CN102089258B - 氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法 - Google Patents

氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法 Download PDF

Info

Publication number
CN102089258B
CN102089258B CN200980126610.3A CN200980126610A CN102089258B CN 102089258 B CN102089258 B CN 102089258B CN 200980126610 A CN200980126610 A CN 200980126610A CN 102089258 B CN102089258 B CN 102089258B
Authority
CN
China
Prior art keywords
powder
oxide
lanthanum
lanthanum oxide
sintered object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980126610.3A
Other languages
English (en)
Other versions
CN102089258A (zh
Inventor
佐藤和幸
小井土由将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of CN102089258A publication Critical patent/CN102089258A/zh
Application granted granted Critical
Publication of CN102089258B publication Critical patent/CN102089258B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种氧化镧基烧结体,以氧化镧作为基础成分,含有氧化钛、氧化锆、氧化铪的一种或两种以上,其余为氧化镧和不可避免的杂质。还涉及一种氧化镧基烧结体的制造方法,使用La2(CO3)3粉末或La2O3粉末作为氧化镧原料粉末,使用TiO2、ZrO2、HfO2粉末的一种或两种以上作为添加氧化物,将其以用金属换算添加氧化物的金属成分的组成比为规定值的方式进行配合并混合后,将该混合粉末在大气中进行加热合成,然后将该合成材料粉碎得到粉末,然后将该合成粉末进行热压得到烧结体。本发明可以防止与水分或二氧化碳结合形成氢氧化物等而变为粉末状,可以长期保存。另外,本发明提供通过使用该溅射靶进行成膜,可以高效且稳定地提供High-K栅绝缘膜用氧化物的技术。

Description

氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法
技术领域
本发明涉及以氧化镧(La)为基础成分,包含由钛(Ti)、锆(Zr)、铪(Hf)的一种或两种以上组成的添加氧化物的氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法。
背景技术
最近,作为下一代MOSFET中的栅绝缘膜,要求薄膜化,但是,迄今作为栅绝缘膜使用的SiO2,通过隧道效应造成漏电流增加,难以正常工作。
因此,作为代替SiO2的材料,提出了具有高介电常数、高热稳定性、对硅中的空穴和电子具有高能障的HfO2、ZrO2、Al2O3、La2O3等所谓的High-K材料。
这些材料中有前景的是以HfO2为基础的材料体系,发布了作为下一代MOSFET中的栅绝缘膜。最近有报道称,通过将HfO系或者HfON系的High-K材料与氧化镧(La2O3)组合使用可以得到降低阈值电压等特性改善(参考非专利文献1)。另外公开了特别使用La2Hf2O7作为LaHfO系的材料来控制金属栅電极的有效功函数(参考专利文献1参照)。
从而镧成为引起关注的材料。
镧(La)是包括在稀土元素中的元素,作为矿物资源以混合复合氧化物形式包含在地壳中。稀土元素是从比较稀少地存在的矿物中分离出来的,因此具有这样的名称,但是从地壳整体来看绝对不稀少。
镧为原子序数57、原子量138.9的白色金属,在常温下具有双六方最密堆积结构(複六方最密構造)。熔点921℃、沸点3500℃、密度6.15g/cm3,在大气中表面被氧化,逐渐溶于水中。可溶于热水、酸。无延性,但稍有展性。电阻率为5.70×10-6Ω·cm。在445℃以上燃烧形成氧化物(La2O3)(参考理化学辞典)。
稀土元素一般以氧化数为3的化合物稳定,镧也是3价。
金属镧存在纯化时容易氧化的问题,因此是难以高纯度化的材料,从而不存在高纯度制品。另外,金属镧在大气中放置的情况下,短时间内氧化变为黑色,因此存在不容易操作的问题。
因此,对于镧(氧化镧)而言,可以说尚处于研究阶段,在对这样的镧(氧化镧)的特性进行调查的情况下,如果金属镧自身作为溅射靶材而存在,则可以在衬底上形成镧的薄膜,并且容易对与硅衬底的界面行为、以及通过进一步形成镧化合物而对高介电常数栅绝缘膜等的特性进行调查,另外,还具有作为制品的自由度增大的巨大优点。
但是,即使制作镧溅射靶,如上所述,其在大气中短时间内(约10分钟)发生氧化。在靶上形成氧化膜时,电导率下降,导致溅射不良。另外,在大气中长时间放置时,与大气中的水分反应而成为由白色的氢氧化物粉末覆盖的状态,造成不能正常溅射的问题。
因此,在靶制作后,需要立即进行真空包装或者用油脂包覆的抗氧化对策,但随时进行真空包装是非常繁杂的作业。同样地,用油脂包覆的事实对于要求清洁度的溅射靶而言,由于伴随油脂的除去作业,因此同样伴随繁杂的作业。
鉴于以上问题,镧元素的靶材迄今未实际应用。如上所述,不能制造耐受实际应用的氧化镧靶。
另一方面,为了制作氧化镧膜,使用氧化镧靶的方法与将金属镧与氧进行反应性溅射的方法或者在形成金属镧膜后进行氧化的方法相比,工序简单,可以形成氧量均匀的膜。但是,氧化镧与大气中的水分的反应比金属镧发生得快,在非常的短的时间内成为粉末状,最后完全破坏。因此,在通过工业上通常使用的PVD法、特别是溅射法制作La2O3膜的情况下,非常难以提供能够耐受实际应用的溅射靶。
非专利文献1:ALSHAREEF H.N.,QUEVEDO-LOPEZ M.,WEN H.C.,HARRIS R.,KIRSCH P.,MAJHI P.,LEE B.H.,JAMMY R.,著「WOrkfunctiOn engineering using lanthanum Oxide interfacial layers」Appl.Phys.Lett.,第89卷,第23期,232103-232103-3页,(2006)
专利文献1:日本特开2007-324593号公报
发明内容
如上述的现有技术所述,金属镧容易与氧结合,另外,氧化镧与水分和二氧化碳结合形成氢氧化物等而变为粉末状,因此,难以长时间保存,难以以溅射靶的形式产品化。
本发明的课题在于,提供以氧化镧(La)为基础成分、包含由钛(Ti)、锆(Zr)、铪(Hf)的一种或两种以上组成的添加氧化物的氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法以及通过该制造方法制造溅射靶的方法,由此,防止与水分或二氧化碳结合形成氢氧化物等而变为粉末状,可以长期保存。另外,本发明的课题在于提供通过使用该溅射靶进行成膜,可以高效且稳定地提供High-K栅绝缘膜用氧化物的技术。
如上述发明想要解决的课题所述,金属镧容易与氧结合,另外,氧化镧与水分结合形成氢氧化物,从而均难以长期保存。本申请发明以氧化镧为基础成分,在其中添加氧化钛、氧化锆、氧化铪的一种或两种以上,以烧结体或溅射靶的形式使用。另外,这些烧结体及靶的成分组成包含新物质。
根据以上内容,本申请发明提供:
1)一种氧化镧基烧结体,以氧化镧作为基础成分,其特征在于,含有氧化钛、氧化锆、氧化铪的一种或两种以上,其余为氧化镧和不可避免的杂质;
2)如上述1)所述的氧化镧基烧结体,其特征在于,相对于烧结体中的金属元素的合计成分量,钛、锆、铪的金属元素的量为1摩尔%以上且低于50摩尔%;
3)如上述1)所述的氧化镧基烧结体,其特征在于,相对于烧结体中的金属元素的合计成分量,钛、锆、铪的金属元素的量为10摩尔%以上且低于50摩尔%;
4)如上述1)至3)中任一项所述的氧化镧基烧结体,其特征在于,氢和碳各自为25重量ppm以下,相对密度为96%以上,最大粒径为50μm以下,平均粒径为5μm以上;
5)一种溅射靶,包含上述1)~4)中任一项所述的烧结体。
另外,本申请发明提供:
6)一种氧化镧基烧结体的制造方法,其特征在于,使用La2(CO3)3粉末或La2O3粉末作为氧化镧原料粉末,使用TiO2、ZrO2、HfO2粉末的一种或两种以上作为添加氧化物,将其以添加氧化物的金属成分相对于La的组成比为规定值的方式进行配合并混合后,将该混合粉末在大气中进行加热合成,然后将该合成材料粉碎得到粉末,然后将该合成粉末进行热压得到烧结体;
7)如上述1)~5)中任一项所述的氧化镧基烧结体的制造方法,其特征在于,使用La2(CO3)3粉末或La2O3粉末作为氧化镧原料粉末,使用TiO2、ZrO2、HfO2粉末的一种或两种以上作为添加氧化物,将其以添加氧化物的金属成分相对于La的组成比为规定值的方式进行配合并混合后,将该混合粉末在大气中进行加热合成,然后将该合成材料粉碎得到粉末,然后将该合成粉末进行热压得到烧结体;
8)如上述6)或7)所述的氧化镧基烧结体的制造方法,其特征在于,混合通过湿式球磨机进行,合成在大气中、在1350℃~1550℃下加热5小时~25小时来制造;
9)如上述6)~8)中任一项所述的氧化镧基烧结体的制造方法,其特征在于,热压在1200℃~1500℃下、真空中进行1小时~5小时;
10)通过上述6)~8)中任一项所述的氧化镧基烧结体的制造方法制造溅射靶的方法。
发明效果
将氧化镧烧结体溅射靶在大气中长时间放置时,由于潮解性而与水分反应,成为由氢氧化物的白色粉末覆盖的状态,产生不能正常溅射的问题。另外,吸收大气中的二氧化碳而崩解为碳酸镧的粉末。本发明的靶,可以延迟这些问题的发生,可以保存到实际应用上没有问题的期限。
作为添加氧化物的氧化钛、氧化锆、氧化铪作为High-k材料均是有效的,但是认为,特别是添加作为HfO系或HfON系、HfSiO系或HfSiON系(High-k材料)使用的Hf氧化物的情况,比起含有氧化钛、氧化锆的情况,与钛、锆向High-k材料的扩散相伴随的漏电流增加的问题少,更加有效。
具体实施方式
本发明的氧化物烧结体溅射靶,是以氧化镧作为基础成分的烧结体及使用该烧结体的溅射靶,所述烧结体的特征在于,含有氧化钛、氧化锆、氧化铪的一种或两种以上,其余为氧化镧和不可避免的杂质。
该烧结体和靶与镧或氧化镧相比,具有可以极大抑制下列现象的显著效果:由于潮解性而与水分反应,从而由氢氧化物的白色粉末覆盖而崩解的现象:或者吸收大气中的二氧化碳而崩解为碳酸镧的粉末的现象。这是本申请发明的中心技术构思。本申请人调查的现有技术中,作为烧结体或靶,不存在具有这种组成的烧结体和靶。
上述镧或氧化镧的崩解抑制理论,不一定清楚,但是,通过添加作为添加成分的氧化钛、氧化锆、氧化铪提供大的贡献这一点,却是从许多实验中可以明确看出的。对此,通过后述的实施例和比较例详细进行说明。
氧化钛、氧化锆、氧化铪的添加,由于不是单独地使用镧或氧化镧,因此在材料的使用上有限制。但是,由于这些材料是均可以有效地用作High-K栅绝缘膜用氧化物的材料,因此,添加本身不会产生负面效果。
其添加量可以根据使用目的和用途进行选择。这些材料中,作为High-K栅绝缘膜用氧化物,特别是氧化铪的添加是有效的。这是因为:在使用氧化钛、氧化锆的情况下,微量的钛或锆向High-k材料扩散,从而产生漏电流稍稍增加的问题。氧化铪不产生该问题。
对镧(La)和钛(Ti)、锆(Zr)、铪(Hf)的氧化物的添加进行考虑时,相对于氧化物中的La和添加氧化物的金属成分(钛、锆、铪的合计)的合计量,所述添加氧化物的金属成分(钛、锆、铪的合计)、即(Ti、Zr、Hf)/(La+Ti、Zr、Hf)为1摩尔%以上且低于50摩尔%是良好的。为了更有效地防止崩解,优选10摩尔%以上。
低于1摩尔%时,防止因氧化镧的潮解性引起的崩解的效果小,为50摩尔%以上时,虽然对于防止崩解的效果有效,但是作为氧化镧的特性的利用效果小。这是因为例如,在Hf更多的情况下,高介电常数氧化物(例如,La2Hf2O7、La2Zr2O7)的特性具有优势地位,从而特性产生差异。
本申请发明的前提是作为High-K材料的应用,通过组合使用氧化镧(La2O3),可以得到降低阈值电压等特性。
另外,作为附加要件,降低烧结体的氢含量和碳含量、提高密度、形成最佳结晶粒径,对于进一步提高本申请发明的烧结体和靶的特性都是有效的。为了该目的,本申请发明提供氢和碳各自为25重量ppm以下、相对密度为96%以上、最大粒径为50μm以下、平均粒径为5μm以上且20μm以下的氧化镧基烧结体和靶。
烧结体和靶中存在氢和碳,由于是引起与气氛中的水分或二氧化碳的反应的基点,因此减少其含量是有效的。另外,提高密度对于减少与上述气氛的接触面积是必要的。密度更优选设为98%。由此,可以减少烧结体中的贯通孔,防止从内部开始的崩解。
另外,可以使烧结体的结晶粒径较大,减少晶粒间界,减少从晶粒间界开始的崩解。由此,如果增大结晶粒径,则晶粒间界面积减小,因此可以有效地减少从晶粒间界开始的崩解,但是,由于过度地增大结晶粒径时难以提高密度,因此可以说,为了提高密度,最大粒径优选为50μm以下。
但是,这些不过是附加的优选要件,没有必要限于这些条件。
制造该氧化物烧结体靶时,使用La2(CO3)3粉末或La2O3粉末作为原料粉末,并且使用TiO2、ZrO2、HfO2粉末的一种或两种以上作为添加氧化物。以相对于金属La与添加氧化物中的金属成分钛、锆、铪的总合计量,添加氧化物中的金属成分钛、锆、铪的合计量为1摩尔%以上且低于50摩尔%的方式进行配合。该配合比特别优选为10摩尔%以上且低于50摩尔%。
但是,如果通过热処理等能够产生氧化物,则不限于上述的氧化物。例如,作为这样的原料,关于La,有氢氧化镧、硝酸镧、氯化镧等。另外,如果能够充分地控制,也可以使用金属镧。
关于Ti、Zr,Hf,如果能够充分控制,也可以使用金属粉末或粉碎性好的氢化粉末。将其混合后,在氧化性气氛中进行加热合成,然后将该合成材料粉碎得到粉末,再将该合成粉末进行热压得到烧结体,可以由此来进行制造。
在以氢化粉末(氢化钛、氢化锆、氢化铪)为原料的情况下,需要在真空气氛中或者惰性气氛中进行充分的脱氢処理。
混合通过湿式球磨机进行,合成在大气中、在1350℃~1550℃下加热约5小时~约25小时来进行是推荐的制造条件。
另外,热压在1200℃~1500℃下、真空中、进行1小时~5小时的烧结条件,同样是推荐的制造条件。以上是有效进行合成和烧结的条件。因此,应该理解,当然可以设定为除此以外的条件以及附加其它条件。
由此,可以得到相对密度为96%以上、更优选98%以上、最大粒径为50μm以下、更优选平均粒径为5μm以上且20μm以下的氧化物烧结体溅射靶。当然提高密度和细化结晶粒径是可以抑制结瘤或粉粒的产生、可以进行均匀成膜的优选条件。
一般而言,镧中含有的稀土元素,除镧(La)以外,还有Sc、Y、Ce、Pr、Nd、Pm、Sm、Eu、Gd、D、Tb、Dy、Ho、Er、Tm、Yb、Lu,由于特性近似,因此难以从La中分离纯化。特别是Ce与La近似,因此不容易减少Ce。
但是,可以理解,这些稀土元素由于性质近似,因此,如果以稀土元素合计低于1000重量ppm,则不会别地成问题。因此,本申请发明中镧的使用中,含有该水平的稀土元素作为不可避免的杂质是允许的。
此外,还存在不可避免地混入的杂质。例如,Ti、Zr、Hf的化学特性相近,因此Zr和Hf难以分离。Hf中含有微量的Zr。另外,Zr中也含有微量的Hf,但是,这些均不会成为大的问题。但是,为了明确地有效利用添加Hf(氧化铪)的特性,认为当然优选减少不可避免地混入的Zr。这是因为,如上所述,Zr有可能会扩散到作为High-k(高介电常数)材料的以Hf为基础的HfO、HfON,HfSiO和HfSiON中,从而改变介电常数。
但是,本申请发明的目的在于抑制氧化镧的崩解从而得到实际应用的溅射靶,因此,包含这些不可避免的杂质。另外,纯度方面,除上述特殊的不可避免的杂质外,优选除气体成分以外的纯度为3N以上。
一般而言,作为气体成分,存在C、N、O、S、H。在为氧化镧的情况下,减少C、H是重要的。C、H各自不仅会促进与保存气氛中的二氧化碳、水分的反应,而且自身含有的氧与气氛中的氧反应形成碳酸镧、氢氧化镧,从而崩解为粉末状,因此减少其含量是重要的。因此,比起在氧(大气)气氛中的烧结,更优选通过在真空中、惰性气体中的热压进行烧结。
实施例
以下,对实施例进行说明。另外,该实施例仅仅用于容易理解本发明,不限制本发明。即,本发明的技术构思范围内的其它实施例和变形,也包含在本发明中。另外,下述内容中,作为参考例举出的例子,虽然从本申请的目的来看不充分,但是仍然观察到与本申请发明近似的特性改善。关于比较例1,在第22页22~26行中记载。
(参考例1-3、实施例1-25)
使用La2(CO3)3粉末和HfO2、ZrO2、TiO2粉末作为原料粉末,以相对于包含La的金属成分的合计量,Hf、Zr、Ti的量为0.5摩尔%~49摩尔%的方式,将原料粉末进行配合,并使用湿式球磨机进行混合。将该混合粉末在大气中在1450℃下加热20小时进行合成。
用球磨机将该合成材料湿式粉碎16小时得到粉末。将该合成粉末在真空中、在1400℃下热压2小时得到烧结体。烧结体的尺寸
Figure BPA00001290691300101
在加压300kg/cm2下实施。
另外,在使用La2O3粉末作为La氧化物的情况下,也得到同样结果,因此,本实施例对使用La2(CO3)3粉末的情况进行说明。
将其进行机械加工得到评价用的烧结体。烧结体为它们的复合氧化物。在大气中、或者恒温恒湿槽(温度40℃、湿度90%)中调查评价用烧结体的稳定性。通过XRD确认粉末化的物质主要是镧的氢氧化物(La(OH)3)。
实施例所示的烧结体,作为靶与背衬板焊接,并根据需要进行真空密封(或者在惰性气体气氛中),从而可以用于实际的半导体制造工艺。
另外,上述原料粉末的混合条件、合成条件、热压条件均为代表性的条件。第4页21行至第5页第10行中记载的适当条件可以任意选择。
(参考例1)
参考例1的复合氧化物烧结体,以复合氧化物烧结体(氧化镧和氧化铪)的金属换算,含有铪0.5摩尔%,即以Hf/(La+Hf)的摩尔%计,含有Hf为0.5%。以下,其他的参考例和实施例也同样。另外,仅供参考,以Hf/(La+Hf)的摩尔%计,含有Hf为50摩尔%为La2Hf2O7的组成,La2O3为33.3摩尔%、HfO2为66.7摩尔%。
碳含量为35ppm、氢29ppm、相对密度为95%、最大粒径为41μm、平均粒径为12μm。此时,HfO2量比本申请发明的优选条件稍少,碳含量比本申请发明的优选条件稍多,相对密度低一些,为95%。结果,在大气中经过3周,烧结体崩解为粉末状。
但是,在真空包装中,4个月间,未观察到表面的粉末化。该水平的烧结体,崩解的进行速度稍大,但是,如果使用真空包装,则可以说处于实际应用水平的范围。评价为△。
(参考例2)
参考例2的复合氧化物烧结体,以金属换算,ZrO2按Zr换算含有0.5摩尔%。碳含量为23ppm、氢19ppm、相对密度为97%、最大粒径为37μm、平均粒径为9μm。此时,ZrO2量比本申请发明的优选条件稍少,但是相对密度稍高,为97%。结果,在大气中经过4周,烧结体崩解为粉末状。比参考例1有一些改善。
但是,在真空包装中,4个月间,未观察到表面的粉末化。该水平的烧结体,崩解的进行速度稍大,但是,如果使用真空包装,则可以说处于实际应用水平的范围。评价为△。
(参考例3)
参考例3的复合氧化物烧结体,以金属换算,TiO2按Ti换算含有0.5摩尔%。碳含量为46ppm、氢50ppm、相对密度为95%、最大粒径为53μm、平均粒径为11μm。此时,TiO2量比本申请发明的优选条件稍少,碳含量和氢量比本申请发明优选条件稍多,最大粒径稍大,为53μm,相对密度低一些,为95%。结果,在大气中经过3周,烧结体崩解为粉末状。
但是,在真空包装中,至4个月间,未观察到表面的粉末化。该水平的烧结体,崩解的进行速度稍大,但是,如果使用真空包装,则可以说处于实际应用水平的范围。评价为△。
(实施例1)
实施例1的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有1摩尔%。碳含量为37ppm、氢30ppm、相对密度为95%、最大粒径为40μm、平均粒径为10μm。此时,HfO2量符合本申请发明的优选条件。碳含量、氢含量比本申请发明的优选条件稍多,相对密度低一些,为95%。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中第4周,烧结体崩解为粉末状。而且,在真空包装中经6个月,6个月间未观察到表面的粉末化。可以确认,该HfO2的存在具有大的抑制烧结体崩解的效果。为实际应用水平,评价为○。
(实施例2)
实施例2的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有1摩尔%。碳含量为15ppm、氢20ppm、相对密度为97%、最大粒径为42μm、平均粒径为15μm。此时,各条件均符合本申请发明的优选条件。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中第4周,仅烧结体的表面崩解为粉末状。而且,在真空包装中,10个月间未观察到表面的粉末化。可以确认,该HfO2的存在以及附加条件的优化具有大的抑制烧结体崩解的效果。为实际应用水平,评价为○。
(实施例3)
实施例3的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有5摩尔%。碳含量为53ppm、氢47ppm、相对密度为97%、最大粒径为41μm、平均粒径为5μm。此时,碳和氢的含量多,其它条件符合本申请发明的优选条件。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中第4周,烧结体崩解为粉末状。而且,在真空包装中,6个月间未观察到表面的粉末化。可以确认,该复合氧化物烧结体中存在过量的碳和氢,成为稍稍崩解的促进因素。但是,该实施例3的复合氧化物烧结体,整体上可以确认具有大的抑制烧结体崩解的效果。为实际应用水平,评价为○。
(实施例4)
实施例4的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有5摩尔%。碳含量为26ppm、氢28ppm、相对密度为98%、最大粒径为36μm、平均粒径为13μm。此时,该复合氧化物烧结体中碳和氢稍稍过量存在。但是,其量比实施例6少。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中第4周,仅烧结体表面崩解为粉末状。而且,在真空包装中,10个月间未观察到表面的粉末化。
可以确认,该复合氧化物烧结体中存在稍微过量的碳和氢,成为稍稍崩解的促进因素。但是,可以确认该实施例4的复合氧化物烧结体的抑制崩解的效果超过实施例6。为实际应用水平,评价为○。
(实施例5)
实施例5的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有10摩尔%。碳含量为76ppm、氢28ppm、相对密度为95%、最大粒径为63μm、平均粒径为3μm。此时,该复合氧化物烧结体中存在过量的碳和氢,最大粒径、平均粒径这样的附加要件不处于最佳范围。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。但是,测定表面硬度发现有降低一些的倾向。
而且,在真空包装中经过一年,逐渐观察到表面的粉末化。可以确认,该复合氧化物烧结体中Hf的存在量大,即使其它附加因素在本申请发明的条件以外,也具有大的抑制崩解的效果。评价为◎。
(实施例6)
实施例6的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有10摩尔%。碳含量为18ppm、氢20ppm、相对密度为96%、最大粒径为23μm、平均粒径为15μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过1年也未观察到表面的粉末化。可以确认,在Hf的存在以及其它附加因素符合本申请发明条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例7)
实施例7的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有35摩尔%。碳含量为73ppm、氢52ppm、相对密度为98%、最大粒径为37μm、平均粒径为8μm。此时,该复合氧化物烧结体中相当过量地存在碳和氢。其它附加要件符合最佳范围。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。但是,测定表面硬度发现有降低一些的倾向。
而且,在真空包装中,经过一年,逐渐观察到表面的粉末化。但是,测定表面的硬度发现有降低一些的倾向。
可以确认,在Hf的存在以及其它附加因素符合本申请发明条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例8)
实施例8的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有35摩尔%。碳含量为13ppm、氢21ppm、相对密度为98%、最大粒径为30μm、平均粒径为13μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年也未观察到粉末化。可以确认,在Hf的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例9)
实施例9的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有45摩尔%。碳含量为73ppm、氢52ppm、相对密度为98%、最大粒径为37μm、平均粒径为8μm。此时,该复合氧化物烧结体中相当过量地存在碳和氢,其它附加要件处于最佳范围。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。但是,测定表面硬度发现有降低一些的倾向。
而且,在真空包装中,经过一年,逐渐观察到表面的粉末化。可以确认,在Hf的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例10)
实施例10的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有45摩尔%。碳含量为10ppm、氢25ppm、相对密度为98%、最大粒径为31μm、平均粒径为14μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年也未观察到粉末化。可以确认,在Hf的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例11)
实施例11的复合氧化物烧结体,以金属换算,HfO2按Hf换算含有48摩尔%。碳含量为23ppm、氢24ppm、相对密度为97%、最大粒径为18μm、平均粒径为10μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年也未观察到粉末化。可以确认,在Hf的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例12)
实施例12的复合氧化物烧结体,以金属换算,ZrO2按Zr换算含有5摩尔%。碳含量为20ppm、氢14ppm、相对密度为98%、最大粒径为20μm、平均粒径为12μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,在第4周仅烧结体表面崩解为粉末状。而且,在真空包装中经过10个月,观察到表面的粉末化。可以确认,在Zr的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为○。
(实施例13)
实施例13的复合氧化物烧结体,以金属换算,ZrO2按Zr换算含有25摩尔%。碳含量为23ppm、氢15ppm、相对密度为98%、最大粒径为19μm、平均粒径为11μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年也未观察到表面的粉末化。可以确认,在Zr的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例14)
实施例14的复合氧化物烧结体,以金属换算,ZrO2按Zr换算含有48摩尔%。碳含量为73ppm、氢65ppm、相对密度为99%、最大粒径为17μm、平均粒径为3μm。此时,该复合氧化物烧结体的密度高,但是,碳、氢含量多,粒径也小。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。但是,测定表面硬度发现有降低一些的倾向。而且,在真空包装中,经过一年,逐渐观察到表面的粉末化。
可以确认,在Zr的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有显著的抑制崩解的效果。评价为◎。
(实施例15)
实施例15的复合氧化物烧结体,以金属换算,TiO2按Ti换算含有1摩尔%。碳含量为37ppm、氢30ppm、相对密度为95%、最大粒径为40μm、平均粒径为10μm。此时,该复合氧化物烧结体的氧量、氢量多,另外相对密度低一些,为95%
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,在第4周烧结体崩解为粉末状。而且,在真空包装中,经过6个月,观察到表面的粉末化。可以确认,该复合氧化物烧结体通过Ti的存在以及其它附加因素,具有抑制崩解的效果。评价为○。
(实施例16)
实施例16的复合氧化物烧结体,以金属换算,TiO2按Ti换算含有10摩尔%。碳含量为25ppm、氢21ppm、相对密度为98%、最大粒径为28μm、平均粒径为13μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。
可以确认,在Ti的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例17)
实施例17的复合氧化物烧结体,以金属换算,TiO2按Ti换算含有30摩尔%。碳含量为25ppm、氢21ppm、相对密度为98%、最大粒径为28μm、平均粒径为13μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,与实施例16同样,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,在Ti的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例18)
实施例18的复合氧化物烧结体,以金属换算,TiO2按Ti换算含有49摩尔%。碳含量为19ppm、氢25ppm、相对密度为97%、最大粒径为20μm、平均粒径为11μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,与实施例17同样,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。
可以确认,在Ti的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例19)
实施例19的复合氧化物烧结体,以金属换算,TiO2和ZrO2比为1∶1,按Ti和Zr的金属换算,含有10摩尔%。碳含量为20ppm、氢23ppm、相对密度为97%、最大粒径为19μm、平均粒径为9μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,与实施例18同样,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,在包含Ti和Zr的金属的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例20)
实施例19的复合氧化物烧结体,以金属换算,TiO2和ZrO2比为1∶1,按Ti和Zr的金属换算,含有30摩尔%。碳含量为17ppm、氢18ppm、相对密度为97%、最大粒径为26μm、平均粒径为15μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,与实施例19同样,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,在包含Ti和Zr的金属的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例21)
实施例21的复合氧化物烧结体,以金属换算,TiO2和HfO2比为1∶1,按Ti和Hf的金属换算,含有20摩尔%。碳含量为18ppm、氢19ppm、相对密度为97%、最大粒径为23μm、平均粒径为12μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,与实施例20同样,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,在包含Ti和Hf的金属的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例22)
实施例22的复合氧化物烧结体,以金属换算,TiO2和HfO2比为1∶1,按Ti和Hf的金属换算,含有40摩尔%。碳含量为25ppm、氢20ppm、相对密度为97%、最大粒径为23μm、平均粒径为17μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,实施例21同样,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,在包含Ti和Hf的金属的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(实施例23)
实施例23的复合氧化物烧结体,以金属换算,TiO2、ZrO2和HfO2之比为1∶1∶1,按Ti、Zr和Hf的金属换算,含有6摩尔%。碳含量为53ppm、氢37ppm、相对密度为96%、最大粒径为48μm、平均粒径为3μm。此时,该复合氧化物烧结体除了碳含量、氢含量显著高、平均粒径小的方面以外,所有条件均符合本申请发明。
结果,在作为加速试验恒温(40℃)、恒湿(湿度90%)槽中,在第4周烧结体崩解为粉末状。另外,在真空包装中经过6个月,观察到表面的粉末化。该复合氧化物烧结体的评价为○。
(实施例24)
实施例24的复合氧化物烧结体,以金属换算,TiO2、ZrO2和HfO2之比为1∶1∶1,按Ti、Zr和Hf的金属换算,含有24摩尔%。碳含量为23ppm、氢24ppm、相对密度为97%、最大粒径为23μm、平均粒径为16μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,该复合氧化物烧结体在包含Ti、Zr和Hf的金属的存在以及其它附加因素符合本申请发明的条件的情况下,具有抑制崩解的效果。评价为◎。
(实施例25)
实施例25的复合氧化物烧结体,以金属换算,TiO2、ZrO2和HfO2之比为1∶1∶1,按Ti、Zr和Hf的金属换算,含有45摩尔%。碳含量为23ppm、氢24ppm、相对密度为97%、最大粒径为28μm、平均粒径为15μm。此时,该复合氧化物烧结体的所有条件均符合本申请发明。
结果,在作为加速试验的恒温(40℃)、恒湿(湿度90%)槽中,即使在第8周,也未观察到烧结体的粉末状崩解。而且,在真空包装中,即使经过一年,也未观察到粉末化。可以确认,在包含Ti、Zr和Hf的金属的存在以及其它附加因素符合本申请发明的条件的情况下,该复合氧化物烧结体具有抑制崩解的效果。评价为◎。
(比较例1)
该比较例1的氧化物烧结体是La2O3。碳含量为31ppm、氢27ppm、相对密度为96%,最大粒径和平均粒径不能测定。此时,在大气中放置两周,崩解为白色的粉末状。此时不能保持烧结体的形状。评价为×。以上的结果如表1所示。
Figure BPA00001290691300231
Figure BPA00001290691300241
产业实用性
将氧化镧烧结体溅射靶在大气中长时间放置时,由于潮解性而与水分反应从而成为由氢氧化物的白色粉末覆盖的状态,产生不能进行正常的溅射的问题。另外,吸收大气中的二氧化碳而崩解为碳酸镧粉末。本发明的靶可以延迟这些问题的产生,具有能够保存至实际应用上没有问题的期限的显著效果,特别是作为能够高效且稳定地提供High-K栅绝缘膜用氧化物的氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法是有用的。

Claims (6)

1.一种包含氧化镧基烧结体的溅射靶,含有氧化钛、氧化锆、氧化铪的一种或两种以上,其余为氧化镧和不可避免的杂质,其特征在于,相对于烧结体中的金属元素的合计成分量,钛、锆、铪的金属元素的量为1摩尔%以上且低于50摩尔%,氢和碳各自为25重量ppm以下,相对密度为96%以上,最大粒径为50μm以下,平均粒径为5μm以上。
2.一种包含氧化镧基烧结体的溅射靶的制造方法,其特征在于,使用La2(CO3)3粉末或La2O3粉末作为氧化镧原料粉末,使用TiO2、ZrO2、HfO2粉末的一种或两种以上作为添加氧化物,将其以相对于金属La与添加氧化物中的金属成分钛、锆、铪的总合计量,添加氧化物中的金属成分钛、锆、铪的合计量为1摩尔%以上且低于50摩尔%的方式进行配合并混合后,将该混合粉末在大气中进行加热合成,然后将该合成材料粉碎得到粉末,然后将该合成粉末进行热压得到烧结体。
3.如权利要求1所述的包含氧化镧基烧结体的溅射靶的制造方法,其特征在于,使用La2(CO3)3粉末或La2O3粉末作为氧化镧原料粉末,使用TiO2、ZrO2、HfO2粉末的一种或两种以上作为添加氧化物,将其以添加氧化物的金属成分相对于La的组成比为规定值的方式进行配合并混合后,将该混合粉末在大气中进行加热合成,然后将该合成材料粉碎得到粉末,然后将该合成粉末进行热压得到烧结体。
4.如权利要求2或3所述的包含氧化镧基烧结体的溅射靶的制造方法,其特征在于,混合通过湿式球磨机进行,合成在大气中、在1350℃~1550℃下加热5小时~25小时来制造。
5.如权利要求2或3所述的包含氧化镧基烧结体的溅射靶的制造方法,其特征在于,热压在1200℃~1500℃下、真空中进行1小时~5小时。
6.如权利要求4所述的包含氧化镧基烧结体的溅射靶的制造方法,其特征在于,热压在1200℃~1500℃下、真空中进行1小时~5小时。
CN200980126610.3A 2008-07-07 2009-06-23 氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法 Expired - Fee Related CN102089258B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008176538 2008-07-07
JP2008-176538 2008-07-07
PCT/JP2009/061352 WO2010004861A1 (ja) 2008-07-07 2009-06-23 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法

Publications (2)

Publication Number Publication Date
CN102089258A CN102089258A (zh) 2011-06-08
CN102089258B true CN102089258B (zh) 2014-04-16

Family

ID=41506980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980126610.3A Expired - Fee Related CN102089258B (zh) 2008-07-07 2009-06-23 氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法

Country Status (7)

Country Link
US (1) US20110114481A1 (zh)
EP (1) EP2298715A4 (zh)
JP (1) JP5301541B2 (zh)
KR (1) KR101222789B1 (zh)
CN (1) CN102089258B (zh)
TW (1) TW201002645A (zh)
WO (1) WO2010004861A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980169B2 (en) * 2007-12-28 2015-03-17 Jx Nippon Mining & Metals Corporation High-purity lanthanum, sputtering target comprising high-purity lanthanum, and metal gate film mainly comprising high-purity lanthanum
KR20130029440A (ko) * 2008-07-07 2013-03-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 산화물 소결체, 산화물 소결체로 이루어지는 스퍼터링 타깃, 산화물 소결체의 제조 방법 및 산화물 소결체 스퍼터링 타깃 게이트의 제조 방법
US9347130B2 (en) 2009-03-27 2016-05-24 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering
US9382612B2 (en) 2009-03-31 2016-07-05 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering
JP5234860B2 (ja) 2009-11-17 2013-07-10 Jx日鉱日石金属株式会社 ランタン酸化物ターゲットの保管方法、ランタン酸化物からなるスパッタリングターゲット及びランタン酸化物薄膜の形成方法
SG185766A1 (en) * 2010-07-30 2012-12-28 Jx Nippon Mining & Metals Corp Sputtering target and/or coil and process for producing same
WO2012067061A1 (ja) 2010-11-19 2012-05-24 Jx日鉱日石金属株式会社 高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜
AU2012208015B2 (en) 2011-01-21 2016-03-31 Jx Nippon Mining & Metals Corporation Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component
US9404175B2 (en) 2013-02-04 2016-08-02 Blackberry Limited Method of forming a target for deposition of doped dielectric films by sputtering
EP2762462B1 (en) * 2013-02-04 2020-12-23 NXP USA, Inc. Method of forming a target and depositing doped dielectric films by sputtering
WO2019022668A1 (en) * 2017-07-26 2019-01-31 National University Of Singapore POLYACRYLONITRILE MEMBRANES, METHODS AND USES THEREOF
US11342447B2 (en) * 2018-11-30 2022-05-24 Ricoh Company, Ltd. Sputtering target for insulating oxide film, method for forming insulating oxide film, and method for producing field-effect transistor
US11274363B2 (en) * 2019-04-22 2022-03-15 Nxp Usa, Inc. Method of forming a sputtering target
CN113336543B (zh) * 2021-06-09 2022-11-29 Oppo广东移动通信有限公司 电子设备及其壳体、氧化锆陶瓷涂料的制备方法
CN117105657B (zh) * 2023-09-18 2024-05-07 深圳市华辰新材料科技有限公司 纳米级钛酸镧的低温烧结制备方法及设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164858A (ja) * 1990-10-30 1992-06-10 Onoda Cement Co Ltd 軽希土類酸化物焼結体、その製造方法及びそれよりなるルツボ
KR100611136B1 (ko) * 1996-12-10 2006-08-10 지멘스 악티엔게젤샤프트 열 절연층을 가지며 고온 가스에 노출될 수 있는 제품 및 그 제조 방법
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
JP2000001362A (ja) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk 耐食性セラミックス材料
EP1178129B1 (en) * 1999-11-29 2010-12-15 Fujikura Ltd. Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
JP4972248B2 (ja) * 2000-05-29 2012-07-11 中部キレスト株式会社 導電性セラミックの製法
EP1743949B1 (en) * 2000-10-02 2012-02-15 JX Nippon Mining & Metals Corporation High-purity zirconium or hafnium metal for sputter targets and thin film applications
US6620713B2 (en) * 2002-01-02 2003-09-16 Intel Corporation Interfacial layer for gate electrode and high-k dielectric layer and methods of fabrication
JP4322469B2 (ja) * 2002-04-26 2009-09-02 東京エレクトロン株式会社 基板処理装置
KR100762081B1 (ko) * 2003-03-04 2007-10-01 닛코킨조쿠 가부시키가이샤 스퍼터링 타겟트 및 그 제조 방법
JP2004327210A (ja) * 2003-04-24 2004-11-18 Honda Motor Co Ltd 酸化物イオン伝導体およびその製造方法
JP2004339035A (ja) * 2003-05-19 2004-12-02 Nissan Motor Co Ltd ランタンガレート系焼結体およびその製造方法、ならびにそれを用いた用途
JP4210620B2 (ja) * 2003-07-24 2009-01-21 パナソニック株式会社 情報記録媒体とその製造方法
TW201506922A (zh) * 2003-07-24 2015-02-16 Panasonic Corp 資訊記錄媒體及其製造方法
US8063452B2 (en) * 2004-08-30 2011-11-22 The University Of Tokyo Semiconductor device and method for manufacturing the same
EP1863097A1 (en) * 2006-05-29 2007-12-05 Interuniversitair Microelektronica Centrum ( Imec) Method for modulating the effective work function
JP5088464B2 (ja) * 2006-06-08 2012-12-05 三菱マテリアル株式会社 高強度光記録媒体保護膜形成用スパッタリングターゲット
DE102006027957A1 (de) * 2006-06-14 2007-12-20 Schott Ag Optische Elemente sowie Abbildungsoptiken
CN103498126B (zh) * 2007-12-18 2015-11-18 Jx日矿日石金属株式会社 适于制造以氧化钛为主成分的薄膜的烧结体溅射靶
US8980169B2 (en) * 2007-12-28 2015-03-17 Jx Nippon Mining & Metals Corporation High-purity lanthanum, sputtering target comprising high-purity lanthanum, and metal gate film mainly comprising high-purity lanthanum
KR20130029440A (ko) * 2008-07-07 2013-03-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 산화물 소결체, 산화물 소결체로 이루어지는 스퍼터링 타깃, 산화물 소결체의 제조 방법 및 산화물 소결체 스퍼터링 타깃 게이트의 제조 방법
KR101290941B1 (ko) * 2008-10-29 2013-07-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 희토류 금속 또는 이들의 산화물로 이루어지는 타깃의 보관 방법
JP5214745B2 (ja) * 2009-02-05 2013-06-19 Jx日鉱日石金属株式会社 酸化チタンを主成分とする薄膜及び酸化チタンを主成分とする焼結体スパッタリングターゲット
US9347130B2 (en) * 2009-03-27 2016-05-24 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering
EP2412844A4 (en) * 2009-03-27 2016-12-21 Jx Nippon Mining & Metals Corp SPUTTERING TARGET OF A SINTERED TI-NB OXID BODY, TI-NB OXID THIN LAYER AND METHOD FOR PRODUCING THE THIN LAYER
US9382612B2 (en) * 2009-03-31 2016-07-05 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering
JP5234860B2 (ja) * 2009-11-17 2013-07-10 Jx日鉱日石金属株式会社 ランタン酸化物ターゲットの保管方法、ランタン酸化物からなるスパッタリングターゲット及びランタン酸化物薄膜の形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders;Yaming Ji et al.;《Materials Research Bulletin》;20050308;第40卷;第553-559页 *
JP特开2004-339035A 2004.12.02
JP特表2001-505620A 2001.04.24
Yaming Ji et al..Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders.《Materials Research Bulletin》.2005,第40卷

Also Published As

Publication number Publication date
TW201002645A (en) 2010-01-16
EP2298715A4 (en) 2011-11-23
CN102089258A (zh) 2011-06-08
KR20110020291A (ko) 2011-03-02
WO2010004861A1 (ja) 2010-01-14
EP2298715A1 (en) 2011-03-23
US20110114481A1 (en) 2011-05-19
JP5301541B2 (ja) 2013-09-25
KR101222789B1 (ko) 2013-01-15
JPWO2010004861A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
CN102089258B (zh) 氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法
Zhou et al. Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic
EP2298712B1 (en) Sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
US20110020164A1 (en) Process for sintering thermoelectric materials
US20070203015A1 (en) Ceramic dielectrics for base-metal-electrode multilayered ceramic capacitors and the preparation thereof
KR101620032B1 (ko) 내열 산화물절연막이 형성된 FeSiAl 연자성복합체 분말 및 이를 이용한 분말 코아
Dong et al. Chloride‐ion‐stabilized strontium mayenite: expansion of versatile material family
Park et al. Zn1− xBixO (0≤ x≤ 0.02) for thermoelectric power generations
JP2006237461A (ja) 熱電材料
JP5234861B2 (ja) 酸化物焼結体スパッタリングターゲット及び同ターゲットの製造方法
JP2018059160A (ja) Mg2 Si(1−x)Snx系多結晶体、その焼結体およびその製造方法
TWI389151B (zh) Preparation of Dielectric Ceramic Mixtures
Pršić et al. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics
Luo et al. Double Precursor Solution Coating Approach for Low‐Temperature Sintering of [Pb (Mg1/3Nb2/3) O3] 0.63 [PbTiO3] 0.37 Solids
EP2361886A1 (en) Thermoelectric materials, their preparation and thermoelectric devices comprising them
US20240194934A1 (en) Solid electrolyte composition for triple-doped garnet-type all-solid-state battery, solid electrolyte for triple-doped garnet-type all-solid-state battery using same, and method for preparing same
Wu et al. Dielectric Behavior and Second Phases in X7R‐Formulated BaTiO3 Sintered in Low‐Oxygen Partial Pressures
EP4339160A1 (en) Aliovalent multi-cation doping of li-garnet for stabilization of cubic llzo
Campanella et al. Hexavalent Ions Insertion in Garnet Li7La3Zr2O12 Toward a Low Temperature Densification Reaction
JP6877994B2 (ja) アパタイト型複合酸化物およびその製造方法、固体電解質型素子並びにスパッタリングターゲット
JP2008115042A (ja) チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびそれを用いた積層セラミックコンデンサ
EP2602235A1 (en) Piezoelectric ceramic composition
Hou et al. Comparative study of phase structure and dielectric properties for K0. 5 B i0. 5 T i O 3 B i A l O 3 and La A l O 3 B i A lO3
Pai et al. Thermoelectric properties of Fe-Si alloys-effects of oxidation and SiO {sub 2} dispersion
JPH0375261A (ja) 酸化物超電導体及びその製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: JX NIPPON MINING & METALS CORPORATION

Address before: Tokyo, Japan

Patentee before: JX Nippon Mining & Metals Co., Ltd.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20200623

CF01 Termination of patent right due to non-payment of annual fee