CN102341431A - 用于有机电装置的封装方法和介电层 - Google Patents

用于有机电装置的封装方法和介电层 Download PDF

Info

Publication number
CN102341431A
CN102341431A CN2009801578887A CN200980157888A CN102341431A CN 102341431 A CN102341431 A CN 102341431A CN 2009801578887 A CN2009801578887 A CN 2009801578887A CN 200980157888 A CN200980157888 A CN 200980157888A CN 102341431 A CN102341431 A CN 102341431A
Authority
CN
China
Prior art keywords
layer
alkyl
blocking
electronic installation
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801578887A
Other languages
English (en)
Other versions
CN102341431B (zh
Inventor
Y·D·布卢姆
W·S-K·楚
D·B·麦奎因
Y·施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRI International Inc
Original Assignee
SRI International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRI International Inc filed Critical SRI International Inc
Publication of CN102341431A publication Critical patent/CN102341431A/zh
Application granted granted Critical
Publication of CN102341431B publication Critical patent/CN102341431B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供适用于电子装置的封装阻挡物和介电层的方法和材料。例如,在一个实施方式中,提供一种具有介电层的电致发光装置或其它电子装置,该介电层包含交替的含硅粘合材料层和陶瓷材料层。例如,该方法提供具有提高的稳定性和储存时间的电子装置。例如,本发明可用于微电子装置领域。

Description

用于有机电装置的封装方法和介电层
对政府资助的致谢
本发明部分在美国能源部授予的DE-FC26-06NT42936号的政府资助下完成。因此,政府可享有本发明的某些权利。
技术领域
本发明涉及适用于有机电子装置的封装层和介电层的材料。本发明还提供通过该方法制备的具有介电层和封装层的装置。本发明可用于例如电子领域。
背景技术
有机电子装置被广泛用于多种用途。有多种电装置,例如发光二极管、晶体管和光生伏打电池,包括使用有机材料作为一种或多种装置组件(例如介电层,电极层等)。近年来,有机电致发光装置(ELD)如有机发光二极管(OLED)在商业上变得很重要。希望有机材料是重量轻且低成本的。不幸的是,与金属材料相比,许多有机材料的稳定性和耐久性都低。
有机电子装置通常由两个电极构成。在ELD的情况中,电致发光材料与两个电极都电接触,在两个电极之间形成传导路径。一个电极用作电子注入层,而另一个电极用作空穴注入层。在ELD组件层的一些设置中,存在介电层。例如,介电层可存在于全部电极或部分电极之间。介电层也是晶体管和电容器之类的其它电子装置的重要组件层。
构建和运行有机电装置(OED)的一个重要方面是封装工艺,利用该工艺,各组件层被保护起来,避免环境如湿气和氧对其造成损害。例如,在OLED的情况中,可能需要物理阻挡物来保护OLED的各组件层(例如有机和阴极材料)。制备这种阻挡物的常用方法包括在OLED装置上(但是通常不接触OLED装置)物理匹配(physically mating)具有环氧边界的上玻璃(或其它合适材料)层。该玻璃及其环氧边界为OLED提供长期使用所需的环境保护。但是,该方法有许多限制,包括环氧边界引起的氧/水分渗透问题,制造困难,以及上玻璃层的非挠性。
近年来,已经尝试开发更便宜、更迅速且更有效的封装OED,特别是OLED的方法。在一种称为″直接薄膜(direct thin-film)″封装的方法中,使用交替重复的有机材料层和阻挡层。典型的有机材料是丙烯酸酯等,而典型的阻挡层包含溅射的金属、金属氧化物或介电层。
当阻挡层在其表面包含点缺陷(例如针孔)时,该直接薄膜封装法的一个问题出现。这些缺陷严重降低阻挡层的有用性,因为它们会增加能通过阻挡层的有害污染物的量。该问题的一种解决方案是增加阻挡层的厚度,以消除会延伸到整个阻挡层的缺陷。糟糕的是,如果阻挡层较厚,会增加装置的重量和成本,降低封装的透明度和挠性。
而且,对于某些类型的ELD,直接薄膜封装法还有其它缺陷。例如,在某些OLED(例如美国专利第6,800,722和6,593,687号中所述的OLED)中,阴极层、介电层和阳极层沉积在基片上,形成OLED栈。产生部分或完全延伸通过各层的空腔,发光聚合物(LEP)层沉积在OLED栈上。在空腔内,LEP接触阳极层和阴极层。随着电子和空穴流过LEP并在阴极层和阳极层之间流动,空腔区域内产生发光。在这种装置中,LEP层构成OLED栈的最外层(即离基片最远的层)。因此,LEP层暴露于包括通过化学或物理沉积法来沉积阻挡层的封装方法,并且有可能被封装方法破坏。例如,在通过金属溅射、化学气相沉积或溶液沉积法沉积封装层时,LEP层可能被反应性物质或溶剂破坏。
层状电子装置遭遇的另一问题是介电层的破裂或渗漏,导致在电极之间或从一个电极到接地形成不希望出现的电流。通常,这种破裂或渗漏是由于介电层中的缺陷引起的。缺陷包括裂纹和针孔,可能是在沉积和/或固化介电层时形成的。克服该难题的传统方法通常包括增加介电层的厚度。该方法特别不利于需要较薄的介电层的应用。
在本领域中仍然需要克服上述缺陷,并且需要开发新的方法和材料来有效地制造和保护OED如ELD。理想的封装方法和材料将利用容易获得或易于制备的材料,最大程度地减少方法步骤,以及/或者提供高度重复的结果,在不损害OED组件的情况下提供有效的阻挡层。类似地,用于形成介电层的理想材料和方法将使用容易获得的材料,能产生具有最少缺陷的薄介电层。
发明概述
本发明涉及提供用于封装有机电子装置的方法和材料。本发明还涉及提供用于制备层状电子装置中的介电层的方法和材料。
一方面,提供一种形成电子装置中的介电层的方法,该方法包括:(i)将阻挡材料直接或间接沉积在基片上来形成阻挡层,其中所述阻挡材料是陶瓷材料;(ii)将阻挡层氧化,提供暴露的官能团;(iii)在阻挡层上沉积粘合材料层来形成粘合层,其中所述粘合材料是含硅材料,并包含能与阻挡层的官能团反应的官能团;(iv)任选地将粘合层氧化,提供暴露的官能团;(v)任选地通过重复步骤(i)、(ii)、(iii)和(iv)形成一对或多对额外的阻挡层和粘合层。
另一方面,提供一种电子装置,其包含多个设置在基片上的组件层;介电层,其至少包含第一对阻挡材料层和交联材料层,其中所述阻挡材料是陶瓷材料,所述交联材料是含硅聚合物。
另一方面,提供一种封装电子装置的方法,该方法包括:(a)提供基片和设置在基片上的电子装置;(b)将阻挡材料直接或间接沉积在电子装置上来形成阻挡层,其中所述阻挡材料是陶瓷材料;(c)将阻挡层氧化,提供暴露的官能团;(d)在阻挡层上沉积粘合材料层来形成粘合层,其中所述粘合材料是含硅材料,并包含能与阻挡层的官能团反应的官能团;(e)任选地将粘合层氧化,提供暴露的官能团;(f)任选地通过重复步骤(b)、(c)、(d)和(e)形成一对或多对额外的阻挡层和粘合层。
另一方面,提供一种封装的电子装置,其包括:电子装置,其包含多个设置在基片上的组件层;封装部分,其包含第一对阻挡材料层和交联材料层,其中所述阻挡材料是陶瓷材料,所述交联材料是含硅聚合物。
从以下说明(包括权利要求和实施例)很容易了解本发明的其他方面。
附图简要说明
图1a-1g提供适合使用本发明封装和介电层方法和材料的代表性有机电装置的图示。
图2提供适合使用本发明封装和介电层方法和材料的有机电装置的图示。
发明详述
在详细描述本发明之前,应理解,除非另有说明,否则,本发明不限于本文所述的任何具体装置,结构,材料或制备方法,因为它们可能变化。应当理解本文所使用的术语仅为了描述特定的实施方式而不是限制性的。文中提供的定义不旨在互相排它。例如,应该理解一些化学基团可适合不止一种定义。
本文所用的术语″烷基″指通常(但并非必须)包含1到约24个碳原子的支链或非支链饱和烃基,如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、辛基、癸基等,以及环烷基,如环戊基、环己基等。一般但非必须地,本文的烷基可包含1到约18个碳原子,这些基团可包含1到约12个碳原子。术语″低级烷基″指1-6个碳原子的烷基。″取代的烷基″指被一个或多个取代基取代的烷基,如以下详述的那样,术语″含杂原子的烷基″和″杂烷基″指至少一个碳原子被杂原子取代的烷基取代基。如果没有另外说明,术语″烷基″和″低级烷基″分别包括直链、支链、环状、未取代、取代和/或含杂原子的烷基或低级烷基。
本文所用的术语″烯基″指含至少一个双键的2到约24个碳原子的直链、支链或环状烃基,如乙烯基、正丙烯基、异丙烯基、正丁烯基、异丁烯基、辛烯基、癸烯基、十四碳烯基、十六碳烯基、二十碳烯基、二十四碳烯基等。一般但仍非必须地,本文的烯基可包含2到约18个碳原子,例如可包含2-12个碳原子。术语″低级烯基″指2-6个碳原子的烯基。术语″取代的烯基″指被一个或多个取代基取代的烯基,术语″含杂原子的烯基″和″杂烯基″指至少一个碳原子被杂原子取代的烯基。如果没有另外说明,术语″烯基″和″低级烯基″分别包括直链、支链、环状、未取代、取代和/或含杂原子的烯基和低级烯基。
本文所用的术语″炔基″指含至少一个三键的2-24个碳原子的直链或支链烃基,如乙炔基、正丙炔基等。一般但仍非必须地,本文的炔基可包含2到约18个碳原子,这些基团还可包含2-12个碳原子。术语″低级炔基″指2-6个碳原子的炔基。术语″取代的炔基″指被一个或多个取代基取代的炔基,术语″含杂原子的炔基″和″杂炔基″指至少一个碳原子被杂原子取代的炔基。如果没有另外说明,术语″炔基″和″低级炔基″分别包括直链、支链、未取代、取代和/或含杂原子的炔基和低级炔基。
如果没有另外说明,术语”不饱和烷基”包括烯基和炔基,以及它们的组合。
本文所用的术语”烷氧基”指通过单个末端醚键连接的烷基,也就是说,”烷氧基”可表示为-O-烷基,其中烷基如以上定义。“低级烷氧基”指包含1-6个碳原子的烷氧基,包括例如,甲氧基、乙氧基、正丙氧基、异丙氧基、叔丁氧基等。本文鉴定为″C1-C6烷氧基″或”低级烷氧基”的取代基可例如,可包含1-3个碳原子,作为另一个例子,这样的取代基可包含1或2个碳原子(即甲氧基和乙氧基)。
除非另外说明,本文所用的术语”芳基”指一般但并不必须包含5-30个碳原子并包含单个芳环或稠合在一起、直接连接或间接连接(不同的芳环与一个共同的基团如亚甲基或亚乙基部分相连)的多个芳环的芳族取代基。芳基可例如,包含5-20个碳原子,作为另一个例子,芳基可包含5-12个碳原子。例如,芳基可包含一个芳环,或两个稠合或连接的芳环,例如苯基、萘基、联苯基、二苯醚、二苯胺、苯酮等。“取代的芳基”指被一个或多个取代基取代的芳基部分,如将在以下详述的那样,术语”含杂原子的芳基”和”杂芳基”指至少一个碳原子被杂原子取代的芳基取代基。如果没有另外说明,术语”芳基”包括未取代、取代和/或含杂原子的芳基取代基。
术语”芳烷基”指具有芳基取代基的烷基,术语”烷芳基”指具有烷基取代基的芳基,其中”烷基”和”芳基”如上定义。一般来说,本文的芳烷基和烷芳基包含6-30个碳原子。芳烷基和烷芳基可例如,包含6-20个碳原子,作为另一个例子,这样的基团可包含6-12个碳原子。
术语″烯烃基″指2-12个碳原子的单不饱和或双不饱和烃基。在本文中,这种烯烃基中优选的有时称为″低级烯烃基″,表示含有一个端部双键的2-6个碳原子的烃部分。后者也称为″低级烯基″。
文中使用的术语”亚烷基”指含有1-24个碳原子的双官能饱和支化或未支化烃链。″低级亚烷基″指含1-6个碳原子的亚烷基连接基,包括例如亚甲基(--CH2--),亚乙基(--CH2CH2--),亚丙基(--CH2CH2CH2--),2-甲基亚丙基(--CH2--CH(CH3)--CH2--),亚己基(--(CH2)6--)等。
本文所用的术语”氨基”指基团-NZ1Z2,其中Z1和Z2是氢原子或非氢原子取代基,非氢原子取代基包括例如,烷基、芳基、烯基、芳烷基及其取代和/或含杂原子的变体。
如”含杂原子的烷基”(也称为”杂烷基”)或”含杂原子的芳基”(也称为”杂芳基”)中的术语”含杂原子的”指一个或多个碳原子被除碳原子以外的原子取代的分子、连接基或取代基,除碳原子以外的原子是例如,氮、氧、硫、磷或硅,通常为氮、氧或硫。类似地,术语”杂烷基”指含杂原子的烷基取代基,术语”杂环基”指含杂原子的环状取代基,术语”杂芳基”和”杂芳族”分别指含杂原子的”芳基”和”芳族”取代基等。杂芳基的例子包括烷氧芳基、烷基硫烷基取代的烷基、N-烷基化的氨烷基等。杂芳基取代基的例子包括吡咯基、吡咯烷基、吡啶基、喹啉基、吲哚基、呋喃基、嘧啶基、咪唑基、1,2,4-***基、四唑基等,含杂原子的脂环族基团的例子有吡咯烷基、吗啉基、哌嗪基、哌啶基、四氢呋喃基等。
“烃基”指包含1到约30个碳原子、包括1到约24个碳原子、进一步包括1到约18个碳原子、还进一步包括约1到12个碳原子的单价烃基基团,包括直链、支链、环状、饱和和不饱和的基团,如烷基、烯基、芳基等。“取代的烃基”指被一个或多个取代基取代的烃基,术语”含杂原子的烃基”指至少一个碳原子被杂原子取代的烃基。除非另外说明,否则,术语”烃基”应解释为包括未取代的、取代的、含杂原子的和取代的含杂原子的烃基部分。
术语”卤”或”卤素”指氟、氯、溴、或碘,通常涉及有机化合物中氢原子的卤代取代基。在卤素中,通常优选的是氯和氟。
在一些上述定义中提到的如”取代的烃基”、”取代的烷基”、”取代的芳基”等中的”取代的”表示在烃基、烷基、芳基或其它部分中,至少有一个与碳(或其它)原子连接的氢原子被一个或多个非氢原子取代基取代。这样的取代基的例子包括但不限于:官能团如卤素,羟基,巯基,C1-C24烷氧基,C2-C24烯氧基,C2-C24炔氧基,C5-C20芳氧基,酰基(包括C2-C24烷基羰基(-CO-烷基)和C6-C20芳基羰基(-CO-芳基)),酰氧基(-O-酰基),C2-C24烷氧基羰基(-(CO)-O-烷基),C6-C20芳氧基羰基(-(CO)-O-芳基),卤代羰基(-CO)-X,其中X是卤素),C2-C24烷基碳酸根合(-O-(CO)-O-烷基),C6-C20芳基碳酸根合(-O-(CO)-O-芳基),羧基(-COOH),羧酸根合(-COO-),氨基甲酰基(-(CO)-NH2),单取代的C1-C24烷基氨基甲酰基(-(CO)-NH(C1-C24烷基)),二取代的烷基氨基甲酰基(-(CO)-N(C1-C24烷基)2),单取代的芳基氨基甲酰基(-(CO)-NH-芳基),硫代氨基甲酰基(-(CS)-NH2),脲基(-NH-(CO)-NH2),氰基(-C=N),异氰基(-N+≡C-),氰氧基(-O-C≡N),异氰酸根合(-O-N+≡C-),异硫氰酸根合(-S-C≡N),叠氮基(-N=N+=N-),甲酰基(-(CO)-H),硫代甲酰基(-(CS)-H),氨基(-NH2),单-和二-(C1-C24烷基)-取代的氨基,单-和二-(C5-C20芳基)-取代的氨基,C2-C24烷基酰氨基(-NH-(CO)-烷基),C5-C20芳基酰氨基(-NH-(CO)-芳基),亚氨基(-CR=NH,其中R=氢,C1-C24烷基,C5-C20芳基,C6-C20烷芳基,C6-C20芳烷基等),烷基亚氨基(-CR=N(烷基),其中R=氢,烷基,芳基,烷芳基等),芳基亚氨基(-CR=N(芳基),其中R=氢,烷基,芳基,烷芳基等),硝基(-NO2),亚硝基(-NO),磺基(-SO2-OH),磺酸根合(-SO2-O-),C1-C24烷基硫烷基(-S-烷基,也称为″烷硫基″),芳基硫烷基(-S-芳基,也称为″芳硫基″),C1-C24烷基亚磺酰基(-(SO)-烷基),C5-C20芳基亚磺酰基(-(SO)-芳基),C1-C24烷基磺酰基(-SO2-烷基),C5-C20芳基磺酰基(-SO2-芳基),膦酰基(-P(O)(OH)2),膦酸根合(-P(O)(O-)2),亚膦酸根合(-P(O)(O-)),磷酸基(-PO2),膦基(-PH2),单-和二-(C1-C24烷基)取代的膦基,单-和二-(C5-C20芳基)取代的膦基;以及烃基部分C1-C24烷基(包括C1-C18烷基,优选包括C1-C12烷基,更优选包括C1-C6烷基),C2-C24烯基(包括C2-C18烯基,优选包括C2-C12烯基,更优选包括C2-C6烯基),C2-C24炔基(包括C2-C18炔基,优选包括C2-C12炔基,更优选包括C2-C6炔基),C5-C30芳基(包括C5-C20芳基,优选包括C5-C12芳基),和C6-C30芳烷基(包括C6-C20芳烷基,优选包括C6-C12芳烷基)。此外,如果特定的基团允许,上述官能基团可进一步被一个或多个另外的官能基团或一个或多个烃基部分如以上具体列举的基团所取代。类似地,上述烃基部分可进一步被一个或多个官能基团或另外的烃基部分如具体列举的基团所取代。
在术语”取代的”出现在一系列可能的取代基之前时,表示该术语用于此组的每个取代基。例如,短语”取代的烷基和芳基”应解释为”取代的烷基和取代的芳基”。
除非另外说明,否则,提到原子时表示包括该原子的同位素。例如,提到H时表示包括1H、2H(即D)和3H(即T),提到C时表示包括12C和所有碳的同位素(如13C)。
本发明的方法和材料适用于制备封装的有机电装置(OED),例如有机电致发光装置。本发明的封装方法和材料可用于提高OED抵制由于接触环境中的反应性化学物而发生降解的稳定性。例如,使用本发明的封装方法所制备的OED与使用其它封装方法制备的OED相比,在各种环境条件下具有更长的储存时间。或者或此外,本发明的封装方法没有玻璃板和环氧封装方法所涉及的一些缺点。例如,在一些实施方式中,与使用传统封装方法制备的OED相比,本发明的封装的OED挠性更高,重量更轻,并且/或者对环境毒物的耐受性更高。
另外,本发明的方法和材料适用于制备OED中的介电层。在优选的实施方式中,与类似厚度的传统介电层相比,依据本发明制备的介电层含有的缺陷更少。对于任意给定的厚度,利用这种介电层能制备具有改进的装置性能的OED。本发明的介电层可沉积在任意起伏轮廓(topology)上。
各种结构的有机电子装置都适用于本发明的封装方法。例如,电致发光装置、光生伏打装置和晶体管装置都在本发明的范围内。PCT/US2008/010075(2008年8月25日提交)、PCT/US2008/001025(2008年1月24日提交)、US临时申请序列号第60/957,481号(2007年8月23日提交),美国申请序列号第11/900,478号(2007年9月11日提交)和美国专利第6,593,687号(2003年7月15日授权)中提供一些优选的OED。这些参考文献中涉及文中揭示的OED的内容通过参考结合于此。
适合使用本发明的方法封装和/或结合介电层的OED可以是电致发光装置,例如有机发光二极管(OLED)(除非另有特别说明,否则,文中使用的术语OLED包括聚合物发光二极管(PLEDs))。典型的OLED装置包括两个被中间层隔开的电极。一个电极可用作基片,从而同时作为OLED的供其它层设置在其上的结构元件和功能元件。当电极是由透明导电材料如氧化铟锡制成时,上述做法是特别合适的。或者,可使用电极以外的单独的组件作为基片。两个电极分别用作电子注入电极或空穴注入电极。它们在本文中也可称为阳极和阴极。而且,在本文中电极可称为顶电极和底电极,因为文中所述的OED可以被构造成使得空穴注入层最接近基片,或者电子注入层最接近基片。换言之,电极相对于基片的排列可交换。因此,应理解文中提供的例子不旨在将本发明范围限于所示的仅仅一个特定的取向(例如阳极最接近基片),而仅仅是作为说明性的目的给出的。
在一些实施方式中,中间层是包含电致发光材料的电致发光层。例如,图1a提供OLED装置的说明。在图1a中,基片10被底电极20覆盖。电致发光材料构成电致发光层40,设置在底电极20上。电致发光层40可与底电极20共价结合,但是在优选的实施方式中,该结合是依赖范德华力。顶电极50与电致发光层40接触。通常,尽管不是必须的,各组件层(即阳极、EL材料和阴极)在整个基片上的厚度和组成是基本均匀的。
在其它实施方式中,中间层是包含介电材料的介电层,并且也存在单独的电致发光层。这些实施方式的例子是空腔ELD,例如空腔有机发光二极管(COLED),其中多个空腔延伸通过至少一个电极和介电层。图1b,1c,1d和1e提供COLED装置结构的例子。这些和其它OED中的介电层可根据常规方法(例如旋涂等)由常规材料制得,或者它们可根据文中揭示的交替的阻挡层/粘合层来制备。
在图1b中,装置100由基片10上的层状结构构成,该结构具有延伸通过该层状结构的空腔11。该层状结构包括底电极层20,介电层35和顶电极层50,其中所述介电层设置在底电极层和顶电极层之间。空腔11从开口12完全延伸穿过层状结构,终止于基片10。空腔11的截面形状可以是例如圆形、方形、三角形或其它形状,或者空腔可不具有特定的形状。空腔11的直径约为0.1μm-5.0μm,或者约0.3μm-2.0μm。如图中所示,电致发光材料40接触在内空腔表面内的装置各层。优选的是保形接触内空腔的各区域。但是,电致发光材料40至少必须提供与两个电极的电接触,并在两个电极之间形成传导路径。
图1c显示了空腔发射ELD的实施方式的另一个例子,其中电致发光材料40完全填充空腔并进一步涂覆电极50。
图1d显示了空腔发射ELD结构的另一个例子。装置200由基片10上的层状结构构成,该结构具有延伸通过该层状结构的一部分的空腔11。该层状结构包括底电极层20,介电层35,顶电极层50和电致发光材料层40。介电层设置在底电极和电致发光材料之间,从而引导电子通过空腔11。
图1e显示了空腔发射ELD结构的另一个例子。装置210是基片10上的层状结构,该结构具有延伸通过顶电极50和介电层35的空腔11。空腔11终止于底电极20。电致发光材料构成电致发光层40,其填充空腔11,并接触底电极20和顶电极50。图1e的COLED装置类似于图1c的装置,区别在于空腔不延伸通过底电极。应理解,这种COLED装置(即空腔不延伸通过底电极)也可使用图1b和1d所示的排列顺序构建。
图1f显示了空腔发射ELD结构的另一个例子。装置220包括基片10和设置在基片上的底电极20。底电极20由透明材料(例如ITO或IZO)形成,基片10也可由透明材料(例如有机聚合物或二氧化硅)形成。存在介电层35,电致发光层40和顶电极50,以及空腔11。在图1f所示的装置中,空腔11延伸通过透明底电极层20。图1g显示了另一个装置230,其中空腔11并不延伸通过底部的透明电极层20。单独的基片是任选的(图1g中未显示),因为底部的透明电极层20不含将造成电极层结构稳定性下降的空腔。
应理解,COLED装置(例如文中所述的那些)在整个装置中将具有多个(例如阵列)空腔。
在上述OLED装置中,电子注入电极可任选地包含电子接受部分和含硅粘合材料(图中未显示),如2008年8月25日提交的共同待审查PCT申请序列号第PCT/US2008/010075号中所述的。例如,电子注入电极表面可通过氧键与羟基官能化的硅氧烷材料(例如下文将更详细描述的硅氧烷材料)共价连接,进而与电子接受部分共价连接。合适的电子接受部分包括例如包含以下材料的那些电子接受部分:金属二酮酸盐(例如锂、钡、铍、钙、镁、钠、钾、铯的乙酰丙酮酸盐,锶、硼、铝、镓、铟或银的乙酰丙酮酸盐,或它们的组合)或含杂原子的芳族部分,包括多环部分(例如邻苯二甲酸酐,1,8-萘二酸酐,邻苯二甲酸,1,8-萘二甲酸或它们的氮类似物,例如邻苯二甲酰亚胺,它们都可以是未取代的或被一个或多个吸电子取代基如卤素或硝基取代的)。含硅粘合剂和电子接受部分形成中间层,当电子从电子注入电极行进到电致发光材料中时,该层提供更有效的能量传递。
OED还可以是有机晶体管。这些装置包括例如有机薄膜晶体管(TFT),例如图2所示的装置300。在图2中,栅电极21设置在基片10上,并被介电层35覆盖。源电极22和漏电极23设置在介电层35上,活性层60(包含半导体材料,例如并五苯、低聚噻吩或聚噻吩)形成电极之间的电流路径。OED还可以是有机光生伏打装置。
文中所用的术语″OED″、″装置″等指上文在关于这类装置中所述的基片和装置组件。通常,这些装置组件包括图1a-1g和图2所示的层。
应理解,图1a-1g和图2中所示的介电层可根据本发明方法制备(即使用具有或不具有保护层的交替的阻挡层和粘合层),或者可使用常规材料和方法制备。还应理解,文中所述的封装层适用于图中所示的任何OED结构,以及其它合适的OED结构,例如文中所述的那些。
适用于上述OED的材料包括上述专利和专利申请文献中所述的各种有机和无机材料。基片可以为任何合适的材料,例如无机材料,例如二氧化硅,各种硅基玻璃,如碱石灰玻璃和硼硅酸盐玻璃,氧化铝,氧化锆,氯化钠,金刚石和/或类似的材料。用于透射发射的辐射的透明的或者半透明的聚合物材料的例子包括但不限于聚萘二甲酸乙二醇酯、聚碳酸酯、聚乙烯、聚丙烯、聚酯、聚酰亚胺、聚酰胺、聚丙烯酸酯和聚甲基丙烯酸酯。所述基片可以是刚性的或者挠性的,可以具有任意合适的形状和结构。因此,在某些实施方式中,提供了挠性的聚合物基片。任选地,在OED的基片和/或一个或多个其它的层之间可以包括绝缘层。另外,在某些实施方式中,所述基片可以是半导体材料,例如硅或氧化铟锡,可以另外包含微电路,在此情况下,所述电致发光装置可以包括微电路驱动装置的集成部分。例如,在一些实施方式中,基片可用作OED的一个电极。
电极可由任何合适的材料制成,例如金属和共轭有机化合物。掺杂的半导体和透明材料也是合适的电极材料。示例性电极材料包括铝,钛,铜,钨,银,硅,氧化铟锡(ITO),氧化铟锌(IZO),并五苯,低聚噻吩和聚噻吩,例如聚(3,4-亚乙基二氧基噻吩)(PEDOT),碳纳米管等。
当根据常规方法制备时,介电层也可以为任何具有以下性质的合适材料:所述材料能够在电极之间作为阻挡物,提供电屏障,防止电极层之间发生电短路。这些材料包括例如无机材料,包括氧化物,氮化物,碳化物,硼化物或硅化物(如下文关于阻挡材料中所述),或者有机材料,例如聚酰亚胺,聚偏二氟乙烯,帕利灵(parylene,聚对二甲苯),以及各种溶胶-凝胶材料和陶瓷前体聚合物(pre-ceramic polymer)。在某些实施方式中,所述介电层基本上不含针孔,由电阻率不小于约108欧姆-厘米、优选不小于约1012欧姆-厘米的高电阻率材料组成。合适的高电阻率材料的其它具体例子包括但不限于氮化硅、氮化硼、氮化铝、氧化硅、氧化钛、氧化铝。
如上文所述,在一些实施方式中,OED包括电致发光材料,例如电致发光层。对于COLED,电致发光材料至少部分地设置在装置空腔中。例如,在某些实施方式中,电致发光材料基本上或完全地填充装置的空腔。如上文所述,在某些实施方式中,所述电致发光材料形成延伸的层,例如电致发光材料可以不仅填充空腔的尺寸,而且还形成另外的层,该另外的层将电极层(例如电子注入层)与介电层隔开。
电致发光材料可以由具有以下性质的任何合适材料组成:该材料能够从空穴注入层接受空穴,从电子注入层接受电子,当注入的空穴和电子结合的时候发射电磁辐射(例如光)。因此,在某些实施方式中,所述电致发光材料可以包含任意数量的有机或无机化合物或其混合物,例如多层有机物或小分子等。例如,电致发光层可包含聚合物材料,或者由一种或多种小分子材料组成。但是,该材料必须含有至少一种电致发光化合物,例如,有机、无机或小分子电致发光化合物。在某些实施方式中,所述电致发光化合物可以包含简单的有机分子或者复杂的聚合物或共聚物。例如,简单的有机发光分子可以包括三(8-羟基喹啉合)铝(tris(8-hydroxyquinolinato)-aluminum)或二萘嵌苯。
在某些实施方式中,该电致发光材料包含聚合物或共聚物。合适的聚合物或共聚物的分子结构可以包含碳基或硅基的主链。所述聚合物和共聚物可以是直链、支链、交联的,或者这些情况的任意组合,可以具有从大约最低5000至大于1,000,000的很宽范围的分子量。对于共聚物,所述共聚物可以是交替共聚物、嵌段共聚物、无规共聚物、接枝共聚物、或其组合。可以用于本发明的合适的电致发光聚合物的例子包括但不限于共轭聚合物,例如聚对亚苯基,聚噻吩,聚亚苯基亚乙烯,聚噻吩亚乙烯,聚芴,含1,3,4-噁二唑的聚合物,及其各种衍生物和共聚物。
示例性的电致发光聚合物是聚(亚芳基-亚乙烯)聚合物,该聚合物的通式结构为-Ar1-C(R10)=C(R11)-,其中Ar1是含1-3个芳环的亚芳基、杂亚芳基、取代的亚芳基或取代的杂亚芳基,R10和R11独立地选自氢、卤素、氰基、烃基、取代的烃基、含杂原子的烃基、以及取代的含杂原子的烃基,或者R10和R11可以一起形成三键。而且,Ar1可以被例如胺或芳基胺取代基取代。R10和R11上的取代基一般是氢,但是也可以是卤素(特别是氯或氟)或氰基,或者取代或未取代的烷基、烷氧基、烯基、炔基、芳基和杂芳基。
美国专利第6,414,104号中描述的另一种示例性的电致发光聚合物材料是芳基胺取代的聚(亚芳基-亚乙烯)聚合物,其包含以下通式结构的单体:
Figure BPA00001426249400131
其中:X、Y和Z独立地选自N,CH和CR12,其中R12是卤素、氰基、烷基、取代的烷基、含杂原子的烷基、芳基、杂芳基、取代的芳基或取代的杂芳基,或者其中相邻的碳原子上的两个R12部分可以连接起来,形成另外的环状基团;Ar1如上所定义;Ar2和Ar3独立地选自含1个或2个芳环的芳基、杂芳基、取代的芳基和取代的杂芳基;R10和R11如上文所定义。
在上面的通式中,当X、Y和Z均为CH的时候,所述聚合物是聚(亚苯基亚乙烯)衍生物。当X、Y和Z中的至少一个是N的时候,所述芳环可以是例如取代的或未取代的吡啶基、哒嗪基、嘧啶基、哌嗪基、1,2,4-三嗪基或1,2,3-三嗪基。例如,X,Y和Z中的一个可以是CH,其余两个可以是CH或CR12,其中R12可以是含杂原子的烷基,例如烷氧基,或者是聚醚取代基-CH2(OCH2CH2)nOCH3或-(OCH2CH2)nOCH3基团,其中n可以是1-12,例如1-6,例如1-3。
所述聚合物可以是包含至少一种另外种类的单体单元的均聚物或共聚物。例如,如果所述聚合物是共聚物,则另外的单体单元也是亚芳基-亚乙烯单体单元。具体聚合物的例子是聚(2-(4-二苯基氨基-苯基)-1,4-亚苯基亚乙烯和聚(2-(3-二苯基氨基苯基)-1,4-亚苯基亚乙烯。美国专利第6,414,104号所述的聚合物的具体例子是聚(2-(4-二苯基氨基-苯基)-1,4-亚苯基亚乙烯和聚(2-(3-二苯基氨基苯基)-1,4-亚苯基亚乙烯。适合用于本发明的电致发光聚合物还参见美国专利第6,723,828,6,800,722和7,098,297号,这些文献(涉及电致发光聚合物的内容)都参考结合入本文中。在这些引用的专利中,揭示了一种包含以下结构的单体单元的共轭聚合物:
Figure BPA00001426249400141
其中:Ar1和Ar2独立地选自单环、双环和多环亚芳基,杂亚芳基,取代的亚芳基和取代的杂亚芳基;L是亚烷基,亚烯基,取代的亚烷基,取代的亚烯基,杂亚烷基,杂亚烯基,取代的杂亚烷基,取代的杂亚烯基,亚芳基,杂亚芳基,取代的亚芳基或取代的杂亚芳基;m是0或1;n是0或1;Q1和Q2独立地选自H,芳基,杂芳基,取代的芳基,取代的杂芳基,烷基和取代的烷基;Q3选自烷基和取代的烷基,前提是当m是1时,Q1和Q2不是H;A-是带负电荷的抗衡离子。
所述电致发光材料还可以包括上述聚合物与其它聚合物的混合物,以及各种共聚物。
本发明方法包括提供OED,例如上述任何一种装置。″提供″表示OED可从一般的供货商处得到(例如购买),或者OED可针对用于本发明方法特别定制。所述方法还包括封装OED。当OED的最上层(即距离基片最远的层)包含有机材料时,特别需要进行封装。例如,如上所述,图1b和1c中的电致发光材料40可包含有机电致发光材料。而且,如文中所述,图1a、1b和1d中的电极50可包含有机导电材料或有机半导体材料。而且,图1e的活性层60可包含有机半导体材料。这些有机材料在接触环境因素如空气或水时容易降解。尽管对于合适的装置性能不起关键作用,但是即使在金属电极材料形成最上层OED组件层(例如图1a所示)的情况中,封装也是有用的。
文中所用的术语″封装部分″、″封装″等指设置在OED上的惰性组件,通过保护OED避免受到环境因素如水分和氧气的影响。通常,这种封装组件包括一个或多个选自以下的层:阻挡层、粘合层和保护层。
在优选的实施方式中,通过沉积阻挡层和粘合层来提供OED的封装,其中阻挡层由阻挡材料形成,粘合层由粘合材料形成。文中使用的术语″封装对″指相互接触的一对层,即一阻挡层和一粘合层。在一些实施方式中,最低封装层直接沉积在最高OED组件层上。在其它实施方式中,保护层将最低封装层与最高OED组件层隔开。″最低″指该层最接近基片。通常,最低封装层是在提供OED后最先沉积的层。″最高″(也称为″最上″)指该层距离基片最远。最高OED组件层可以是例如电极层、电致发光层或它们的组合(例如,图1a、1c或1b中分别所示)。
阻挡材料是非导电性材料,它能提供对一种或多种反应性环境组分如氧、水、紫外辐射、臭氧等的阻挡。合适的阻挡材料的例子包括选自以下的陶瓷材料:铝、硅、钛、钨、镁、锆或钙的氧化物,硅、钨、铝、锆、铬、钛、钽、钼、镓或硼的氮化物,硅、钛、钒、锆、铁或硼的碳化物,钛或铁的硼化物,以及钨和钛的硅化物。例如,阻挡材料可以是Al2O3、SiO2、TiO2、ZrO2、TiN、Si3N4、AlN、GaN、BN、TiB、TiB2、TaB2、SiC和TiSi2等。这些陶瓷的变体和衍生物也在本发明的范围内,包括氮化钛碳(TiCN)和氮化钛铝(TiAlN)之类的化合物。
在一些实施方式中,希望封装部分中的阻挡层尽可能地薄。但是,如果这些陶瓷材料以薄层(例如10-1000nm)沉积,常常导致得到的层含有针孔和裂纹之类的缺陷。这些缺陷通常是不利的,因为它们导致阻挡层保护下面的OED避免被环境因素损害的能力下降。本发明通过采用粘合材料″填充″阻挡层的缺陷而克服了这一难题,将在下文中更详细地描述。
在一些实施方式中,为了使阻挡材料和粘合材料之间达到最佳可能的粘合,阻挡材料上存在能与粘合材料形成共价键的官能团。例如,阻挡材料上可存在羟基、羧酸基和这些基团的保护形式(例如醚、酯、酰胺等)。在一些实施方式中,通过阻挡材料的沉积后官能化获得官能团。例如,阻挡层可通过与氧化剂(例如氧气、过氧化物或等离子体氧化)反应或通过施加能量(例如紫外辐射)而被氧化。
粘合材料(在文中也称为粘合剂前体材料或陶瓷前体材料)是非导电材料,能形成交联的聚合物网络。在一些实施方式中,粘合材料是有机或完全无机的含硅材料。
在优选的实施方式中,粘合材料还包含能与阻挡层的官能团形成共价连接的补充反应性基团。这种反应性基团可在粘合材料沉积到OED上之前存在于粘合材料中,或者在沉积后进行改性反应在粘合材料上产生。
例如,粘合材料可具有1993年9月21日授予Blum的美国专利第5,246,738号(“作为陶瓷产品前体的氢化硅氧烷(Hydridosiloxanes as Precursors to CeramicProducts”)和12/8/08提交的共同待审查的美国专利申请第12/330,319号中所述的陶瓷前体材料的结构,并且可通过文献中所述的方法合成。这些文献中涉及这些材料和方法的内容通过参考结合于此。
例如,粘合材料可包含具有通式(II)的结构的重复单元:
Figure BPA00001426249400161
其中R1和R2独立地选自H、OH、C1-C30烃基、有机金属、卤代烃基(halocarbyl)和有机甲硅烷基,它们都任选地被取代,任选地含杂原子,其中X选自-O-和-NR3-,其中R3是烃基。例如,R1和R2各自可以是H、OH或烃基。在优选的实施方式中,R1和R2选自H、OH、C1-C20烷基、C2-C20烯基、C2-C20炔基、C1-C20烷氧基、C5-C20芳基、C5-C20芳氧基、C6-C20芳烷基和C6-C20烷芳基。在其它优选的实施方式中,R1和R2选自取代或未取代的C1-C20烷基,取代或未取代的含杂原子的C1-C20烷基,取代或未取代的C2-C20烯基,取代或未取代的含杂原子的C2-C20烯基,取代或未取代的C2-C20炔基,取代或未取代的含杂原子的C2-C20炔基,取代或未取代的C5-C20芳基,取代或未取代的C5-C20杂芳基,取代或未取代的C5-C20芳烷基,取代或未取代的含杂原子的C5-C20芳烷基,取代或未取代的C6-C20烷芳基,以及取代或未取代的含杂原子的C5-C20烷芳基。在一些实施方式中,R2是OH,R1选自烷基、烯基、炔基、烷氧基、芳基、芳氧基、芳烷基和烷芳基,它们都可含有杂原子,并且它们都可以是未取代的或被一个或多个选自卤素、羟基、烷基和芳基的基团取代的。在一些实施方式中,R1是低级烷基,例如甲基或乙基,R2是H、OH或C1-C20烷氧基。在一些优选的实施方式中,X是-O-,这样粘合材料是硅氧烷或聚硅氧烷材料。
而且,在通式(I)中,n是大于或等于1的整数。因此,单体、二聚体、三聚体和更高级的材料如低聚物和聚合物是合适的。应理解,粘合材料可包含不同化合物的混合物,各化合物包含具有通式(I)的结构但是不同的n值的重复单元。
例如,粘合材料可包含通式[R1Si(OH)O]、[R1Si(OR2a)O]和/或[R1Si(H)O]的重复单元,其中R1如上文所定义,R2a选自烃基和有机甲硅烷基。
固化后,粘合材料可包含具有结构-[Si(R2)(X)1.5]-的交联单元,其中:R2选自H、羟基、氟烃基(fluorocarbyl)和烃基;X选自-O-和-NR3-;R3选自烷基和芳基。例如,X是-O-,R2选自烷基、烯基、炔基、烷氧基、芳基、芳氧基、芳烷基和烷芳基,它们都可含有杂原子,并且它们都可以是未取代的或被一个或多个选自卤素、羟基、烷基和芳基的基团取代的。固化的粘合材料的更详细说明在下文中给出。
例如,使用美国序列号第12/330,319号中所述的脱氢偶联反应和/或氢化甲硅烷基化反应制备粘合材料。例如,可通过聚氢甲基硅氧烷(PHMS)与水和/或醇在过渡金属催化剂如Ru3(CO)12、H2PtCl6等存在下反应来制备粘合材料。在制备粘合材料后,可立即使用本领域中常用的硅胶或木炭柱来纯化粘合材料,除去过渡金属催化剂。
可通过任何合适的方法实现阻挡材料和粘合材料的沉积。例如,阻挡材料和粘合材料可真空沉积,例如使用化学气相沉积(CVD)、物理气相沉积(PVD)、分子束外延(MBE)、原子层沉积(ALD)或溅射。其它方法包括化学溶液沉积方法,例如溶胶-凝胶处理、浸涂、旋涂、喷涂等。应理解,根据所选的材料以及所选的沉积方法,阻挡层和/或粘合层可由前体材料形成,该前体材料在沉积之后或沉积过程中可转化(自发转化或暴露于合适的条件和/或试剂之后转化)为阻挡材料和/或粘合材料。
例如,可使用溅射或物理气相沉积氧化铝颗粒而方便地(尽管不是必须的)沉积A12O3,可使用CVD方便地(尽管不是必须的)沉积SiO2。可使用本领域中已知的任何前体化合物来制备文中所述的阻挡材料。
在优选的实施方式中,粘合材料作为可交联材料沉积。粘合材料固化形成交联层。可使用能有效使粘合材料交联的任意方法进行固化。例如,施加热量和/或紫外辐射一段预定的时间是使在较高的温度和/或暴露于辐射时能交联的粘合材料固化的有效方法。或者或另外,可使用交联催化剂如有机胺或其它有机碱使粘合材料交联。应理解,在一些情况中,不需要诱导固化反应(例如通过施加热量),因为这种反应会自发进行。在优选的实施方式中,固化反应产生的任何副产物都是容易通过溶剂洗涤除去的小分子(例如水、甲醇等)。
当不止一个粘合层沉积在OED上时(参见下文多个封装对的讨论),粘合材料的固化可在各沉积之后进行。或者,在所有沉积完成后,所有粘合层一次固化。或者,这些选项的一些组合(例如,多次固化,但是固化的次数少于粘合材料的沉积次数)也是合适的。
当粘合材料是聚硅氧烷和/或聚硅烷时,粘合材料的固化通常形成包含具有通式(V)结构的重复单元的交联材料:
(V)[R1SiO1.5]
其中,R1按照前面定义。当粘合材料包含具有通式(IV)结构的重复单元时,应理解交联材料也具有这样的单元。
在优选的实施方式中,沉积至少一个封装对,形成封装部分。在一些实施方式中,封装部分可包含多个封装对。例如,封装部分可包含2、3、4、5、6、7、8、9或10个封装对,相当于2、3、4、5、6、7、8、9或10个粘合层与2、3、4、5、6、7、8、9或10个阻挡层交替设置。在优选的实施方式中,在每个阻挡层沉积之后沉积一个阻挡层,这样阻挡层和粘合层交替排列。利用该方法,每个阻挡层与至少一个粘合层接触。
例如,在形成第一封装对之后,形成封装对所需的步骤再重复1-10次,这样形成1-10个额外的阻挡层和粘合层。
当沉积不止一个封装对时,本发明方法可还包括进行官能化反应,从而在粘合层上提供官能团,然后再沉积阻挡层。当粘合材料是包含烷基的硅氧烷或聚硅氧烷材料时,例如,这种官能化反应可包括氧化烷基以提供羟基。这样产生的羟基适合与上覆的阻挡层结合。因此,在一些优选的实施方式中,封装部分的各粘合层和阻挡层(最低层除外,该层接触OED的最上层,或者在存在保护层时与保护层接触)与紧邻的上层和/或下层粘合。
不希望受限于理论,理论上既然先沉积粘合层再进行交联,那么可流动的粘合材料适应下面的阻挡层的表面,填充任何不规则处或缺陷如针孔和裂纹。因此,封装对的表面比较平整,不含缺陷。这种粘合层对阻挡层中缺陷的″填充″提高了本发明封装部分的阻挡性质。使用多个封装对进一步提高了封装部分的阻挡性质。因此,在一些实施方式中,对于文中所述的OED,至少使用两个封装对,在一些实施方式中,使用至少三个封装对。
阻挡层和粘合层的厚度可独立选择,以优化封装部分的阻挡性质。因为阻挡层中的缺陷在沉积上面的粘合层之后可以被″填充″,所以超薄的阻挡层适合于本文所述的装置。例如,各阻挡层的厚度在约10nm-1000nm的范围内,或者约100nm-500nm。各阻挡层可以例如小于1000nm,或小于500nm,或小于250nm。还例如,各粘合层的厚度在约1nm-500nm的范围内,或者约10nm-250nm。各粘合层可以例如小于500nm,或小于300nm,或小于100nm,或小于50nm,或小于10nm。整个封装包的厚度将根据各封装对的数量和厚度而变化,但是通常在约50nm-5000nm的范围内。
除了用作封装层以外,所描述的阻挡层和粘合层还可用作介电层,或者同时用作封装层和介电层。当用作介电层时,粘合层和阻挡层一起在装置电极之间或在一个电极与接地之间形成非导电性的阻挡层。如上文所述,多对交替的阻挡层和粘合层可用作介电层。各阻挡层的厚度优选小于约100nm,或者在约5nm-100nm之间。各阻挡层为例如小于80nm,或小于50nm,或小于25nm。各粘合层的厚度优选小于约100nm,或者在约1nm-100nm之间。各粘合层为例如小于100nm,或小于50nm,或小于25nm。总体而言,介电层的厚度优选小于约2000nm,或者在约6nm-2000nm之间。例如,介电层的总厚度可小于2000nm,或小于1500nm,或小于1000nm,或小于500nm,或小于100nm,或小于50nm,或小于25nm。同样,如上所述,各粘合层可单独固化,或者所有粘合层在单个固化步骤中固化。应理解,介电层在OED内的位置将取决于装置结构。因此,在一些实施方式中,介电层直接设置在底电极上。
在一些实施方式中,阻挡材料直接沉积在电子装置上(即OED的最上层)。但是,在一些实施方式中,在沉积较低的封装层的过程中,OED的最上层容易降解或损坏。例如,当沉积封装部分时,OED的最上层将直接暴露于溅射(或CVD)过程,或暴露于溶液处理化学物(例如硅氧烷或聚硅氧烷,和/或溶剂)。当OED的最上层是对降解敏感的材料,例如发光聚合物(LEP)或其它电致发光材料时,由于直接接触硅氧烷分子的OH基或气相反应性离子之类的反应性物质和溅射或CVD处理产生的紫外辐射,装置的寿命和效率可能下降。例如,通过使用较厚的LEP层可减弱这种效应。当不希望使用厚LEP层时,本发明的装置可包括由保护材料形成的保护层,该保护层位于OED最上组件层与封装部分之间。在优选的实施方式中,保护层遮挡OED组件层,避免其在沉积封装层过程中接触紫外辐射和/或反应性化学物质。因此,本发明的方法包括在沉积最低阻挡层之前通过在电子装置上沉积保护材料而在电子装置和最低阻挡层之间形成保护层。保护材料沉积在电子装置和第一对封装层之间。
保护材料是无需使用对OED组件层会造成损害的严酷或反应性条件就可沉积的材料。在一个实施方式中,保护材料是随着单体分子沉积在OED最上组件层上将形成低聚物(例如二聚体、三聚体等)或聚合物的材料。在一些优选的实施方式中,所述保护材料对紫外辐射至少是部分透明的。
可通过任何方法沉积保护材料,这些方法无需明显损害OED最上层就能提供保护层。这种损害可由装置性能或寿命的相应降低确定。优选的沉积保护材料的方法包括在真空下的物理气相沉积(例如,热蒸发)。
例如,帕利灵是合适的保护材料。通过热蒸发由帕利灵二聚体形成帕利灵薄膜。当加热到约650℃时,晶体二聚体分子分解为单体,升华为气态。当在室温下将单体分子沉积在基片和/或OED最外层上时,它们形成高度结晶的线性聚合物。已经开发了数种具有不同性质的帕利灵衍生物如帕利灵-C、帕利灵-D和帕利灵-N,它们适合作为保护材料。
因为帕利灵含有苯基,所以它可用作有效的紫外辐射阻挡物。尽管在溅射或CVD过程中产生的反应性离子物质可能最初会引起帕利灵聚合物发生一些化学降解,但是因为形成新的阻挡层(例如Al2O3层),帕利灵层的进一步降解被阻止。因此,如果帕利灵层的厚度足以承受溅射或CVD处理的最初攻击,则它可用作LEP材料的有效保护层。另外,帕利灵层较为便宜,能透过可见光。
聚酰亚胺是另一种适合用作保护材料和形成保护层的材料。聚酰亚胺通常来源于二胺和有机酸或有机酸酐之间的酰亚胺化反应。该反应形成聚合物前体(有时称为″聚(酰胺酸)″),然后转化为聚酰亚胺。即使不施加热量,转化为聚酰亚胺的反应也能发生。例如,可通过将聚酰亚胺溶液旋涂到OED上来施加聚酰亚胺。但是,在优选的实施方式中,使用气相聚合或气相沉积来沉积聚酰亚胺保护层。在一些实施方式中,聚酰亚胺保护层的制备包括在足以使聚酰亚胺层固化的温度和时间条件下进行的沉积后烘焙步骤。
保护层的厚度应足以保护OED组件层避免被封装层的沉积破坏。在一些实施方式中,保护层的厚度为约100nm-10μm,或者约500nm-3μm。装置性能和使用寿命的定量评价是确定各层(包括保护层)合适厚度以及确定装置是否需要保护层以及保护层对装置是否有益的一种简便方法。
应理解,保护层是任选的,文中所述的许多装置并不需要保护层来实现可接受的装置性能。例如,当OED最上层是金属电极,但是仍然需要封装部分时,在沉积封装层之前,装置可以不需要保护层。如上所述,可通过例如定量评价装置性能和装置使用寿命来确定是否需要或希望施加保护层。
当阻挡层和粘合层用作介电层时,在一些实施方式中需要在沉积第一阻挡层之前沉积保护层。例如,在将有机材料用作底电极时,保护层有助于在沉积第一阻挡层时维持电极层的完整性。同样,应理解本发明的OED的一些实施方式不需要保护层。
文中所述的OED还包含图案化的组件层,例如图案化的电极和介电层。对用作封装部分以及/或者介电层的保护层、阻挡层和粘合层进行图案化也在本发明的范围内。例如,可以对保护层进行图案化以匹配OED最上层的图案化。可使用标准方法(例如掩模、蚀刻等)完成封装层的图案化。但是在一些实施方式中,封装部分不进行图案化。
因此,文中描述了一种电致发光装置(ELD),其包括:基片;设置在基片上的第一电极层;任选的中间层,当存在该中间层时,该中间层与第一电极层共价连接,包含含硅的粘性可交联部分和电子接受部分;设置在第一电极层上或者在存在中间层时设置在中间层上的介电层;设置在介电层上的第二电极层;设置在第二电极层上的电致发光层;设置在电致发光层上的任选的保护层;以及包含一对或多对阻挡材料层和交联材料层的封装层。
此外,文中描述了一种保护层状电装置的方法,该方法包括:(a)在层状电装置上沉积至少一个陶瓷阻挡材料层和至少一个可交联材料层,其中可交联材料包含含硅材料;和(b)使可交联材料固化。
与已知的方法和装置相比,文中所揭示的方法和装置具有一个或多个优点。这些优点包括例如耐久性提高,装置寿命加长。不同于使用玻璃的封装方法,文中揭示的封装方法可以制备挠性封装部分,从而可以制得挠性但耐用的OED。文中所揭示的方法还可以使用各种材料制得高品质的封装部分。在一些实施方式中,本发明的封装方法使用经过官能化能与硅氧烷粘合材料反应并且与之结合的陶瓷阻挡层。阻挡层上官能团(例如羟基)与硅氧烷粘合材料之间的反应是节省能量、快速且有效的,提供稳定且有效的封装部分。
本文引用的所有专利、专利申请和出版物均通过引用全文纳入本文。然而,在通过引用纳入包含明确定义的专利、专利申请或出版物时,应理解这些明确定义用于其所在的纳入的专利、专利申请或出版物,不用于本申请的剩余部分,特别不会用于本申请的权利要求书。
应理解,尽管结合优选的具体实施方式对本发明进行了描述,但之前的描述以及以下实施例均用来描述而非限制本发明的范围。本领域技术人员应理解,可进行各种改变并可取代等效物而不背离本发明的范围,且其它的方面、优点和修改对本发明所属领域的技术人员是显而易见的。
实施例
一般过程:在基片(例如导电金属层)上溅射沉积10nm的氧化物阻挡材料,例如Al2O3。然后将基片浸没到含陶瓷前体聚合物(例如PHMS-OH)的溶液中,超声约1分钟。然后将基片从陶瓷前体聚合物溶液中取出,用乙醇或异丙醇之类的溶剂冲洗,除去未共价反应到基片表面上的过量的陶瓷前体聚合物;然后将基片在120℃干燥和固化约30分钟。然后,通过化学气相沉积(CVD)再沉积一介电层(例如Si3N4)。
实施例1
通过电击穿电压≥20V的装置的产率评价上述一般过程制备的介电层的品质。
下表列出了传统方法(″对照方法″)和文中所述方法(″测试方法″)的产率和介电层总厚度。文中所述方法制备的装置具有明显更佳的品质:更薄的介电层总厚度(117.9nm)实现更高的产率(91.3%)。
表1.击穿电压>20V的装置的产率
上述方法可使用PVD(物理气相沉积)或CVD沉积的金属氧化物(例如Al2O3,HfO2)、金属氮化物、SiO2和Si3N4的任意组合产生具有高电学强度的超薄介电层。

Claims (23)

1.一种形成电子装置中介电层的方法,其包括:
(i)通过将阻挡材料直接或间接沉积在基片上来形成阻挡层,其中所述阻挡材料是陶瓷材料;
(ii)使阻挡层氧化,以提供暴露的官能团;
(iii)通过在阻挡层上沉积粘合材料层来形成粘合层,其中所述粘合材料是含硅材料,且包含能与阻挡层的官能团反应的官能团;
(iv)任选地,使粘合层氧化,以提供暴露的官能团;
(v)任选地,通过重复(i)、(ii)、(iii)和(iv)形成一对或多对额外的阻挡层和粘合层。
2.如权利要求1所述的方法,其特征在于,所述阻挡材料是选自下组的陶瓷材料:铝、硅、钛、钨、镁、锆或钙的氧化物,硅、钨、铝、锆、铬、钛、钽、钼、镓或硼的氮化物,硅、钛、钒、锆、铁或硼的碳化物,钛或铁的硼化物,以及钨和钛的硅化物。
3.如权利要求1所述的方法,其特征在于,所述含硅材料是包含具有通式(I)的结构的单体单元的硅氧烷或聚硅氧烷:
Figure FPA00001426249300011
式中:
R1和R2独立地选自H、OH、C1-C30烃基、有机金属、卤代烃基和有机甲硅烷基,它们各自都任选地被取代,任选地含杂原子;
X选自-O-和-NR3-;
R3是烃基;
n是大于或等于1的整数。
4.如权利要求1所述的方法,其特征在于,(i)、(ii)、(iii)和(iv)再重复1-10次,从而形成1-10个额外的阻挡层和粘合层。
5.如权利要求1所述的方法,其特征在于,固化在较高的温度下进行。
6.如权利要求4所述的方法,其特征在于,固化在每个粘合层形成之后进行。
7.如权利要求4所述的方法,其特征在于,固化在所有粘合层形成之后一次进行。
8.如权利要求1所述的方法,其特征在于,所述电子设备选自OLED、有机薄膜晶体管和有机光生伏打装置。
9.如权利要求4所述的方法,其特征在于,每个粘合层的厚度约为1-100nm。
10.如权利要求4所述的方法,其特征在于,每个阻挡层的厚度约为5-100nm。
11.如权利要求1所述的方法,其特征在于,所述介电层的总厚度为6-2000nm。
12.如权利要求1所述的方法,其特征在于,所述阻挡层沉积在底电极上。
13.如权利要求12所述的方法,其特征在于,所述底电极是沉积在基片上的导电材料层,或者其中底电极是导电基片。
14.一种电子装置,其包括:
多个设置在基片上的组件层;
介电层,其至少包含第一对阻挡材料层和交联材料层,其中所述阻挡材料是陶瓷材料,所述交联材料是含硅聚合物。
15.如权利要求14所述的电子装置,其特征在于,所述介电层还包括额外的1-10对交替的阻挡材料层和交联材料层。
16.如权利要求14所述的电子装置,其特征在于,所述阻挡材料是选自下组的陶瓷材料:铝、硅、钛、钨、镁、锆或钙的氧化物,硅、钨、铝、锆、铬、钛、钽、钼、镓或硼的氮化物,硅、钛、钒、锆、铁或硼的碳化物,钛或铁的硼化物,以及钨和钛的硅化物。
17.如权利要求14所述的电子装置,其特征在于,所述含硅聚合物包含具有结构-[Si(R2)(X)1.5]-的交联单元,其中:
R2选自H、羟基、氟烃基和烃基;
X选自-O-和-NR3-;
R3选自烷基和芳基。
18.如权利要求17所述的电子装置,其特征在于,X是-O-,R2选自烷基、烯基、炔基、烷氧基、芳基、芳氧基、芳烷基和烷芳基,它们中任一个都可含有杂原子,并且它们中任一个都可以是未取代的或被一个或多个选自卤素、羟基、烷基和芳基的基团取代的。
19.如权利要求14所述的电子装置,其特征在于,所述电子装置包含底电极,其中第一对层的阻挡材料直接接触所述底电极。
20.如权利要求14所述的电子装置,其特征在于,所述电子装置选自OLED、有机薄膜晶体管和有机光生伏打装置。
21.如权利要求14所述的电子装置,其特征在于,第一对层的阻挡材料通过共价键与第一对层的粘合材料连接。
22.如权利要求15所述的电子装置,其特征在于,各阻挡层的阻挡材料与任意相邻的阻挡层的粘合材料共价连接。
23.如权利要求14所述的电子装置,其特征在于,所述介电层的总厚度为6-2000nm。
CN200980157888.7A 2009-03-04 2009-03-04 用于有机电装置的封装方法和介电层 Expired - Fee Related CN102341431B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/001397 WO2010101543A1 (en) 2009-03-04 2009-03-04 Encapsulation methods and dielectric layers for organic electrical devices

Publications (2)

Publication Number Publication Date
CN102341431A true CN102341431A (zh) 2012-02-01
CN102341431B CN102341431B (zh) 2014-04-30

Family

ID=42709918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980157888.7A Expired - Fee Related CN102341431B (zh) 2009-03-04 2009-03-04 用于有机电装置的封装方法和介电层

Country Status (5)

Country Link
US (1) US8476119B2 (zh)
JP (1) JP5543498B2 (zh)
KR (1) KR20110133558A (zh)
CN (1) CN102341431B (zh)
WO (1) WO2010101543A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904247A (zh) * 2012-12-25 2014-07-02 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN103904243A (zh) * 2012-12-25 2014-07-02 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104716080A (zh) * 2013-12-13 2015-06-17 英飞凌科技股份有限公司 化合物结构和用于形成化合物结构的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089610A (ja) * 2010-10-18 2012-05-10 Kaneka Corp 薄膜トランジスタ
IN2014DN09305A (zh) * 2012-05-09 2015-07-10 Lg Chemical Ltd
KR102314466B1 (ko) 2014-10-06 2021-10-20 삼성디스플레이 주식회사 표시 장치의 제조 장치 및 표시 장치의 제조 방법
US10529938B2 (en) 2017-05-18 2020-01-07 University of Pittsburgh—of the Commonwealth System of Higher Education Nanoscale light emitting diode, and methods of making same
CN109428010B (zh) * 2017-08-30 2020-01-03 清华大学 有机发光二极管的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855994A (en) * 1996-07-10 1999-01-05 International Business Machines Corporation Siloxane and siloxane derivatives as encapsulants for organic light emitting devices
US6541367B1 (en) * 2000-01-18 2003-04-01 Applied Materials, Inc. Very low dielectric constant plasma-enhanced CVD films
US20040195966A1 (en) * 2001-05-14 2004-10-07 Conway Natasha M J Method of providing a layer including a metal or silicon or germanium and oxygen on a surface
CN1820371A (zh) * 2003-07-11 2006-08-16 皇家飞利浦电子股份有限公司 用于显示设备的封装结构
CN101055892A (zh) * 2006-04-12 2007-10-17 群康科技(深圳)有限公司 薄膜晶体管及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593687B1 (en) * 1999-07-20 2003-07-15 Sri International Cavity-emission electroluminescent device and method for forming the device
US7074501B2 (en) * 2001-08-20 2006-07-11 Nova-Plasma Inc. Coatings with low permeation of gases and vapors
US20030203210A1 (en) * 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
JP4185341B2 (ja) * 2002-09-25 2008-11-26 パイオニア株式会社 多層バリア膜構造、有機エレクトロルミネッセンス表示パネル及び製造方法
US20040238846A1 (en) * 2003-05-30 2004-12-02 Georg Wittmann Organic electronic device
JP5041686B2 (ja) * 2004-07-30 2012-10-03 株式会社半導体エネルギー研究所 薄膜集積回路の剥離方法および半導体装置の作製方法
JP4437735B2 (ja) * 2004-10-28 2010-03-24 大日本印刷株式会社 ガスバリア性フィルム、並びにこれを用いたディスプレイ用基板及びディスプレイ
US9660205B2 (en) * 2007-06-22 2017-05-23 Regents Of The University Of Colorado Protective coatings for organic electronic devices made using atomic layer deposition and molecular layer deposition techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855994A (en) * 1996-07-10 1999-01-05 International Business Machines Corporation Siloxane and siloxane derivatives as encapsulants for organic light emitting devices
US6541367B1 (en) * 2000-01-18 2003-04-01 Applied Materials, Inc. Very low dielectric constant plasma-enhanced CVD films
US20040195966A1 (en) * 2001-05-14 2004-10-07 Conway Natasha M J Method of providing a layer including a metal or silicon or germanium and oxygen on a surface
CN1820371A (zh) * 2003-07-11 2006-08-16 皇家飞利浦电子股份有限公司 用于显示设备的封装结构
CN101055892A (zh) * 2006-04-12 2007-10-17 群康科技(深圳)有限公司 薄膜晶体管及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904247A (zh) * 2012-12-25 2014-07-02 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN103904243A (zh) * 2012-12-25 2014-07-02 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104716080A (zh) * 2013-12-13 2015-06-17 英飞凌科技股份有限公司 化合物结构和用于形成化合物结构的方法

Also Published As

Publication number Publication date
WO2010101543A1 (en) 2010-09-10
JP5543498B2 (ja) 2014-07-09
US8476119B2 (en) 2013-07-02
US20120038066A1 (en) 2012-02-16
CN102341431B (zh) 2014-04-30
JP2012519937A (ja) 2012-08-30
KR20110133558A (ko) 2011-12-13

Similar Documents

Publication Publication Date Title
CN102341431B (zh) 用于有机电装置的封装方法和介电层
US6361885B1 (en) Organic electroluminescent materials and device made from such materials
JP5007987B2 (ja) 接着促進剤、電気活性層及びそれを含む電気活性素子とその方法
CN101322259B (zh) 有机电子器件用透明电极
US8057918B2 (en) Organic light-emitting diodes and methods for assembly and enhanced charge injection
Ponomarenko et al. Conjugated organosilicon materials for organic electronics and photonics
Tamilavan et al. Synthesis and characterization of indenofluorene‐based copolymers containing 2, 5‐bis (2‐thienyl)‐N‐arylpyrrole for bulk heterojunction solar cells and polymer light‐emitting diodes
US20070138483A1 (en) Conducting polymer composition and electronic device including layer obtained using the conducting polymer composition
US8466610B2 (en) Low cost high efficiency transparent organic electrodes for organic optoelectronic devices
CN102576815B (zh) 有机电子器件及其制造方法
CN104246918A (zh) 透明导电性膜的制造方法、透明导电性膜及电子器件
US20070112133A1 (en) Conducting polymer composition and electronic device including layer obtained using the conducting polymer composition
KR20130080802A (ko) 유기 전자 소자의 제조를 위한 제형 및 방법
CN1983661A (zh) 用于光电构造的透明聚合物电极
KR20070024464A (ko) 정공 수송층 조성물 및 관련 다이오드 장치
CN101331628A (zh) 电活性器件用电极层叠体及其制造方法
CN102341931A (zh) 有机电装置的封装方法
US20050158579A1 (en) Organic light-emitting diodes and methods for assembly and enhanced charge injection
CN106575544A (zh) 制造绝缘层的方法、制造含绝缘层的有机光电子器件的方法和含绝缘层的有机光电子器件
JP2003059643A (ja) エレクトロルミネッセント素子
JP2007027130A (ja) 有機電子デバイスの製造方法及び有機電子デバイス
KR20170041794A (ko) 유기 발광 소자 및 이의 제조 방법
KR20170137053A (ko) 티에노티오펜 - 유기발광 다이오드용 붕소(도너-억셉터) 기반 재료
CN101405244A (zh) 具有多层结构的光电子器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

Termination date: 20150304

EXPY Termination of patent right or utility model