CN102171146B - Uzm-35硅铝酸盐沸石、制备方法和使用uzm-35的方法 - Google Patents

Uzm-35硅铝酸盐沸石、制备方法和使用uzm-35的方法 Download PDF

Info

Publication number
CN102171146B
CN102171146B CN200980138393XA CN200980138393A CN102171146B CN 102171146 B CN102171146 B CN 102171146B CN 200980138393X A CN200980138393X A CN 200980138393XA CN 200980138393 A CN200980138393 A CN 200980138393A CN 102171146 B CN102171146 B CN 102171146B
Authority
CN
China
Prior art keywords
mol ratio
zeolite
value
uzm
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980138393XA
Other languages
English (en)
Other versions
CN102171146A (zh
Inventor
J·G·莫斯科索
D-Y·詹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Universal Oil Products Co
Original Assignee
Universal Oil Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Products Co filed Critical Universal Oil Products Co
Publication of CN102171146A publication Critical patent/CN102171146A/zh
Application granted granted Critical
Publication of CN102171146B publication Critical patent/CN102171146B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/12Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the replacing atoms being at least boron atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/02Molecular sieve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

已经合成了新型的结晶硅铝酸盐沸石。这些沸石由经验式Mm n+R+ rAl(1-x)ExSiyOz表示,其中M是钾和钠可交换阳离子的组合,R是带单电荷的有机铵阳离子,例如二甲基二丙铵阳离子,且E是骨架元素,例如镓。这些沸石与MCM-68类似,但特征在于独特的x射线衍射图和组成,并具有用于实施各种烃转化方法的催化性能。

Description

UZM-35硅铝酸盐沸石、制备方法和使用UZM-35的方法
技术领域
本发明涉及一种命名为UZM-35的新型硅铝酸盐沸石。它们由下述经验式表示:
Mm n+R+ rAl1-xExSiyOz
其中M是钾和钠可交换阳离子的组合,R是带单电荷的有机铵阳离子,例如二甲基二丙铵,且E是骨架元素,例如镓。
背景技术
沸石是结晶硅铝酸盐组合物,其为微孔状并由共角AlO2和SiO2四面体形成。天然存在和合成制备的众多沸石用于各种工业方法中。合成沸石经由使用合适的Si、Al源和结构导向剂(例如碱金属、碱土金属、胺或有机铵阳离子)的水热合成法而制备。结构导向剂留在沸石孔隙中,并且是最终形成的特定结构的主要原因。这些物质平衡了与铝相关的骨架电荷,并且也可用作空隙填充剂。沸石的特征在于具有均匀尺寸的孔隙开口,具有显著的离子交换容量,能够可逆地解吸分散在晶体内部空隙中的吸附相而不明显置换构成永久沸石晶体结构的任何原子。沸石可用作烃类转化反应的催化剂,该反应可在外表面以及孔隙内的内表面上进行。
Calabro等在1999年(US6,049,018)公开了一种命名为MCM-68的MSE结构类型的特定沸石。该专利描述了由二价阳离子导向剂N,N,N’,N’-四烷基双环[2.2.2]辛-7-烯-2R,3S:5R,6S-二吡啶
Figure GDA00002855627700011
二价阳离子和N,N,N’,N’-四烷基双环[2.2.2]辛烷-2R,3S:5R,6S-二吡啶二价阳离子合成MCM-68。发现MCM-68具有至少一种其中各通道由12员环的四面体配位原子限定的通道体系和至少两种其中各通道由10员环的四面体配位原子限定的其它通道体系,其中独特的10员环通道数为12员环通道数的两倍。
申请人已经成功制备了命名为UZM-35的新型材料。该材料的拓扑结构与对MCM-68观察到的拓扑结构类似。该材料经由使用简单的市售结构导向剂(例如氢氧化二甲基二丙铵)与少量K+和Na+一起使用用于合成沸石的电荷密度失配法(Charge Density Mismatch Approach)(美国专利申请公布号2005/0095195)而制备。
发明概要
如上所述,本发明涉及一种命名为UZM-35的新型硅铝酸盐沸石。相应地,本发明的一个实施方案是一种微孔结晶沸石,其具有至少AlO2和SiO2四面体单元的三维骨架,并在合成后但未经进一步处理和无水基础上具有由下述经验式所示的经验组成:
Mm n+R+ rAl1-xExSiyOz
其中M是钾和钠可交换阳离子的组合,“m”是M与(Al+E)的摩尔比并且为0.05至3,R是带单电荷的有机铵阳离子,选自二甲基二丙铵(DMDPA+)、胆碱、乙基三甲铵(ETMA+)、二乙基二甲铵(DEDMA+)、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵、四乙铵(TEA+)、四丙铵(TPA+)、甲基三丙铵、以及它们的混合物,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,E是选自镓、铁、硼及其混合物的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为大于2至12,且“z”是O与(Al+E)的摩尔比并具有由公式z=(m+r+3+4·y)/2确定的值,且该沸石的特征在于其具有至少具有表A中所列的d-间距和强度的x射线衍射图:
表A
并且在一个实施方案中在高达大于400℃的温度仍然是热稳定的,和在另一实施方案中高达大于600℃的温度仍然是热稳定的。
本发明的另一实施方案是制备上述结晶微孔沸石的方法。该方法包括形成含有M、R、Al、Si和任选地E的反应性源的反应混合物,并将该反应混合物在150至200℃、或165至185℃的温度加热足以形成沸石的时间,所述反应混合物具有以下述氧化物摩尔比表示的组成:
aM2O:bR2/pO:1-cAl2O3:cE2O3:dSiO2:eH2O
其中“a”具有0.05至1.25的值,“b”具有1.5至40的值,“c”具有0至1.0的值,“d”具有4至40的值,“e”具有25至4000的值。
本发明的再一实施方案是使用上述沸石的烃转化方法。该方法包括使烃与所述沸石在转化条件下接触,以产生转化的烃。
发明详述
申请人制备了已被命名为UZM-35的硅铝酸盐沸石,其拓扑结构涉及如International Zeolite Association Structure Commission在http://topaz.ethz.ch/IZA-SC/StdAtlas.htm上提供的Atlas of Zeolite Framework Types中所述的MSE。如将要详细描述的那样,UZM-35的许多特征不同于MCM-68。本发明微孔结晶沸石(UZM-35)在其合成后但未经进一步处理的形式和在无水基础上具有由下述经验式所示的经验组成:
Mm n+R+ rAl1-xExSiyOz
其中M是钾和钠可交换阳离子的组合,R是带单电荷的有机铵阳离子,其实例包括但不限于二甲基二丙铵阳离子(DMDPA+)、胆碱[(CH3)3N(CH2)2OH]+、ETMA+、DEDMA+、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵、甲基三丙铵、TEA+、TPA+及其混合物,且“r”是R与(Al+E)的摩尔比并且为0.25至2.0,而“m”是M与(Al+E)的摩尔比并且为0.05至3。硅与(Al+E)之比用“y”表示,其为2至30。E是四面体配位的元素,存在于骨架中并选自镓、铁和硼。E的摩尔分数用“x”表示并具有0至1.0的值,而“z”是O与(Al+E)的摩尔比并通过下述公式得到:
z=(m+r+3+4·y)/2。
如果M仅是一种金属,则加权平均化合价是这一种金属的价态,即+1或+2。然而,当存在多于一种M金属时,总量为:
M m n + = M m 1 ( n 1 ) + + M m 2 ( n 2 ) + + M m 3 ( n 3 ) + + . . . . .
且加权平均化合价“n”通过下述公式给出:
n = m 1 · n 1 + m 2 · n 2 + m 3 · n 3 + · · · m 1 + m 2 + m 3 · · ·
所述微孔结晶沸石UZM-35通过反应混合物的水热结晶制备,该反应混合物通过将M、R、铝、硅和任选地E的反应性源合并而制备。铝的源包括但不限于醇铝、沉淀氧化铝、铝金属、铝盐和铝溶胶。醇铝的具体实例包括但不限于原仲丁醇铝和原异丙醇铝。二氧化硅的源包括但不限于原硅酸四乙酯、胶态二氧化硅、沉淀二氧化硅和碱金属硅酸盐。E元素的源包括但不限于碱金属硼酸盐、硼酸、沉淀羟基氧化镓、硫酸镓、硫酸铁和氯化铁。M金属——钾和钠——的源包括各碱金属的卤化物盐、硝酸盐、乙酸盐和氢氧化物,R是有机铵阳离子,选自二甲基二丙铵、胆碱、ETMA、DEDMA、TEA、TPA、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵和它们的混合物,且其源包括氢氧化物、氯化物、溴化物、碘化物和氟化物。具体实例包括但不限于氢氧化二甲基二丙铵、氯化二甲基二丙铵、溴化二甲基二丙铵、氢氧化乙基三甲铵、氢氧化二乙基二甲铵、氢氧化四乙铵、氢氧化四丙铵、氯化四丙铵。
含有所需组分的反应性源的反应混合物可以通过下式的氧化物摩尔比描述:
aM2O:bR2/pO:1-cAl2O3:cE2O3:dSiO2:eH2O
其中“a”为0.05至1.25,“b”为1.5至40,“c”为0至1.0,“d”为4至40,且“e”为25至4000。如果使用醇盐,则优选包括蒸馏或蒸发步骤,以除去醇水解产物。然后使该反应混合物在密封反应容器中在自生压力下在150至200℃、165至185℃或170至180℃的温度反应1天至3周,优选5至12天。在结晶完成后,借助例如过滤或离心的手段将固体产物从非均质混合物中分离,然后用去离子水洗涤,并在空气中在环境温度至100℃干燥。应该指出,可任选地将UZM-35晶种加入反应混合物中以加速沸石形成。
用于制备UZM-35的优选合成方法采用电荷密度失配理论,该理论在美国专利申请公布号2005/0095195和Studies in Surface Science andCatalysis,(2004),第154A卷,364-372中公开。US2005/0095195中公开的方法使用氢氧化季铵使硅铝酸盐物质增溶,而通常在单独步骤中引入结晶引发剂,例如碱金属和碱土金属以及带较高电荷的有机铵阳离子。一旦使用该方法产生一些UZM-35晶种,这些晶种就可以用在使用例如氢氧化二甲基二丙铵与碱金属阳离子的组合的UZM-35单步合成中。使用市售氢氧化二甲基二丙铵制备UZM-35与之前用于制备具有MSE拓扑结构的硅铝酸盐的所用结构导向剂(N,N,N’,N’-四烷基双环[2.2.2]辛-7-烯-2,3:5,6-二吡啶
Figure GDA00002855627700061
二价阳离子和N,N,N’,N’-四烷基双环[2.2.2]辛烷-2,3:5,6-二吡啶
Figure GDA00002855627700062
二价阳离子)相比提供了巨大的经济优势。另外,可以利用电荷密度失配理论,与其它廉价的有机铵氢氧化物一起使用氢氧化物或氯化物形式的氢氧化二甲基二丙铵,以进一步降低成本。
由上述方法获得的UZM-35硅铝酸盐沸石的特征在于至少具有表A中所列的d-间距和相对强度的x射线衍射图。
表A
如实施例中详细所示,该UZM-35材料在高达至少400℃的温度和在另一实施方案中高达600℃的温度仍然是热稳定的。
在其合成后但未经进一步处理时,UZM-35材料在其孔隙中含有一些可交换或平衡电荷的阳离子。这些可交换阳离子可被交换为其它阳离子,或在有机阳离子的情况下,它们可以通过在受控条件下加热而除去。由于UZM-35是大孔沸石,因此也可以直接通过离子交换除去一些有机阳离子。该UZM-35沸石可以以许多方式改性以使其适用于具体应用。改性包括煅烧、离子交换、蒸汽处理、各种酸萃取、六氟硅酸铵处理、或其任何组合,如US6,776,975B1(其全部内容引入本文作为参考)中关于UZM-4M的情况所述。被改性的性能包括孔隙率、吸附性、Si/Al比率、酸度、热稳定性等。
通过'975专利中所述的一种或多种技术改性的UZM-35组合物(本文标作UZM-35HS)在无水基础上通过下述经验式描述:
M1a n+Al(1-x)ExSiy’Oz’’
其中M1是至少一种选自碱金属、碱土金属、稀土金属、铵离子、氢离子及其混合物的可交换阳离子,“a”是M1与(Al+E)的摩尔比并且为0.05至50,“n”是M1的加权平均化合价并具有+1至+3的值,E是选自镓、铁、硼及其混合物的元素,“x”是E的摩尔分数并且为0至1.0,y'是Si与(Al+E)的摩尔比并且为大于4至基本纯的二氧化硅,且z’是O与(Al+E)的摩尔比并具有通过公式z’=(a·n+3+4·y’)/2确定的值。
基本纯的二氧化硅是指已经从骨架中除去基本所有的铝和/或E金属。公知的是,基本不可能除去所有的铝和/或E金属。在数字上,当y'具有至少3,000、优选10,000、最优选20,000的值时,沸石是基本纯的二氧化硅。因此y’的范围是4至3000,优选大于10至3000;4至10,000,优选大于10至10,000,和4至20,000,优选大于10至20,000。
本文描述沸石原料的比例或沸石产物的吸附性能等时,除非另有说明,指的是沸石的“无水状态”。术语“无水状态”在本文中用于指基本不含物理吸附和化学吸附的水的沸石。
本发明的结晶UZM-35沸石可用于分离各种分子的混合物,通过离子交换而除去污染物和催化各种烃转化方法。各种分子的分离可以基于分子尺寸(动态直径)或基于各种分子的极性程度。
本发明的UZM-35沸石也可用作各种烃转化方法中的催化剂或催化剂载体。烃转化方法是本领域中公知的,包括裂化、加氢裂化、芳族化合物和异链烷烃的烷基化、链烷烃和多烷基苯(例如二甲苯)的异构化、多烷基苯与苯或单烷基苯的烷基转移、单烷基苯的歧化、聚合、重整、氢化、脱氢、烷基转移、脱烷基化、水合、脱水、加氢处理、加氢脱氮、加氢脱硫、甲烷化和合成气变换法。这些方法中可用的具体反应条件和进料类型描述于US4,310,440和US4,440,871中,将其引入本文作为参考。优选的烃转化方法是其中氢是一种组分的那些,例如加氢处理或加氢精制、氢化、加氢裂化、加氢脱氮、加氢脱硫等。
加氢裂化条件通常包括204℃至649℃(400至1200°F)或者316℃至510℃(600至950°F)的温度。反应压力为大气压至24,132kPa g(3,500psig)或1379至20,685kPa g(200至3000psig)。接触时间通常对应于0.1小时-1至15小时-1、优选0.2至3小时-1的液时空速(LHSV)。氢循环速率为178至8,888标准m3/m3(每筒进料1,000至50,000标准立方英尺(scf))或355至5,333标准m3/m3(每桶进料2,000至30,000scf)。合适的加氢处理条件通常在上文列出的加氢裂化条件的宽范围内。
通常从催化剂床中移出反应区流出物,进行部分冷凝和气液分离,然后分馏以回收其各种组分。将氢和如果需要,部分或所有未转化的重质材料再循环到反应器中。或者,可以使用两步流动,其中将未转化的材料通入第二反应器。本发明的催化剂可仅用在该方法的一个步骤中或可用在两个反应器步骤中。
优选地,使用例如粗柴油、重质石油脑、脱沥青原油残油等的原料,用UZM-35组合物进行催化裂化法,其中汽油是主要的所需产物。454℃至593℃(850至1100°F)的温度条件、0.5至10的LHSV值和0至344kPag(0至50psig)的压力条件是合适的。
芳族化合物的烷基化通常包括使芳族化合物(C2至C12)、尤其是苯与单烯烃反应,从而产生直链烷基取代的芳族化合物。该方法在下述条件下进行:1:1至30:1的芳族化合物:烯烃(例如苯:烯烃)比率,0.3至10小时-1的烯烃LHSV,100至250℃的温度,和1379至6895kPa g(200至1000psig)的压力。关于装置的其它细节可见于US4,870,222,将其引入本文作为参考。
在-30℃至40℃的温度、大气压至6,895kPa(1,000psig)的压力和0.1至120的重时空速(WHSV)进行异链烷烃与烯烃的烷基化,以产生适合作为发动机燃料组分的烷基化物。关于链烷烃烷基化的细节可见于US5,157,196和US5,157,197,将其引入本文作为参考。
列出下述实施例以说明本发明,而不是不当地限制如所附权利要求书中列出的本发明的总体上的宽范围。
通过x射线分析测定本发明的UZM-35沸石的结构。使用标准x射线粉末衍射技术获得下述实施例中列出的x射线图案。辐射源是在45kV和35ma下运行的高强度x射线管。通过适当的基于计算机的技术获得来自铜Kα辐射的衍射图。在2至56°(2θ)连续扫描压平的粉末样品。从表示为θ的衍射峰位置获得以埃为单位的面间距(d),其中θ是从数字化数据中观察到的布拉格角。由扣减背景后的衍射峰积分面积测定强度,“Io”是最强线或峰的强度,且“I”是各其它峰的强度。
如本领域技术人员理解的那样,参数2θ的测定具有人为和机械误差,这综合起来在各个报道的2θ值上产生±0.4°的不确定性。这种不确定性当然也表现在由2θ值计算出的报道的d-间距值中。这种不精确性是本领域中常见的,并且不足以排除本结晶材料彼此之间和与现有技术的组合物之间的差异。在一些报道的x射线图中,通过符号vs、s、m和w表示d-间距的相对强度,它们分别表示非常强、强、中和弱。以100×I/Io计,上述符号是指:
w=0-15;m=15-60;s=60-80和vs=80-100。
在某些情况下,可以参考其x射线粉末衍射图评估合成产物的纯度。因此例如如果样品被描述为纯净,其仅是指该样品的x射线图案不含可归因于结晶杂质的线,而非意味着不存在无定形材料。
为了更充分说明本发明,列出了下述实施例。应理解各实施例仅作为示例而非不当地限制如所附权利要求书中列出的本发明的宽范围。
实施例1
通过首先在剧烈搅拌下混合16.64氢氧化铝(27.78%Al)和526.79g氢氧化二甲基二丙铵,18.8%的溶液,来制备硅铝酸盐溶液。在充分混合后,加入252.98g LudoxTMAS-40(40%SiO2)。将反应混合物用高速机械搅拌器再均化1小时,并在炉中在100℃放置过夜。分析表明所得硅铝酸盐溶液含有6.52重量%Si和0.64重量%Al,得到9.78的Si/Al比率。
将含有溶解在20.0g蒸馏水中的1.44g NaOH(98%)和2.02g KOH的混合NaOH/KOH的水溶液在剧烈搅拌下加入150g部分实施例1中制备的硅铝酸盐溶液中,并将该反应混合物再均化30分钟。将24g部分反应混合物转移到45ml的Parr不锈钢高压釜中,将其加热到175℃并在该温度保持120小时。离心回收固体产物,用去离子水洗涤并在100℃干燥。
离心回收固体产物,用去离子水洗涤并在95℃干燥。该产物通过xrd确定为UZM-35。对该产物观察到的代表性衍射线显示在表1中。通过元素分析测定产物组成由下述摩尔比构成:Si/Al=7.92,Na/Al=0.1,K/Al=0.48。
表1
Figure GDA00002855627700121
Figure GDA00002855627700131
扫描电子显微术(SEM)显示出尺寸为大约100×350nm的正方形形态的晶体。将该样品在540℃在氮气下、然后空气下煅烧10小时。对该产物观察到的代表性衍射线显示在表2中。
表2
Figure GDA00002855627700132
Figure GDA00002855627700141
实施例2
通过首先在剧烈搅拌下混合37.17g氢氧化铝(27.78%Al)和1053.58g氢氧化二甲基二丙铵(18.8%溶液)来制备硅铝酸盐反应溶液。在充分混合后,加入505.96g LudoxTMAS-40(SiO2,40%)。将反应混合物用高速机械搅拌器均化1小时,密封在Teflon瓶中,并在炉中在100℃放置过夜。分析表明硅铝酸盐溶液含有6.16重量%Si和0.67重量%Al(Si/Al=8.83)。
持续搅拌100.0g部分的上述硅铝酸盐溶液。将含有溶解在15g H2O中的2.38g KOH和0.3g NaOH的混合水溶液逐滴加入该硅铝酸盐溶液中。添加完成之后,将得到的反应混合物均化1小时,转移到(4个)45ml的Parr不锈钢高压釜中,将其加热到175℃并在该温度保持216小时。离心回收固体产物,用去离子水洗涤并在100℃干燥。
离心回收各个这些样品中的固体产物,用去离子水洗涤并在95℃干燥。由所有四个反应得到的产物通过xrd确定为UZM-35。表3显示了对反应9天的样品观察到的代表性衍射线。元素分析得到下述摩尔比的产物组成:Si/Al=7.58,Na/Al=0.033,K/Al=0.63,C/N=6,N/Al=0.43。
表3
Figure GDA00002855627700161
实施例3
通过首先在剧烈搅拌下混合37.17g氢氧化铝(27.78%Al)和1053.58g氢氧化二甲基二丙铵(18.8%溶液)来制备硅铝酸盐反应溶液。在充分混合后,加入505.96g LudoxTMAS-40(SiO2,40%)。将反应混合物用高速机械搅拌器均化1小时,密封在Teflon瓶中,并在炉中在100℃放置过夜。分析表明硅铝酸盐溶液含有6.16重量%Si和0.67重量%Al(Si/Al=8.83)。
持续搅拌1200g部分的上述硅铝酸盐溶液。将含有溶解在150g H2O中的28.56g KOH和3.6g NaOH的混合水溶液逐滴加入该硅铝酸盐溶液中。添加完成之后,将得到的反应混合物均化1小时,转移到2000ml的Parr不锈钢高压釜中,将其加热到175℃并在该温度保持216小时。离心回收固体产物,用去离子水洗涤并在100℃干燥。
离心回收各个这些样品中的固体产物,用去离子水洗涤并在95℃干燥。由该反应得到的产物通过xrd确定为UZM-35。元素分析得到下述摩尔比的产物组成:Si/Al=7.57,Na/Al=0.028,K/Al=0.73,N/Al=0.37。将该样品在540℃在氮气下、然后空气下煅烧10小时。对该产物观察到的代表性衍射线显示在表4中。
表4
Figure GDA00002855627700171
实施例4
此实施例描述了UZM-35材料的改性。将10g部分UZM-35样品(Si/Al=7.57)在氮气氛中煅烧,以3℃/分钟升至540℃并在此再保持1小时,然后将气氛换成空气并继续再煅烧9小时。通过在120g去离子水中首先稀释2g HNO3(69%)然后溶解10g NH4NO3而制备溶液。将该溶液加热至75℃,然后加入煅烧的UZM-35。将该浆料在75℃搅拌1小时。过滤分离产物,用去离子水洗涤并在100℃干燥12小时。
产物经由x射线粉末衍射确定为UZM-35HS。元素分析证实Si/Al比率升至Si/Al=8.3,Na/Al=0.01,K/Al=0.44。
实施例5
此实施例显示了UZM-35材料的改性。将20g部分的UZM-35样品(Si/Al=7.57)在氮气氛下通过以3℃/分钟升至560℃煅烧并在此保持1小时,然后将气氛换成空气并继续再煅烧9小时。单独地,通过在490g去离子水中溶解20g NH4NO3而制备溶液。将该溶液加热至75℃,然后加入煅烧的UZM-35。将该浆料在75℃搅拌1小时。过滤分离产物,用去离子水洗涤并在100℃干燥12小时。
产物经由x射线粉末衍射确定为UZM-35HS。该样品的元素分析显示Si/Al比率为Si/Al=8.0,Na/Al=0.01,K/Al=0.47。
实施例6
通过首先在剧烈搅拌下混合37.17氢氧化铝(27.78%Al)和1053.58g氢氧化二甲基二丙铵,18.8%溶液,来制备硅铝酸盐溶液。在充分混合后,加入505.96g LudoxTMAS-40(40%SiO2)。将反应混合物用高速机械搅拌器再均化1小时并在炉中在100℃放置过夜。分析表明得到的硅铝酸盐溶液含有6.16重量%Si和0.67重量%Al,得到8.83的Si/Al比率。
将含有在10.0g蒸馏水中的1.98g NaOH(98%)的NaOH水溶液在剧烈搅拌下加入100g部分的在实施例6中制备的硅铝酸盐溶液中,并将该反应混合物再均化30分钟。将24g部分的反应混合物转移到45ml的Parr不锈钢高压釜中,将其加热到175℃并在该温度保持144小时。离心回收固体产物,用去离子水洗涤并在100℃干燥。
离心回收固体产物,用去离子水洗涤并在95℃干燥。该产物通过xrd确定为MOR。
实施例7
通过首先在剧烈搅拌下混合37.17氢氧化铝(27.78%Al)和1053.58g氢氧化二甲基二丙铵,18.8%溶液,来制备硅铝酸盐溶液。在充分混合后,加入505.96g LudoxTMAS-40(40%SiO2)。将反应混合物用高速机械搅拌器再均化1小时并在炉中在100℃放置过夜。分析表明得到的硅铝酸盐溶液含有6.16重量%Si和0.67重量%Al,得到8.83的Si/Al比率。
将含有在20.0g蒸馏水中的3.84g KOH的KOH水溶液在剧烈搅拌下加入150g部分的在实施例6中制备的硅铝酸盐溶液中,并将该反应混合物再均化30分钟。将24g部分的反应混合物转移到45ml的Parr不锈钢高压釜中,将其加热到175℃并在该温度保持264小时。离心回收固体产物,用去离子水洗涤并在100℃干燥。
离心回收固体产物,用去离子水洗涤并在95℃干燥。该产物通过xrd确定为ZSM-5。

Claims (14)

1.微孔结晶沸石,其具有至少AlO2和SiO2四面体单元的三维骨架,且在合成后但未经进一步处理和无水基础上具有由下述经验式所示的经验组成:
Mm n+Rr +Al1-xExSiyOz
其中M是钾和钠可交换阳离子的组合,“m”是M与(Al+E)的摩尔比并且为0.05至3,R是带单电荷的二甲基二丙铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,E是选自镓、铁、硼及其混合物的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为大于2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值:
z=(m+r+3+4·y)/2
且所述沸石的特征在于其具有至少具有表A中所列的d-间距和强度的x射线衍射图:
 表A
Figure FDA00002855627600021
并且在高达至少400℃的温度仍然是热稳定的。
2.根据权利要求1的沸石,其中“x”为0。
3.根据权利要求1的沸石,其中所述沸石在高达至少600℃的温度仍然是热稳定的。
4.制备微孔结晶沸石的方法,该沸石具有至少AlO2和SiO2四面体单元的三维骨架,且在合成后但未经进一步处理和无水基础上具有由下述经
验式所示的经验组成:
Mm n+Rr +Al1-xExSiyOz
其中M是钾和钠可交换阳离子的组合,“m”是M与(Al+E)的摩尔比并且为0.05至3,R是带单电荷的二甲基二丙铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,E是选自镓、铁、硼及其混合物的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为大于2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值:
z=(m+r+3+4·y)/2
且所述沸石的特征在于其具有至少具有表A中所列的d-间距和强度的x射线衍射图:
表A
Figure FDA00002855627600041
并且在高达至少400℃的温度仍然是热稳定的;
所述方法包括形成含有M、R、Al、Si和任选地E的反应性源的反应混合物,并将该反应混合物在150至200℃的温度加热达足以形成沸石的时间,该反应混合物具有以下述氧化物摩尔比表示的组成:
aM2O:bR2/pO:1-cAl2O3:cE2O3:dSiO2:eH2O
其中“a”具有0.05至1.25的值,“b”具有1.5至40的值,“c”具有0至1.0的值,“d”具有4至40的值,“e”具有25至4000的值。
5.根据权利要求4的方法,其中M的源选自卤化物盐、硝酸盐、乙酸盐、氢氧化物、硫酸盐及其混合物。
6.根据权利要求4的方法,其中E的源选自碱金属硼酸盐、硼酸、沉淀的羟基氧化镓、硫酸镓、硫酸铁、氯化铁及其混合物。
7.根据权利要求4的方法,其中铝源选自异丙醇铝、仲丁醇铝、沉淀氧化铝、Al(OH)3、铝金属和铝盐。
8.根据权利要求4的方法,其中硅源选自原硅酸四乙酯、火成二氧化硅、胶态二氧化硅和沉淀二氧化硅。
9.根据权利要求4的方法,其中使所述反应混合物在150℃至185℃的温度反应1天至3周。
10.根据权利要求4的方法,其中使所述反应混合物在165℃至175℃的温度反应1天至3周。
11.根据权利要求4的方法,其中R是氢氧化二甲基二丙铵与至少一种选自TEA、TPA、ETMA、DEDMA、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵和甲基三丙铵的带单电荷的有机铵阳离子的组合。
12.根据权利要求4的方法,其进一步包括向所述反应混合物中加入UZM-35晶种。
13.烃转化方法,包括使烃流与催化剂在烃转化条件下接触,以产生转化产物,所述催化剂包含UZM-35微孔结晶沸石,其中所述UZM-35具有至少AlO2和SiO2四面体单元的三维骨架,且在合成后但未经进一步处理和无水基础上具有由下述经验式所示的经验组成:
Mm n+Rr +Al1-xExSiyOz
其中M是钾和钠可交换阳离子的组合,“m”是M与(Al+E)的摩尔比并且为0.05至3,R是带单电荷的有机铵二甲基二丙铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,E是选自镓、铁、硼及其混合物的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为大于2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值:
z=(m+r+3+4·y)/2,
且所述沸石的特征在于其具有至少具有表A中所列的d-间距和强度的x射线衍射图:
表A
Figure FDA00002855627600061
并且在高达至少400℃的温度仍然是热稳定的。
14.根据权利要求13的方法,其中所述烃转化方法选自裂化、芳族化合物和异链烷烃的烷基化、链烷烃和多烷基苯的异构化、多烷基苯与苯或单烷基苯的烷基转移、单烷基苯的歧化、聚合、重整、氢化、脱氢、烷基转移、脱烷基化、水合、脱水、加氢处理、甲烷化和合成气变换法。
CN200980138393XA 2008-09-30 2009-09-16 Uzm-35硅铝酸盐沸石、制备方法和使用uzm-35的方法 Expired - Fee Related CN102171146B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/241,302 US7922997B2 (en) 2008-09-30 2008-09-30 UZM-35 aluminosilicate zeolite, method of preparation and processes using UZM-35
US12/241,302 2008-09-30
PCT/US2009/057062 WO2010039431A2 (en) 2008-09-30 2009-09-16 Uzm-35 aluminosilicate zeolite, method of preparation and processes using uzm-35

Publications (2)

Publication Number Publication Date
CN102171146A CN102171146A (zh) 2011-08-31
CN102171146B true CN102171146B (zh) 2013-09-11

Family

ID=42058132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980138393XA Expired - Fee Related CN102171146B (zh) 2008-09-30 2009-09-16 Uzm-35硅铝酸盐沸石、制备方法和使用uzm-35的方法

Country Status (12)

Country Link
US (2) US7922997B2 (zh)
EP (1) EP2328839B1 (zh)
JP (1) JP5823295B2 (zh)
KR (1) KR20110081193A (zh)
CN (1) CN102171146B (zh)
BR (1) BRPI0919492A2 (zh)
CA (1) CA2737615C (zh)
ES (1) ES2629133T3 (zh)
MX (1) MX2011003386A (zh)
MY (1) MY152273A (zh)
RU (1) RU2500619C2 (zh)
WO (1) WO2010039431A2 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120123178A1 (en) * 2008-09-30 2012-05-17 Uop Llc Uzm-35hs aluminosilicate zeolite, method of preparation and processes using uzm-35hs
US8157985B2 (en) * 2009-06-22 2012-04-17 Uop Llc Process for catalytic cracking of hydrocarbons using UZM-35HS
US7981273B2 (en) * 2009-06-22 2011-07-19 Uop Llc Process for catalytic cracking of hydrocarbons using UZM-35
US7982081B2 (en) * 2009-06-29 2011-07-19 Uop Llc Process for alkylation of aromatic hydrocarbons using UZM-35
US8071830B1 (en) 2009-06-29 2011-12-06 Uop Llc Process for alkylation of aromatic hydrocarbons using UZM-35
US8058496B2 (en) * 2010-03-31 2011-11-15 Uop Llc Process for xylene and ethylbenzene isomerization using UZM-35
US8138385B2 (en) 2010-03-31 2012-03-20 Uop Llc Process for xylene and ethylbenzene isomerization using UZM-35HS
WO2011162741A1 (en) * 2010-06-21 2011-12-29 Uop Llc Uzm-35 zeolitic composition, method of preparation and processes
US8247631B2 (en) 2010-06-21 2012-08-21 Uop Llc Process for catalytic cracking of hydrocarbons using UZM-35
US8071831B1 (en) 2010-06-21 2011-12-06 Uop Llc Process for xylene and ethylbenzene isomerization using UZM-35
US8022262B1 (en) 2010-06-21 2011-09-20 Uop Llc UZM-35 zeolitic composition method of preparation and processes
US8158104B2 (en) * 2010-07-01 2012-04-17 Uop Llc UZM-7 aluminosilicate zeolite, method of preparation and processes using UZM-7
EP2766303B1 (en) 2011-10-12 2017-11-22 ExxonMobil Research and Engineering Company Synthesis of mse-framework type molecular sieves
CA2851798C (en) 2011-10-12 2018-01-02 Exxonmobil Research And Engineering Company Synthesis of mse-framework type molecular sieves
KR101617564B1 (ko) * 2011-12-22 2016-05-02 유오피 엘엘씨 Uzm-39 알루미노실리케이트 제올라이트
EP2920113B1 (en) 2012-11-16 2018-01-03 ExxonMobil Research and Engineering Company Synthesis of mcm-68 molecular sieve
US9211530B2 (en) 2012-12-14 2015-12-15 Uop Llc Low silicon SAPO-42 and method of making
US8884056B2 (en) 2012-12-14 2014-11-11 Uop Llc Anaerobic conversion of 4-carboxybenzaldehyde in ionic liquids
US9233856B2 (en) * 2013-04-20 2016-01-12 Uop Llc Use of zeolitic materials for removing mercury (+2) ions from liquid streams
US9896344B2 (en) 2014-10-14 2018-02-20 Exxonmobile Research And Engineering Company Removal of occluded alkali metal cations from MSE-framework type molecular sieves
US20160257573A1 (en) * 2015-03-03 2016-09-08 Uop Llc High surface area pentasil zeolite and process for making same
US10167201B2 (en) * 2015-03-03 2019-01-01 Uop Llc High meso-surface area, low Si/Al ratio pentasil zeolite
US10010878B2 (en) * 2015-03-03 2018-07-03 Uop Llc High meso-surface area, low Si/Al ratio pentasil zeolite
US11040885B2 (en) 2015-03-03 2021-06-22 Uop Llc High surface area pentasil zeolite and process for making same
EP3317227B1 (en) * 2015-06-30 2021-03-24 Uop Llc Uzm-53, an mtt zeolite
JP6734692B2 (ja) * 2016-04-26 2020-08-05 三井金属鉱業株式会社 Mse型ゼオライトの製造方法
KR101795404B1 (ko) 2016-05-18 2017-11-08 현대자동차 주식회사 촉매 및 촉매의 제조 방법
KR101878547B1 (ko) * 2016-05-19 2018-07-16 포항공과대학교 산학협력단 제올라이트를 이용한 에틸렌 전환 방법
US10272420B2 (en) * 2016-10-06 2019-04-30 Uop Llc Composition of matter and structure of zeolite UZM-55
JP6749594B2 (ja) * 2017-03-24 2020-09-02 国立大学法人横浜国立大学 チタノシリケートの製造方法
CN108929342A (zh) * 2018-08-20 2018-12-04 太原理工大学 一种介孔沸石模板剂及其制备方法和应用
WO2020038222A1 (en) 2018-08-24 2020-02-27 Rhodia Operations A microporous aluminotitanosilicate crystalline zeolite, method of preparation and applications thereof
CN111099612B (zh) * 2018-10-25 2021-11-30 中国石油化工股份有限公司 分子筛scm-23、其合成方法及其用途
EP4301699A1 (en) * 2021-03-02 2024-01-10 Basf Corporation Phosphorus modified uzm-35, methods of preparation, and methods of use thereof
CN113289673B (zh) * 2021-06-02 2022-10-04 润和科华催化剂(上海)有限公司 一种异构化催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049018A (en) * 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
US6890511B2 (en) * 2003-03-21 2005-05-10 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-15
CN1997593A (zh) * 2004-04-20 2007-07-11 环球油品公司 Uzm-8和uzm-8hs结晶铝硅酸盐沸石组合物及使用该组合物的方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) * 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4735929A (en) * 1985-09-03 1988-04-05 Uop Inc. Catalytic composition for the isomerization of paraffinic hydrocarbons
US5157197A (en) * 1990-09-26 1992-10-20 Catalytica, Inc. Isoparaffin alkylation using a lewis acid promoted transition alumina catalyst
US5157196A (en) * 1990-12-24 1992-10-20 Chemical Research & Licensing Company Paraffin alkylation process
ES2137885B1 (es) * 1997-12-19 2000-08-16 Univ Valencia Politecnica Zeolita itq-5.
US6049010A (en) * 1998-09-29 2000-04-11 Loyola University Of Chicago Method of preparing 3-(3-methyl-2-buten-1-yl)-2,4-pentanedione and related dicarbonyl compounds
ES2155761B1 (es) * 1998-12-22 2001-12-01 Univ Valencia Politecnica Zeolita itq-7.
US6419819B1 (en) * 1998-12-30 2002-07-16 Exxonmobil Oil Corporation Synthetic porous crystalline MCM-67, its synthesis and use
US6063262A (en) * 1998-12-30 2000-05-16 Mobil Oil Corporation Synthetic porous crystalline MCM-67, its synthesis and use
US6310265B1 (en) * 1999-11-01 2001-10-30 Exxonmobil Chemical Patents Inc. Isomerization of paraffins
US7198711B1 (en) * 2000-01-21 2007-04-03 Exxonmobil Research And Engineering Company Catalytic cracking processing using an MCM-68 catalyst
US6506953B1 (en) 2000-01-24 2003-01-14 Exxonmobil Oil Corporation Hydroalkylation of aromatic hydrocarbons
ES2186489B1 (es) * 2000-10-11 2004-01-16 Univ Valencia Politecnica Zeolita itq-16.
US6555089B1 (en) * 2001-07-13 2003-04-29 Chevron U.S.A. Inc. Zeolite SSZ-58 composition of matter and synthesis thereof
US6787124B2 (en) * 2002-03-15 2004-09-07 Exxonmobil Research And Engineering Company Synthetic porous crystalline material, EMM-1, its synthesis and use
US6776975B2 (en) * 2002-05-09 2004-08-17 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-4M
US7713513B2 (en) * 2003-03-21 2010-05-11 Uop Llc High silica zeolites: UZM-8HS
US7268267B2 (en) * 2003-03-21 2007-09-11 Uop Llc Alkylation process using UZM-8 zeolite
JP4733641B2 (ja) * 2003-09-23 2011-07-27 ユーオーピー エルエルシー 結晶性アルミノシリケート:uzm−13、uzm−17、uzm−19及びuzm−25
WO2005042149A1 (en) * 2003-10-31 2005-05-12 Uop Llc A process for preparing crystalline aluminosilicate compositions using charge density matching
FR2863913B1 (fr) 2003-12-23 2006-12-29 Inst Francais Du Petrole Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
EP1742875A1 (en) * 2004-04-20 2007-01-17 Uop Llc Crystalline aluminosilicate zeolitic composition: uzm-15
US7344694B2 (en) 2004-10-06 2008-03-18 Uop Llc UZM-12 and UZM-12HS: crystalline aluminosilicate zeolitic compositions and processes for preparing and using the compositions
ES2263369B1 (es) * 2005-02-02 2007-12-16 Universidad Politecnica De Valencia Material cristalino microporoso de naturaleza zeolitica, zeolita itq-32, procedimiento de preparacion y uso.
US8562941B2 (en) * 2005-12-20 2013-10-22 Exxonmobil Research And Engineering Company Perturbed synthesis of materials
US7744850B2 (en) * 2006-08-03 2010-06-29 Uop Llc UZM-22 aluminosilicate zeolite, method of preparation and processes using UZM-22
US8349291B2 (en) * 2006-08-03 2013-01-08 Uop Llc Calcined UZM-22 and UZM-22HS aluminosilicate zeolites
US8048403B2 (en) * 2008-12-16 2011-11-01 Uop Llc UZM-26 family of crystalline aluminosilicate compositions and method of preparing the compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049018A (en) * 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
US6890511B2 (en) * 2003-03-21 2005-05-10 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-15
CN1997593A (zh) * 2004-04-20 2007-07-11 环球油品公司 Uzm-8和uzm-8hs结晶铝硅酸盐沸石组合物及使用该组合物的方法

Also Published As

Publication number Publication date
ES2629133T3 (es) 2017-08-07
CA2737615A1 (en) 2010-04-08
EP2328839A2 (en) 2011-06-08
CN102171146A (zh) 2011-08-31
JP2012504105A (ja) 2012-02-16
BRPI0919492A2 (pt) 2019-09-24
US20110178357A1 (en) 2011-07-21
EP2328839A4 (en) 2012-05-30
WO2010039431A2 (en) 2010-04-08
JP5823295B2 (ja) 2015-11-25
KR20110081193A (ko) 2011-07-13
US20100081775A1 (en) 2010-04-01
US7922997B2 (en) 2011-04-12
CA2737615C (en) 2015-01-06
RU2500619C2 (ru) 2013-12-10
MY152273A (en) 2014-09-15
MX2011003386A (es) 2011-04-21
EP2328839B1 (en) 2017-05-10
RU2011117314A (ru) 2012-11-10
WO2010039431A3 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CN102171146B (zh) Uzm-35硅铝酸盐沸石、制备方法和使用uzm-35的方法
CN101511733B (zh) Uzm-22硅铝酸盐沸石、制备方法和使用uzm-22的方法
CN102811950B (zh) Uzm-37硅铝酸盐沸石
CN102822125B (zh) 使用uzm-37硅铝酸盐沸石的芳烃烷基化法
CN1972868B (zh) 结晶铝硅酸盐沸石组合物:uzm-15
JP6134335B2 (ja) Uzm−39アルミケイ酸塩ゼオライト
CN102947224A (zh) Uzm-35沸石组合物、制备方法和工艺
CN102958840B (zh) Uzm-45硅铝酸盐沸石、制备方法和使用uzm-45的方法
WO2010074889A2 (en) Uzm-26 family of crystalline aluminosilicate compositions, method of preparing the compositions and processes using the compositions
CN102482176B (zh) 使用uzm-35来进行芳烃烷基化的方法
CN104854032A (zh) Uzm-44硅铝酸盐沸石
CN104024184A (zh) 使用uzm-39硅铝酸盐沸石的芳烃转化
CN101993091A (zh) 一种合成zsm-5沸石的方法
US8268290B2 (en) UZM-29 family of crystalline zeolitic compositions and a method of preparing the compositions
EP2462060A2 (en) Uzm-29 family of crystalline zeolitic compositions and a method of preparing the compositions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911

Termination date: 20160916

CF01 Termination of patent right due to non-payment of annual fee