碳作为导电网络15’“布置”赝电容构架18的孔隙而产生。该导电网络的表面面积可以通过用相同的或不同的赝电容氧化物16’涂布碳导电网络来进一步增加。有用的赝电容氧化物,图3中的16和图4中的16’,从由NiO、RuO2、SrO2、SrRuO3、MnO2和其混合物组成的组中选择。最优选地,NiO和MnO2。有用的碳从由活性炭、无定形碳、碳纳米管和石墨烯组成的组中选择,最优选地是活性炭和石墨烯。孔隙示出为17’。在所形成的纳米复合物中,在(一种或多种)赝电容氧化物通过物理表面吸附和化学本体吸收两者参与电荷存储时,碳网络传导电子。因此,具有由纳米复合物制成的电极的超级电容器显示出高能量密度,如在明显的图5中作为21 HED SC(高能量密度超级传感器)所示的那样。
图6图解一个原子厚石墨烯的理想化的平面板50,其中碳原子C 51如所示那样被密集地封装在蜂窝晶格中,具有2630m2/g的表面面积。因此,石墨烯碳供应大量的表面支撑赝电容氧化物。
图7A和7B图解在超级电容器模式中所利用的石墨烯/氧化锰纳米复合物(“GMON”)的所计算的能量和功率密度。假设1)0.8V的工作电压;2)MnO2电容大约为698F/g;3)MnO2完全对于能量存储做出贡献;4)存在快速动力学;和5)在60秒中充电/放电。通常示出在维持高功率密度边缘时,GMON纳米复合物超级电容器的能量密度将会类似于锂电池组。
图8示出在千克纳米复合物材料中石墨烯和MnO2的量,其中对于情况I和情况II,分别将10nm和70nm MnO2涂布在石墨烯表面上。在情况I中,石墨烯含量70(g在一千克纳米复合物中)是7.5至992.5 MnO2,示出为71,并且在情况II中,石墨烯含量仅为1.1至998.9 MnO2,说明石墨烯构架的最小量,这比在图2和图3中图形化显示的小得多。图9图解具有在每一侧上用电解质浸泡的纳米复合物电极23的中央分离器22的概念上的单电池设计,全部都具有正和负外部金属薄膜24和25,诸如铝;具有以下规格:
·电压:0.8V
·估计容量:18.5cm x 18.5cm x 0.21cm
·电极尺寸18cm乘18cm
·电极厚度1mm
·单电池的总厚度2.1mm(板、分离器和集流器)
·充电/放电时间:60秒
·功率:0.725W
·能量容量:12Wh
·重量:~174g。
虽然详细地描述了本发明的特定实施例,但是本领域技术人员将会理解的是,可以根据公开的全部教导发展这些细节的各种修改和替代方案。因此,所公开的特定实施例意欲仅是说明性的并且不是关于本发明范围的限制,本发明范围将被给出所附权利要求的全幅度及其任何和所有等效方案。

Claims (10)

1.一种包括多孔纳米复合物电极的电化学能量存储装置,包括:
1)具有大于2000m2/g的表面面积的多孔导电碳网络(15),和
2)由碳网络(15)支撑的赝电容金属氧化物(16),其从由NiO、RuO2、SrO2、SrRuO3和MnO2组成的组中选择,其中所述网络和氧化物形成多孔纳米复合物电极。
2.根据权利要求1所述的存储装置,还包含从由NiO、RuO2、SrO2、SrRuO3和MnO2组成的组中选择的赝电容金属氧化物构架(18),所述赝电容金属氧化物构架的孔隙连续地通过碳网络(15)和所支撑的金属氧化物(16)布置,其中构架、碳网络和所支撑的氧化物形成多孔纳米复合物电极。
3.根据权利要求1所述的存储装置,其中碳网络(15)是石墨烯碳。
4.根据权利要求1所述的存储装置,其中赝电容金属氧化物(16)从由NiO和MnO2组成的组中选择。
5.根据权利要求1所述的存储装置,其中两个纳米复合物电极(23)被设置在分离器(22)的每一侧上并且每个电极接触集流器(24,25)。
6.根据权利要求3所述的存储装置,其中石墨烯碳(15)具有大于从2000m2/g起的表面面积。
7.根据权利要求3所述的存储装置,其中石墨烯碳(15)具有从2000m2/g至3000m2/g的表面面积。
8.根据权利要求1所述的存储装置,其中在组件2)中的赝电容金属氧化物(16)是MnO2
9.根据权利要求5所述的存储装置,其中电极(23)多孔性是从30容积百分比至65容积百分比多孔的。
10.根据权利要求1所述的存储装置,其中所述装置能够以物理方式和化学方式两者存储能量。
CN2010800355846A 2009-08-11 2010-05-26 用于高能量密度超级电容器的多孔氧化碳纳米复合物电极 Pending CN102473532A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23283109P 2009-08-11 2009-08-11
US61/232,831 2009-08-11
US12/695,405 2010-01-28
US12/695,405 US20110038100A1 (en) 2009-08-11 2010-01-28 Porous Carbon Oxide Nanocomposite Electrodes for High Energy Density Supercapacitors
PCT/US2010/036104 WO2011019431A1 (en) 2009-08-11 2010-05-26 Porous carbon oxide nanocomposite electrodes for high energy density supercapacitors

Publications (1)

Publication Number Publication Date
CN102473532A true CN102473532A (zh) 2012-05-23

Family

ID=42537635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800355846A Pending CN102473532A (zh) 2009-08-11 2010-05-26 用于高能量密度超级电容器的多孔氧化碳纳米复合物电极

Country Status (11)

Country Link
US (1) US20110038100A1 (zh)
EP (1) EP2465124A1 (zh)
JP (1) JP2013502070A (zh)
KR (1) KR20120043092A (zh)
CN (1) CN102473532A (zh)
BR (1) BR112012003129A2 (zh)
CA (1) CA2770624A1 (zh)
IN (1) IN2012DN00552A (zh)
MX (1) MX2012001775A (zh)
RU (1) RU2012108855A (zh)
WO (1) WO2011019431A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531449A (zh) * 2016-10-24 2017-03-22 上海应用技术大学 一种纳米片核壳结构的制备方法
CN106531460A (zh) * 2016-11-28 2017-03-22 上海应用技术大学 一种介孔氧化镍/氧化锰/碳纳米复合材料、制备方法及其应用
CN114784358A (zh) * 2016-03-23 2022-07-22 加利福尼亚大学董事会 用于高电压和太阳能应用的装置和方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263196B2 (en) * 2011-04-20 2016-02-16 Empire Technology Development Llc Chemical vapor deposition graphene foam electrodes for pseudo-capacitors
WO2013070989A1 (en) 2011-11-10 2013-05-16 The Regents Of The University Of Colorado, A Body Corporate Supercapacitor devices having composite electrodes formed by depositing metal oxide pseudocapacitor materials onto carbon substrates
JP6184421B2 (ja) 2011-12-21 2017-08-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 相互接続された波状炭素系網状体
JP5806618B2 (ja) * 2012-01-26 2015-11-10 Dowaエレクトロニクス株式会社 酸化グラフェンの還元方法およびその方法を利用した電極材料の製造方法
AU2013230195B2 (en) 2012-03-05 2017-04-20 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
CN102671655B (zh) * 2012-06-08 2014-08-06 浙江大学 一种醇氨氧化制备酰胺的氧化锰/石墨烯催化剂及其制备方法
CN103730257A (zh) * 2012-10-16 2014-04-16 海洋王照明科技股份有限公司 二氧化锰/石墨烯复合电极材料及其制备方法与电化学电容器
WO2015069332A1 (en) 2013-11-08 2015-05-14 The Regents Of The University Of California Three-dimensional graphene framework-based high-performance supercapacitors
KR101561959B1 (ko) * 2014-03-17 2015-10-20 고려대학교 산학협력단 패턴된 증착 그래핀을 이용한 전고체상 휘어짐 가능한 수퍼커패시터 및 그 제조 방법
KR101561961B1 (ko) * 2014-03-19 2015-10-20 고려대학교 산학협력단 전고체상 박막형 수퍼커패시터 및 그 제조 방법
AU2015277264B2 (en) 2014-06-16 2019-08-15 The Regents Of The University Of California Hybrid electrochemical cell
KR102471579B1 (ko) 2014-11-18 2022-11-25 더 리전트 오브 더 유니버시티 오브 캘리포니아 다공성 상호 연결된 파형 탄소-기반 네트워크 (iccn) 복합재
US9905370B2 (en) * 2015-03-05 2018-02-27 Tuqiang Chen Energy storage electrodes and devices
JP6476019B2 (ja) * 2015-03-10 2019-02-27 株式会社仁科マテリアル 炭素−金属複合体
US20170076871A1 (en) * 2015-09-16 2017-03-16 Cardiac Pacemakers, Inc. Assembly techiniques for sintered anodes and cathodes
GB2544775B (en) * 2015-11-26 2021-07-21 Zapgo Ltd Portable electronic device
CA3006997A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
US9966199B2 (en) * 2016-01-11 2018-05-08 Nanotek Instruments, Inc. Supercapacitor having highly conductive graphene foam electrode
WO2017127539A1 (en) 2016-01-22 2017-07-27 The Regents Of The University Of California High-voltage devices
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
WO2018044786A1 (en) 2016-08-31 2018-03-08 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
WO2019005143A1 (en) * 2017-06-30 2019-01-03 Intel Corporation SUPER-NETWORK CAPACITOR
CA3067725A1 (en) 2017-07-14 2019-01-17 Volker Strauss Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
US10014124B1 (en) * 2017-09-27 2018-07-03 King Saud University Composite electrode material for supercapacitors
US11038179B2 (en) * 2019-04-03 2021-06-15 Tuqiang Chen Flexible energy storage devices
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
JP2023004470A (ja) 2021-06-25 2023-01-17 株式会社エフ・シー・シー キャパシタ用電極及びキャパシタ用電極の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339528B1 (en) * 1999-09-16 2002-01-15 Ness Capacitor Co., Ltd. Metal oxide electrode for supercapacitor and manufacturing method thereof
US20090059474A1 (en) * 2007-08-27 2009-03-05 Aruna Zhamu Graphite-Carbon composite electrode for supercapacitors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977901A (en) * 1974-10-23 1976-08-31 Westinghouse Electric Corporation Metal/air cells and improved air electrodes for use therein
US4078125A (en) * 1976-05-27 1978-03-07 Westinghouse Electric Corporation Energy density iron-silver battery
US4054729A (en) * 1976-10-27 1977-10-18 Westinghouse Electric Corporation Rechargeable high temperature electrochemical battery
FR2720542B1 (fr) * 1994-05-30 1996-07-05 Alsthom Cge Alcatel Procédé de fabrication d'une électrode de supercondensateur.
US6331282B1 (en) * 1997-11-10 2001-12-18 Board Of Regents, The University Of Texas System Manganese oxyiodides and their method of preparation and use in energy storage
JP2001217000A (ja) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd ニッケル・水素二次電池
CN1231414C (zh) * 2000-05-24 2005-12-14 活力韩国株式会社 中孔碳材料,碳/金属氧化物复合材料和使用它们的电化学电容器
KR100414357B1 (ko) * 2001-07-13 2004-01-07 주식회사 네스캡 전도성 고분자를 코팅한 금속산화물 전기화학의사커패시터의 전극 및 이의 제조방법
US20030108785A1 (en) * 2001-12-10 2003-06-12 Wu L. W. Meso-porous carbon and hybrid electrodes and method for producing the same
EP1643583A4 (en) * 2003-07-29 2010-01-20 Panasonic Corp LITHIUM ION SECONDARY BATTERY
EP1772428A4 (en) * 2004-06-11 2008-05-14 Univ Tokyo Agriculture NANOCARBON COMPOSITE STRUCTURE WITH RUTHENIUM OXIDE TAPPED INTO
US20080248192A1 (en) * 2006-09-11 2008-10-09 Long Jeffrey W Electroless deposition of nanoscale manganese oxide on ultraporous carbon nanoarchitectures
KR100894481B1 (ko) * 2007-04-16 2009-04-22 한국과학기술연구원 초극세 탄소 섬유에 축적한 금속산화물로 이루어진슈퍼커패시터용 전극 및 그 제조 방법
US7986509B2 (en) * 2008-01-17 2011-07-26 Fraser Wade Seymour Composite electrode comprising a carbon structure coated with a thin film of mixed metal oxides for electrochemical energy storage
KR101614449B1 (ko) * 2009-01-22 2016-04-21 삼성전자주식회사 전이 금속/탄소 나노튜브 복합체 및 이의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339528B1 (en) * 1999-09-16 2002-01-15 Ness Capacitor Co., Ltd. Metal oxide electrode for supercapacitor and manufacturing method thereof
US20090059474A1 (en) * 2007-08-27 2009-03-05 Aruna Zhamu Graphite-Carbon composite electrode for supercapacitors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784358A (zh) * 2016-03-23 2022-07-22 加利福尼亚大学董事会 用于高电压和太阳能应用的装置和方法
CN106531449A (zh) * 2016-10-24 2017-03-22 上海应用技术大学 一种纳米片核壳结构的制备方法
CN106531449B (zh) * 2016-10-24 2018-04-06 上海应用技术大学 一种纳米片核壳结构的制备方法
CN106531460A (zh) * 2016-11-28 2017-03-22 上海应用技术大学 一种介孔氧化镍/氧化锰/碳纳米复合材料、制备方法及其应用
CN106531460B (zh) * 2016-11-28 2018-03-20 上海应用技术大学 一种介孔氧化镍/氧化锰/碳纳米复合材料、制备方法及其应用

Also Published As

Publication number Publication date
US20110038100A1 (en) 2011-02-17
CA2770624A1 (en) 2011-02-17
BR112012003129A2 (pt) 2016-03-01
MX2012001775A (es) 2012-06-12
IN2012DN00552A (zh) 2015-06-12
JP2013502070A (ja) 2013-01-17
WO2011019431A1 (en) 2011-02-17
EP2465124A1 (en) 2012-06-20
RU2012108855A (ru) 2013-10-20
KR20120043092A (ko) 2012-05-03

Similar Documents

Publication Publication Date Title
CN102473532A (zh) 用于高能量密度超级电容器的多孔氧化碳纳米复合物电极
Halper et al. Supercapacitors: A brief overview
KR102443607B1 (ko) 하이브리드 전기화학 전지
Burke Ultracapacitors: why, how, and where is the technology
CN106688132B (zh) 硅二次电池
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
Fan Pseudocapacitor electrodes: regular pores matter
JP2002118036A (ja) 蓄電用電子部品および複合電極体
EP2850678B1 (en) An apparatus and associated methods
US20110188171A1 (en) Electric double layer capacitor and method of manufacturing the same
JP2011009690A (ja) 電気二重層キャパシタ用電極とその製造方法、電気二重層キャパシタ
KR20140058508A (ko) 리튬 축전지
CN106921008B (zh) 金属空气电池和金属空气电池装置
CN101707143B (zh) 混合电化学电容器
EP3300146B1 (en) Metal-ion secondary battery
JP2018500725A (ja) 電池のための急速充電装置
WO2005076296A1 (ja) 電気化学デバイスおよび電極体
KR101368226B1 (ko) 리튬 2차전지용 전극구조체 및 상기 전극구조체를 포함하는 2차전지
KR102302821B1 (ko) 집전체 구조 및 이를 포함하는 슈퍼 캐패시터
Rajni et al. Metal-based hybrid capacitors
KR101383250B1 (ko) 리튬 2차전지용 전극구조체 및 상기 전극구조체를 포함하는 2차전지
JP2007103464A (ja) 電解液
US20120113564A1 (en) Lithium ion capacitor and method of fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120523