CN102137950A - 涂层构造及表面处理方法 - Google Patents

涂层构造及表面处理方法 Download PDF

Info

Publication number
CN102137950A
CN102137950A CN2009801101473A CN200980110147A CN102137950A CN 102137950 A CN102137950 A CN 102137950A CN 2009801101473 A CN2009801101473 A CN 2009801101473A CN 200980110147 A CN200980110147 A CN 200980110147A CN 102137950 A CN102137950 A CN 102137950A
Authority
CN
China
Prior art keywords
middle layer
oxide ceramics
environment
overlay film
coating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801101473A
Other languages
English (en)
Inventor
田中康智
村田裕茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of CN102137950A publication Critical patent/CN102137950A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种涂层构造,在高温部件2的一部分的表面,通过喷涂形成由包含玻璃的氧化物陶瓷所构成的中间层3,在中间层3的表面形成由具有耐热性-耐水蒸气腐蚀性的涂层材料所构成的耐环境覆膜4。该氧化物陶瓷,是在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积的多种氧化物陶瓷,所述多种氧化物陶瓷的热膨胀系数,是在构成所述高温部件2的SiC系列陶瓷基复合材料的热膨胀系数和构成耐环境覆膜4的所述涂层材料的热膨胀系数之间。

Description

涂层构造及表面处理方法
技术领域
本发明涉及一种用于确保燃气涡轮部件等的高温部件的至少一部分的耐热性-耐水蒸气腐蚀性的涂层构造及表面处理方法。
背景技术
近年来,作为在包含水蒸气的高温气体环境下使用的燃气涡轮部件等的高温部件的材料,值得关注的是使用了与镍合金等相比具有更优秀的耐热性且比重小的SiC系列陶瓷基复合材料(CMC)。另一方面,发现在高温气体中的水蒸气会引起含Si的材料的腐蚀反应,在作为高温部件的材料使用SiC系列陶瓷基复合材料的情形下,需要对高温部件的至少一部分确保耐热性-耐水蒸气腐蚀性。并且,为了确保耐热性-耐水蒸气腐蚀性(water vapor wall-thinningresistance),通常对高温部件的一部分进行以下涂层构造的施工。
即,在高温部件的一部分的表面,形成有由包含玻璃的氧化物陶瓷所构成的中间层。并且,在中间层表面形成有由具有耐热性-耐水蒸气腐蚀性的涂层材料所构成的耐环境覆膜。换言之,在高温部件的一部分的表面,介由中间层形成耐环境覆膜。在这里,构成中间层的氧化物陶瓷的热膨胀系数,是在构成高温部件的SiC系列陶瓷基复合材料的热膨胀系数和构成耐环境覆膜的涂层材料的热膨胀系数之间。
由此,通过中间层可阶段性缓和高温部件和耐环境覆膜的热膨胀之差所引起的耐环境覆膜的残留应力,抑制耐环境覆膜的破裂、剥离,可长期确保高温部件的耐热性-耐水蒸气腐蚀性。
并且,作为与本发明有关的现有技术,有专利文献1及专利文献2中所示的内容。
专利文献1:日本特开第2004-346428号公报
专利文献2:日本特开第2005-200226号公报
然而,在形成由氧化物陶瓷所构成的中间层的情形下,从涂层构造施工的容易、确实性的角度考虑而使用喷涂法。另一方面,通过喷涂法所构成的中间层的陶瓷粒子(喷涂粒子)处于不稳定的状态,一旦暴露于900℃以上高温气体环境时,中间层内的陶瓷粒子烧结而过渡到稳定的状态,使中间层体积收缩。从而高温部件在900℃以上的高温气体环境下使用时,导致中间层容易发生破裂、剥离,难以长期确保高温部件的耐热性-耐水蒸气腐蚀性。即,在提高涂层构造的施工,换言之,在提高表面处理的施工的容易、确实性的基础上,存在难以长期确保900℃以上的高温气体环境下所使用的高温部件的耐热性-耐水蒸气腐蚀性的问题。
发明内容
基于上述问题的不足,本发明的目的在于提供一种可解决上述问题的、具有新的构成的涂层构造及表面处理方法。
本发明是以如下方式实现的。本发明第一侧面的涂层构造,是在包含水蒸气的高温气体环境下使用,且确保由SiC系列陶瓷基复合材料所构成的高温部件的至少一部分的耐热性-耐水蒸气腐蚀性的涂层构造,其中包括:
在所述高温部件的一部分的表面通过喷涂所形成,且由包含玻璃的氧化物陶瓷所构成的中间层;
在所述中间层的表面形成,且由具有耐热性-耐水蒸气腐蚀性的涂层材料所构成的耐环境覆膜,
其中,构成所述中间层的所述氧化物陶瓷,是在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积的多种氧化物陶瓷,所述多种氧化物陶瓷的热膨胀系数,是在构成所述高温部件的所述SiC系列陶瓷基复合材料的热膨胀系数和构成所述耐环境覆膜的所述涂层材料的热膨胀系数之间。
根据本发明第二侧面的表面处理方法,是在包含水蒸气的高温气体环境下使用,且确保由SiC系列陶瓷基复合材料所构成的高温部件的至少一部分的耐热性-耐水蒸气腐蚀性的表面处理方法,包括如下工序:
将包含玻璃的氧化物陶瓷的粉末作为喷涂材料而使用,通过喷涂来将半熔融状态的所述氧化物陶瓷的粉末堆积到所述高温部件的一部分的表面,从而形成中间层的中间层形成工序;
在所述中间层形成工序结束后,将具有耐热性-耐水蒸气腐蚀性的涂层材料作为喷涂材料而使用,通过喷涂来将半熔融状态的所述涂层材料的粉末堆积到所述中间层的表面,从而形成耐环境覆膜的耐环境覆膜形成工序,
其中,用于所述中间层形成工序的所述氧化物陶瓷,是在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积的多种氧化物陶瓷,所述多种氧化物陶瓷的热膨胀系数,是在构成所述高温部件的所述SiC系列陶瓷基复合材料的热膨胀系数和构成所述耐环境覆膜的所述涂层材料的热膨胀系数之间。
附图说明
图1是表示说明根据本发明的一个实施形态的涂层构造及表面处理方法的示意图。
图2是表示对模拟了中间层的2个试验片进行的热膨胀试验的结果的示意图,图2(a)是表示作为一个比较例的试验片A进行热膨胀试验的结果的示意图,图2(b)是表示作为一个实施例的试验片B进行热膨胀试验的结果的示意图。
图3是表示图2的2个试验片的陶瓷粒子的状态的示意图,图3(a)是表示试验片A的陶瓷粒子的状态的示意图,图3(b)是表示试验片B的陶瓷粒子的状态的示意图。
图4是表示热暴露前高温部件的涂层构造的示意图,图4(a)是表示一个比较例的涂层构造的剖视图、图4(b)是表示一个实施例的涂层构造的剖视图。
图5是表示图4所表示的比较例和实施例的涂层构造在1300℃进行大气暴露试验前后的外观的比较示意图。
图6是表示图5所示的大气暴露试验后的实施例的涂层构造的剖视图。
具体实施方式
参照图1~图6对本发明的实施形态进行详细说明。
【1】首先,参照图2就作为根据本发明的一个实施形态的涂层构造及表面处理方法的前提的新的见解进行说明。
在图2中表示了对模拟了中间层的试验片A(一个比较例:未图示)及试验片B(一个实施例:未图示)分别进行了热膨胀试验的结果。
具体说明是,作为一个比较例,将莫来石(3Al2O3·2SiO2,mullite)粉末作为喷涂材料,且通过真空喷涂的方式制作了模拟了中间层的试验片A。并且,作为一个实施例,将莫来石(3Al2O3·2SiO2,mullite)粉末和Yb2SiO5粉末的混合粉末(通过调整混合比来使得形成喷涂薄膜后的体积比变成1∶1的粉末)作为喷涂材料,且通过真空喷涂的方式制作了模拟了中间层的试验片B。并且,通过使得环境温度变化(从室温上升到1200℃,从1200℃下降到100℃)的方式分别对试验片A及试验片B进行热膨胀试验,分别测定了试验片A及试验片B的热膨胀率。并且,图2(a)是表示对试验片A进行热膨胀试验的结果的示意图,图2(b)是表示对试验片B进行热膨胀试验的结果的示意图。
如图2(a)及图2(b)所示,如环境温度上升而超过900℃的情形下,使得试验片A的热膨胀率大大降低,从而导致在试验片A发生大的体积收缩,与此相对地,试验片B的热膨胀率在与试验片A相比较的情形下,其降低被抑制,其结果降低了试验片B的体积收缩。这是因为,通过一旦暴露在900℃以上的高温气体环境,在试验片A的情形下,如图3(a)所示地,在试验片A内的陶瓷粒子(喷涂粒子)C烧结而过渡到稳定的状态,与此相对地,在试验片B的情形下,如图3(b)所示地,试验片B内的陶瓷粒子(喷涂粒子)C、CD的烧结被抑制。
并且,对以Yb2Si2O7的粉末代替Yb2SiO5的粉末来制作的试验片C(省略图示)进行热膨胀试验,获得的结果与试验片B的热膨胀试验结果相同。
在此,3Al2O3·2SiO2、Yb2SiO5、Yb2Si2O7是分别在室温至1400℃范围内结晶相不变化的氧化物陶瓷。并且,即使使用在室温至1400℃范围内虽然结晶变化但保持相同体积的氧化物陶瓷,来代替在室温至1400℃范围内结晶相不变化的氧化物陶瓷,也认为可以获得与前述的热膨胀试验的结果相同的结果。
通过这些热膨胀试验的结果可获得如下新的见解,即,通过在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积的多种氧化物陶瓷构成中间层的情形下,即使通过喷涂形成中间层的情形下也可抑制发生在一旦暴露于900℃以上的高温气体环境时的中间层内陶瓷粒子(喷涂粒子)的烧结,可降低中间层的体积收缩。
【2】接着,参照图1对根据本发明实施形态的涂层构造进行说明。
如图1(c)所示,根据本发明的一个实施形态的涂层构造1,是用于确保在包含水蒸气的高温环境下所使用的燃气涡轮部件2(高温部件的一例)的至少一部分的耐热性-耐水蒸气腐蚀性的结构,以下对其具体结构进行说明。并且,燃气涡轮部件2,例如为涡轮翼,由SiC系列陶瓷基复合材料所构成。
在燃气涡轮部件2的一部分的表面,通过真空喷涂形成有以包含玻璃的氧化物陶瓷所构成的中间层3。并且,也可通过大气喷涂形成所述中间层3,来代替通过真空喷涂形成中间层3的方式。
在中间层3的表面,通过大气喷涂形成以具有耐热性-耐水蒸气腐蚀性的氧化物陶瓷(涂层材料的一例)所构成的耐环境覆膜4。换言之,在燃气涡轮部件2的一部分的表面,介由中间层3形成耐环境覆膜4。在此,构成耐环境覆膜4的氧化物陶瓷,是稀土类氧化物、稀土类硅酸盐、硅铝酸锶(strontiumaluminosilicate)、或IVA族金属氧化物。并且,也可通过真空喷涂形成耐环境覆膜4,来代替通过大气喷涂形成耐环境覆膜4的方式。
并且,在根据本发明实施形态的涂层构造1,构成中间层3的氧化物陶瓷,是通过在室温至1400℃范围内结晶相不变化或虽然结晶变化但保持相同体积的2种氧化物陶瓷所构成。具体来讲,有3Al2O3·2SiO2和Yb2SiO5的情形、和3Al2O3·2SiO2和Yb2Si2O7的情形。并且,构成中间层3的2种氧化物陶瓷的热膨胀系数,是在构成燃气涡轮部件2的SiC系列陶瓷基复合材料的热膨胀系数(在此为3×10-6/℃)和构成耐环境覆膜4的氧化物陶瓷的热膨胀系数(在此为5~10×10-6/℃)之间。在此,构成中间层3的2种的氧化物陶瓷的热膨胀系数,是由2种氧化物陶瓷的混合体积比等来决定。在此,2种氧化物陶瓷的混合体积比例如为1∶1。这里所说的混合体积比,是指如上所述地形成喷涂薄膜后的体积比(混合比)。
【3】接着,参照图1对根据本发明的一个实施形态的表面处理方法进行说明。
在根据本发明的一个实施形态的表面处理方法中,是为了对包含水蒸气的高温气体环境下所使用的燃气涡轮部件2(参照图1(a))的至少一部分确保耐热性-耐水蒸气腐蚀性的方法,具有如下的中间层形成工序或耐环境覆膜形成工序。
<中间层形成工序>
将包含玻璃的氧化物陶瓷的粉末作为喷涂材料而使用,通过真空喷涂来将半熔融状态的氧化物陶瓷的粉末堆积到燃气涡轮部件2的一部分的表面。由此,如图1(b)所示,在燃气涡轮部件2的一部分形成中间层3。并且,也可通过大气喷涂来形成中间层3,来代替通过真空喷涂形成中间层3的方式。
<耐环境覆膜形成工序>
在中间层形成工序结束后,将具有耐热性-耐水蒸气腐蚀性的氧化物陶瓷(涂层材料的一例)粉末作为喷涂材料而使用,且通过大气喷涂将半熔融状态的氧化物陶瓷的粉末堆积在中间层3的表面。由此,如图1(c)所示,可在中间层3的表面形成耐环境覆膜4。换言之,可在燃气涡轮部件2的一部分介由中间层3形成耐环境覆膜4。在此,具有耐热性-耐水蒸气腐蚀性的氧化物陶瓷,是指稀土类氧化物、稀土类硅酸盐、硅铝酸锶或IVA族金属氧化物。并且,也可以通过真空喷涂来形成耐环境覆膜4,来代替通过大气喷涂形成耐环境覆膜4的方式。
在根据本发明的一个实施形态的表面处理方法,在中间层形成工序中所使用的氧化物陶瓷,是在室温至1400℃范围内结晶相不变化或虽然结晶变化但保持相同体积的2种氧化物陶瓷,这里有3Al2O3·2SiO2和Yb2SiO5的情形、和3Al2O3·2SiO2和Yb2Si2O7的情形。并且,用于中间层形成工序的2种氧化物陶瓷的热膨胀系数,是在构成燃气涡轮部件2的SiC系列陶瓷基复合材料的热膨胀系数(在此为3×10-6/℃)和构成耐环境覆膜4的氧化物陶瓷的热膨胀系数(在此为5~10×10-6/℃)之间。
【4】最后,参照图4及图5对根据本发明实施形态的作用及效果进行说明。
因为构成中间层3的2种氧化物陶瓷(用于中间层形成工序的2种氧化物陶瓷)的热膨胀系数是在构成燃气涡轮部件2的SiC系列陶瓷基复合材料的热膨胀系数和构成耐环境覆膜4的氧化物陶瓷的热膨胀系数之间,所以可通过中间层3阶段性地缓解因燃气涡轮部件2和耐环境覆膜4的热膨胀系数之差所引起的残留应力。
并且,构成中间层3的2种氧化物陶瓷,因设置成在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积,考虑前述的新的见解的情形下,即使中间层3是通过喷涂所形成,也可抑制发生在一旦暴露在900℃以上的高温气体环境时的中间层3内陶瓷粒子C、CD的烧结,从而可降低中间层3的体积收缩。
并且,在中间层3通过真空喷涂所构成的情形下(换言之,在中间层形成工序中通过真空喷涂形成中间层3的情形下),以紧密组织形成中间层3,以便充分抑制包含水蒸气的高温气体透过中间层3。
从而,根据本发明的一个实施形态,即使中间层3是通过喷涂所形成,也可抑制发生在一旦暴露在900℃以上的高温气体环境时的中间层3内的陶瓷粒子C、CD的烧结,从而可降低中间层3的体积收缩。从而,在实现涂层构造1的施工(换言之,表面处理的施工)的容易、确实性的基础上,抑制中间层3的破裂、剥离的发生,可对900℃以上的高温气体环境下所使用的燃气涡轮部件2长期确保耐热性-耐水蒸气腐蚀性。
图4是表示热暴露前的高温部件的涂层结构的示意图,图4(a)是表示一个比较例的涂层结构的剖视图。图4(b)是表示一个实施例的涂层结构的剖视图。在一个比较例中,作为耐环境覆膜使用HfO2、作为中间层将莫来石(3Al2O3·2SiO2,mullite)粉末作为喷涂材料而使用、通过喷涂将高温部件涂层的情形下的涂层构造。并且,在一个实施例中,作为耐环境覆膜使用HfO2、作为中间层将莫来石(3Al2O3·2SiO2,mullite)粉末和Yb2SiO5粉末的混合粉末(通过调整混合比来使得形成喷涂薄膜后的体积比变成1∶1的粉末)作为喷涂材料而使用、通过喷涂将高温部件涂层的情形下的涂层构造。
图5是表示对图4中所示的比较例和实施例的涂层构造在1300℃进行大气暴露试验前后的外观进行比较的示意图。通过目视比较大气暴露试验前后的比较例和实施例的外观可知,虽然认定了比较例的涂层的剥离,但不认定实施例的涂层的剥离。
图6是表示图5所示的大气暴露试验后的实施例的涂层构造的剖视图。如图5中的右上部分所示,在比较例中在大气暴露试验后涂层被剥离,而在图6中的剖视图所示,在实施例中在大气暴露试验后涂层未被剥离。
并且,通过真空喷涂形成中间层3的情形下,因充分抑制了包含水蒸气的高温气体透过中间层3,进一步提高了燃气涡轮部件2的耐水蒸气腐蚀性。
并且,本发明并不限于前述的实施形态的说明,也可以进行其他多种实施。并且,本发明中所包含的权利要求的范围,并不限定于这些实施形态。
工业实用性
根据本发明,即使通过喷涂形成所述中间层,也可抑制发生在一旦暴露于900℃以上的高温气体环境时的所述中间层内的陶瓷粒子的烧结,可降低所述中间层的体积收缩,因此,可在前述涂层构造的施工,换言之,在提高表面处理施工的容易、确实性的基础上,抑制所述中间层的破裂、剥离的发生,可长期确保在900℃以上的高温气体环境下所使用的前述燃气涡轮部件的耐热性-耐水蒸气腐蚀性。

Claims (7)

1.一种涂层构造,是在包含水蒸气的高温气体环境下使用且确保由SiC系列陶瓷基复合材料所构成的高温部件的至少一部分的耐热性-耐水蒸气腐蚀性的涂层构造,其中包括:
在所述高温部件的一部分的表面通过喷涂所形成,且由包含玻璃的氧化物陶瓷所构成的中间层;
在所述中间层的表面形成,且由具有耐热性-耐水蒸气腐蚀性的涂层材料所构成的耐环境覆膜,
其中,构成所述中间层的所述氧化物陶瓷,是在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积的多种氧化物陶瓷,所述多种氧化物陶瓷的热膨胀系数,是在构成所述高温部件的所述SiC系列陶瓷基复合材料的热膨胀系数和构成所述耐环境覆膜的所述涂层材料的热膨胀系数之间。
2.根据权利要求1所述的涂层构造,其中,构成所述中间层的所述多种氧化物陶瓷,是3Al2O3·2SiO2和Yb2SiO5
3.根据权利要求1或2所述的涂层构造,其中,所述中间层是通过真空喷涂所形成。
4.根据权利要求1~3中的任一项所述的涂层构造,其中,构成所述耐环境覆膜的所述涂层材料是稀土类氧化物、稀土类硅酸盐、硅铝酸锶、或IVA族金属氧化物。
5.一种表面处理方法,是在包含水蒸气的高温气体环境下使用且确保由SiC系列陶瓷基复合材料所构成的高温部件的至少一部分的耐热性-耐水蒸气腐蚀性的表面处理方法,包括如下工序:
将包含玻璃的氧化物陶瓷的粉末作为喷涂材料而使用,通过喷涂来将半熔融状态的所述氧化物陶瓷的粉末堆积到所述高温部件的一部分的表面,从而形成中间层的中间层形成工序;
在所述中间层形成工序结束后,将具有耐热性-耐水蒸气腐蚀性的涂层材料的粉末作为喷涂材料而使用,通过喷涂来将半熔融状态的所述涂层材料的粉末堆积到所述中间层的表面,从而形成耐环境覆膜的耐环境覆膜形成工序,
其中,用于所述中间层形成工序的所述氧化物陶瓷,是在室温至1400℃范围内结晶相不变化或虽然结晶相变化但保持相同体积的多种氧化物陶瓷,所述多种氧化物陶瓷的热膨胀系数,是在构成所述高温部件的所述SiC系列陶瓷基复合材料的热膨胀系数和构成所述耐环境覆膜的所述涂层材料的热膨胀系数之间。
6.根据权利要求5所述的表面处理方法,其中,构成所述中间层的所述多种氧化物陶瓷的粉末,是3Al2O3·2SiO2和Yb2SiO5的粉末。
7.根据权利要求5或6所述的表面处理方法,其中,所述中间层形成工序是通过真空喷涂形成所述中间层。
CN2009801101473A 2008-03-21 2009-03-18 涂层构造及表面处理方法 Pending CN102137950A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-074603 2008-03-21
JP2008074603 2008-03-21
PCT/JP2009/055345 WO2009116596A1 (ja) 2008-03-21 2009-03-18 コーティング構造及び表面処理方法

Publications (1)

Publication Number Publication Date
CN102137950A true CN102137950A (zh) 2011-07-27

Family

ID=41090995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801101473A Pending CN102137950A (zh) 2008-03-21 2009-03-18 涂层构造及表面处理方法

Country Status (5)

Country Link
US (1) US20110020655A1 (zh)
EP (1) EP2264208A4 (zh)
JP (1) JPWO2009116596A1 (zh)
CN (1) CN102137950A (zh)
WO (1) WO2009116596A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379345A (zh) * 2012-06-04 2015-02-25 株式会社Ihi 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法
CN110396004A (zh) * 2018-04-25 2019-11-01 中国科学院上海硅酸盐研究所 一种抗热震与抗高温水蒸气腐蚀的硅酸镱复合涂层及其制备方法和应用
CN112250476A (zh) * 2020-10-29 2021-01-22 昆明理工大学 具有高温陶瓷涂层YSZ-RETaO4的SiC基复合材料及其制备方法
CN113383204A (zh) * 2019-02-14 2021-09-10 日本碍子株式会社 烧成用夹具

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870652B2 (ja) * 2011-11-28 2016-03-01 株式会社Ihi 被膜付きセラミックス基複合材料およびその製造方法
US9938839B2 (en) * 2014-03-14 2018-04-10 General Electric Company Articles having reduced expansion and hermetic environmental barrier coatings and methods for their manufacture
CN104860717B (zh) * 2015-04-15 2016-11-23 哈尔滨工业大学 一种刚性陶瓷隔热瓦表面涂层的制备方法
US20170101347A1 (en) * 2015-10-08 2017-04-13 General Electric Company Method for coating removal
JPWO2021015059A1 (zh) * 2019-07-25 2021-01-28
KR20220037437A (ko) * 2019-07-25 2022-03-24 에이지씨 가부시키가이샤 적층 부재
CN116253584B (zh) * 2023-02-15 2024-05-24 中国航发北京航空材料研究院 一种用于陶瓷基复合材料的全氧化物热/环境障涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178204A (zh) * 1996-09-19 1998-04-08 株式会社东芝 热障涂层构件及其制作方法、使用该构件的燃气轮机零件
US6733908B1 (en) * 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
JP2005200226A (ja) * 2004-01-13 2005-07-28 Central Res Inst Of Electric Power Ind 耐環境性皮膜材料及びそれを利用した皮膜構造体並びにセラミック構造物
JP2006200037A (ja) * 2005-01-21 2006-08-03 General Electric Co <Ge> ケイ素含有材料用の、遷移層を有する熱/環境バリヤーコーティング

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485848B1 (en) * 1998-04-27 2002-11-26 General Electric Company Coated article and method of making
US6410148B1 (en) * 1999-04-15 2002-06-25 General Electric Co. Silicon based substrate with environmental/ thermal barrier layer
US6787195B2 (en) * 2003-02-03 2004-09-07 General Electric Company Method of depositing a coating on Si-based ceramic composites
US20040234782A1 (en) 2003-05-22 2004-11-25 Sun Ellen Y. Environmental barrier coating for silicon based substrates
US7326468B2 (en) * 2005-01-21 2008-02-05 General Electric Company Thermal/environmental barrier coating for silicon-comprising materials
US7740960B1 (en) * 2005-08-26 2010-06-22 The United States Of America As Represented By The Secretary Of The Army Multifunctionally graded environmental barrier coatings for silicon-base ceramic components
WO2007098152A2 (en) * 2006-02-20 2007-08-30 Lee Kang N Article including enviromental barrier coating system
JP5436761B2 (ja) * 2007-06-15 2014-03-05 川崎重工業株式会社 炭化ケイ素系繊維強化セラミックス複合材料の耐環境コーティング構造
US7968217B2 (en) * 2007-06-26 2011-06-28 General Electric Company Articles for high temperature service and methods for their manufacture
US20090186237A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. CMAS-Resistant Thermal Barrier Coatings
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
EP2344590B1 (en) * 2008-09-30 2016-11-30 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178204A (zh) * 1996-09-19 1998-04-08 株式会社东芝 热障涂层构件及其制作方法、使用该构件的燃气轮机零件
US6733908B1 (en) * 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
JP2005200226A (ja) * 2004-01-13 2005-07-28 Central Res Inst Of Electric Power Ind 耐環境性皮膜材料及びそれを利用した皮膜構造体並びにセラミック構造物
JP2006200037A (ja) * 2005-01-21 2006-08-03 General Electric Co <Ge> ケイ素含有材料用の、遷移層を有する熱/環境バリヤーコーティング

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379345A (zh) * 2012-06-04 2015-02-25 株式会社Ihi 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法
CN104379345B (zh) * 2012-06-04 2017-03-08 株式会社Ihi 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法
CN110396004A (zh) * 2018-04-25 2019-11-01 中国科学院上海硅酸盐研究所 一种抗热震与抗高温水蒸气腐蚀的硅酸镱复合涂层及其制备方法和应用
CN113383204A (zh) * 2019-02-14 2021-09-10 日本碍子株式会社 烧成用夹具
CN113383204B (zh) * 2019-02-14 2023-04-14 日本碍子株式会社 烧成用夹具
CN112250476A (zh) * 2020-10-29 2021-01-22 昆明理工大学 具有高温陶瓷涂层YSZ-RETaO4的SiC基复合材料及其制备方法

Also Published As

Publication number Publication date
JPWO2009116596A1 (ja) 2011-07-21
EP2264208A4 (en) 2015-03-25
WO2009116596A1 (ja) 2009-09-24
US20110020655A1 (en) 2011-01-27
EP2264208A1 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
CN102137950A (zh) 涂层构造及表面处理方法
Zhou et al. Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications
CN105026339B (zh) 抗衰退陶瓷基质复合材料和环境阻挡涂层
US11059751B2 (en) Coated member, coating material, and method of manufacturing coated member
US20110033630A1 (en) Techniques for depositing coating on ceramic substrate
CN105189932B (zh) 抗凹陷陶瓷基体复合物和环境阻隔涂层
US10717678B2 (en) Coating including a rare earth silicate-based layer including a second phase
US11365159B2 (en) Coated member and method of manufacturing the same
Zheng et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium–magnesium–aluminosilicate (CMAS) deposits: first-principles calculations
CN105263887B (zh) 用于包含硅的耐火衬底的环境屏障
CN105189411A (zh) 抗衰退陶瓷基质复合材料和环境隔离涂层
Zou et al. Microstructure, oxidation protection and failure mechanism of Yb2SiO5/LaMgAl11O19 coating deposited on C/SiC composites by atmospheric plasma spraying
US20100189911A1 (en) Bond Coating and Thermal Barrier Compositions, Processes for Applying Both, and Their Coated Articles
CN109384475B (zh) 一种联合提高SiCf/SiC复合材料高温抗水氧腐蚀性能的方法
JP2015174821A (ja) 低膨張性及び気密性耐環境皮膜を有する物品並びにそれらの製造方法
CN1935746A (zh) 具有含铪阻隔层的硅基基材
JP6374677B2 (ja) アルミノケイ酸カルシウムマグネシウム耐性コーティング及びアルミノケイ酸カルシウムマグネシウム耐性コーティングの形成方法
US20090155554A1 (en) Environmental barrier coating and related articles and methods
CN104193173A (zh) 一种钛合金表面烧制搪瓷隔热涂层材料及其制备方法
CN103782102B (zh) 用于燃烧室衬里特别是燃气轮机的燃烧室衬里的陶瓷砖及其制造方法
Fan et al. The interplay of surface stability and oxygen vacancy dynamics in RE2Si2O7‐based environmental barrier coatings
JP2007106644A (ja) セラミックス部材およびその製造方法
Guo et al. Bonding strength and thermal conductivity of novel nanostructured Lu2Si2O7/Lu2SiO5 environmental barrier coating
Xie et al. Mg2Al4Si5O18 as a novel bond coat material for advanced thermal/environmental barrier coatings on SiCf/SiC composites
Yan et al. Thermal shock resistance of a novel (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6) 2Si2O7 environmental barrier coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110727