CN102084467A - 制作纳米线阵列的方法 - Google Patents

制作纳米线阵列的方法 Download PDF

Info

Publication number
CN102084467A
CN102084467A CN2009801220858A CN200980122085A CN102084467A CN 102084467 A CN102084467 A CN 102084467A CN 2009801220858 A CN2009801220858 A CN 2009801220858A CN 200980122085 A CN200980122085 A CN 200980122085A CN 102084467 A CN102084467 A CN 102084467A
Authority
CN
China
Prior art keywords
silicon
described method
nano
array
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801220858A
Other languages
English (en)
Inventor
B.A.布蔡恩
F.莫达瓦
M.R.布莱克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bandgap Engineering Inc
Original Assignee
Bandgap Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41163224&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102084467(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bandgap Engineering Inc filed Critical Bandgap Engineering Inc
Publication of CN102084467A publication Critical patent/CN102084467A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0492Chemical attack of the support material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less

Abstract

提供了一种蚀刻含硅基底来形成纳米线阵列的方法。在该方法中,以这样的方式来将纳米粒子和金属膜沉积到基底上,即,该金属在期望蚀刻之处存在和与硅接触,并且在其他地方被阻止与硅接触或者不存在。将该金属化基底浸入到含有HF和氧化剂的蚀刻剂水溶液中。以此方式来生产具有受控的直径和长度的纳米线阵列。

Description

制作纳米线阵列的方法
交叉引用的相关申请。
本申请要求2008年4月14日申请的US临时申请No.61/044573和2008年12月29日申请的61/141082的优先权。这些申请在此引入作为参考。
技术领域
本申请涉及纳米技术领域。
背景技术
结构化和图案化硅的能力对于许多应用来说是重要的。特别令人感兴趣的是图案化硅来制造纳米结构。关于本领域技术人员已知的硅制作方法的相关信息可以例如在Sami Franssila,Introduction-Microfabrication(John Wiley & Sons,2004)中找到,并且在此引入作为参考。
在过去的十年内,半导体纳米线已经成为研究的焦点,这归因于它们令人感兴趣的物理,化学和生物性能。特别令人感兴趣的是硅纳米线,因为硅是地壳中最丰富的原料之一,并且已经变成了许多基于其设计的电子,光电,电化学和电机械装置的基石。
今天,许多纳米体系并未得到商业应用,这归因于与制作有关的大的成本,和纳米线合成的可缩放性的限制。纳米线是使用分子束外延(MBE),金属-有机化学气相沉积(MOCVD),和物理气相沉积(PVD)来从下向上生长的。它们还可以使用技术例如反应性离子蚀刻(RIE)和感应耦合等离子体(ICP)来从上向下来制作。这些***需要高温和/或低压,这是导致高成本的主因。向前推动的解决方案(其基于能够在环境条件运行的技术)对于产生它们的低成本,简单设计和易于使用来说是重要的。
最近的工作已经证实了可以使用由金属盐和强酸(典型的AgNO3和HF)构成的溶液来制作硅纳米线。(参见参考文献(a))。通过控制溶液中每种成分的浓度,硅能够正常的蚀刻到晶片的平面上,形成平均直径150nm,直径范围为20-300nm的垂直对准的硅纳米线。通过实现了将银从溶液中沉淀出来,并且催化该硅的蚀刻,该技术已经改进为将H2O2加入到化学浴中和Ag金属直接沉积到硅上二者的组合。在Ag沉积之前,将均匀尺寸的聚苯乙烯球进行分散,目的是使用它们作为蚀刻掩模和限定该纳米线。(参见参考文献(e))。结果,证实了具有均匀直径和长度的硅纳米线的有序阵列。
用这种技术所实现的最终直径是受限的。达到亚-100nm尺寸的能力对于多种电子,光电,电化学和电机械应用来说是有价值的。例如,处于亚-100nm范围中时,硅开始表现出不同于体硅(bulk silicon)的新的性能。另外,在低纳米尺寸的表面积的增加是有价值的。
发明内容
提供了一种蚀刻含硅基底来形成纳米线阵列的方法。在这种方法中,以如下方式来将纳米粒子和金属膜沉积到基底上,即,该金属在期望蚀刻之处存在和与硅接触,并且在其他地方被阻止与硅接触或者不存在。将该金属化基底浸入到含有HF和氧化剂的蚀刻剂水溶液中。以此方式来生产具有受控的直径和长度的纳米线阵列。
附图说明
图1表示了使用本发明的一种实施方案,来获得直径为12-70nm的纳米线的结果。
图2表示了使用下面的部分B中所示的一种可选择的一种实施方案,来获得纳米线的结果。
图3示意性地表示了一种装置,用于进行本发明的方法,使用氧气作为氧化剂。
图4表示了对硅使用金属增强的蚀刻,来在硅晶片上获得微结构化的结果。无意(unintentional)线是在沟槽中形成的。
具体实施方式
在本发明的一方面,提供了一种蚀刻含硅基底,来形成纳米结构的方法。在这种方法中,以如下方式来在基底上沉积和图案化金属膜,即,该金属在期望蚀刻之处存在和与硅接触,并且在其他地方被阻止与硅接触或者不存在。将该金属化基底浸入到含有大约4-大约49重量%HF和氧化剂的蚀刻剂水溶液中。
在上述方法中,为了达到亚-100nm的纳米线,可以使用亚-100nm的纳米粒子来将银与硅隔开。该纳米粒子可以由多种物质制成,例如二氧化硅,氧化铁或者聚合物。
A.第一示例性方法。
一种示例性方法使用了SiO2纳米粒子均匀分散在异丙醇中的溶液(在IPA中5wt%的SiO2)的旋涂,该纳米粒子的粒度是12-30nm,旋涂转速是4000RPM。在旋涂之后,将该样品在高温加热,导致溶剂蒸发。一旦该样品干燥,则将40nm的Ag溅射沉积到上面,目的是包敷该SiO2纳米粒子以及其之间的裸露硅空间。将样品在HF/H2O2溶液中浸渍10分钟的时间。蚀刻反应在Ag/Si界面开始,并且该纳米粒子充当了屏障物,通过其来掩蔽和定义纳米结构。纳米粒子的尺寸(其是根据期望的应用来选择的)影响所形成的一维纳米结构的尺寸和形状。一些聚团在SiO2纳米粒子之间发生,产生了单个聚团量级的尺寸。通过选择该粒子在溶液中的浓度以及沉积/旋涂该粒子的方法,能够将形成纳米线的聚团限制到12-70nm。结果表示在图1中。
B.第一选项。
在上述方法的一种变化中,使用氧化铁纳米粒子(5-10nm),其的表面已经用油酸进行了预处理,并且其分散在氯仿中。进行这种表面处理的目的是防止聚团和保持稳定的纳米粒子悬浮液。在这种情况中,旋涂不是必需的。纳米粒子在硅基底上的沉积是如下来实现的:将几滴溶液在静态条件(无旋转)滴到所述表面上。在室温的快速蒸发产生了氧化铁粒子在硅基底上的单分散层,具有很少到没有的聚团。不希望受限于理论,据信该单分散层至少部分的是由预先设计的表面张力性能和溶剂的高蒸气压形成的。
在这种可选择的方法中,将Ag溅射沉积到所述表面上,并且向该基底及其之间的空间涂覆氧化铁粒子。将该样品浸入类似的HF/H2O2溶液中,目的是开始蚀刻反应和形成纳米线。该结果的一个例子从图2中可见。这里由于该干燥方法而出现了一些集束,使得难以精确的确定实际的纳米线尺寸。但是,全部可测量的结构的直径小于30nm。
C.第二选项。
在所述方法另外一种变化中,可以使用其他氧化剂来代替H2O2-HF蚀刻剂溶液中的H2O2。氧化剂是这样一种物质,其容易转化氧原子或者在氧化还原化学反应中倾向于获得电子。一种这样的氧化剂是纯氧,其可以通过将氧气鼓泡通过HF来引入。其他氧化剂包括:臭氧,氯,碘,高氯酸铵,高锰酸铵,过氧化钡,溴,氯酸钙,次氯酸钙,三氟化氯,铬酸,三氧化铬(铬酸酐),过氧化物例如过氧化氢,过氧化镁,过氧化二苯甲酰和过氧化钠,三氧化二氮,氟,高氯酸,溴酸钾,氯酸钾,过氧化钾,硝酸丙基酯,氯酸钠,亚氯酸钠和高氯酸钠。
令人期望的是可以使用较低反应性的可选择的氧化剂来代替H2O2。比较朝着沉积的金属(例如,银)的反应性,在氧化剂的选择中硅或者二氧化硅是令人感兴趣的。反应性可以例如如下来测量:通过在具体的时间期间内,反应进行的程度来测量,或者如物理化学和化学动力学教科书中所讨论的那样,通过测量反应速率来测量。(参见例如,Peter W.Atkins & Julio de Paula,Atkins' Physical Chemistry(第8版,2006),特别是第22和23章)。测量可以在这样的条件下进行,例如在类似于蚀刻方法的这些温度和压力进行。
一种示例性的方法如下:
选择电阻率大于20 ohm-cm的硅材料,其的表面具有(100),(110),(111)或者任何可利用的取向。如果进行下面的方法,则无定形的和/或微晶材料也将产生垂直取向的纳米线。
使用一系列的溶剂,通过将每个在丙酮、甲醇和异丙醇中超声波清洗3分钟,来对所述基底进行预清洁。然后将该基底在流动的去离子水(DI)的储槽中冲洗3分钟,来除去溶剂清洁中剩余的任何残留物。将该硅置于由3份96%H2SO4和1份30wt%H2O2构成的食人鱼洗液(Piranha solution)中15分钟,目的是除去任何另外的有机物和产生亲水表面。然后从浴液中取出该基底,并且再次置于流动的去离子水(DI)的储槽中3分钟,来除去任何残留的酸。取出该基底,并且用氮气吹干。
10nm氧化铁纳米粒子在氯仿中的胶体悬浮液是通过将来自OceanNanotech的产品#SOR-10-0050稀释到1mg/mL的浓度来制备的。如下来用氧化铁涂覆所述的硅晶片:将所述的硅浸入到该胶体悬浮液中,然后除去基底,以使得表面通常垂直于运动的垂直方向,来使得氯仿铺展在该表面上。亲水表面和油酸官能化的氧化铁纳米粒子性质的组合,产生了一种自然的自组装,其限制了聚团,并且给粒子带来了一些合理的空间。然后将该样品在80℃的轻便电炉上焙烤2分钟,并且在金属沉积之前,使用原位O2等离子体进行清洁。
另外氧化铁纳米粒子之外,100nm聚苯乙烯球也在这种方法中连续使用。在这种情况中,亲水表面是在上述的硅基底上产生的。将聚苯乙烯球(购自Duke Scientific Corporation)稀释到1%的浓度,并且以500RPM速度旋涂到基底上5s,然后升高到2000RPM旋涂40s。该聚苯乙烯球在所述表面上产生了单个的单层。在将该样品***到金属沉积工具(30W,200mTorr)之前,使用O2等离子体来降低等离子去胶机中的聚苯乙烯球的尺寸和空间。在等离子体清洁过程中加热所述样品,这会改变聚苯乙烯的性能(或者熔融),使得它难以继续该收缩过程。为了解决这个问题,将聚苯乙烯使用1分钟的短间隔进行蚀刻,从工具上除去基底,并且在下一个1分钟蚀刻之前,将它冷却到室温。优选该收缩方法是在用Ar或者O2的金属沉积之前,在原位进行的(在金属沉积工具内)。
银(Ag)是经由物理气相沉积,在溅射器,热蒸发器或者电子束蒸发器中沉积的。令人期望的是产生连续的膜,这里没有破裂或者裂缝,该破裂或者裂缝会使得膜的一部分变成与其余部分分开。因为HF浓度是变化的,因此最佳膜厚必需变化。
一旦所述晶片涂覆了适当的Ag膜,则在开始蚀刻反应之后,将该HF溶液是陈化。HF的浓度可以从饱和浓度(大约49wt%)一直降低到非常低的名义浓度。初始的观察表明,所形成的纳米结构的长度随着HF浓度的降低而增大。可以使用低到2wt%和更低的浓度。例如可以使用8wt%的HF溶液。
将O2气流入到所述浴液中,来产生强力的鼓泡,持续10分钟。一旦该浴液陈化,则浸入所述样品。在该蚀刻完成时,除去样品,并且放入流动的DI水储槽中,用N2吹干。在这个时间点,表面上剩余的Ag可以用银蚀刻剂,例如由Transene Corporation提供的蚀刻剂来除去。
图3表示了一种装置,使用氧气作为氧化剂。这里有存储HF蚀刻剂40的容器。在该容器中,存在着银/硅基底42。这里有氧气源44,其产生氧气泡例如46和48。该氧气源入口可以置于基底水平线之处、之上或者之下。使用这种不太强的氧化剂,全部的线是通过有意设计的纳米粒子掩模来形成的,其旋涂到所述表面的上面。很显然,在蚀刻过程中在该金属膜中没有形成缺陷。
使用可选择的氧化剂的方法的一种优点是它们能够消除在上述方法的一些变化中所形成的无意纳米线(“草”),同时仍然产生令人期望的亚-100nm纳米线,同时使用薄的连续金属层,用于硅的催化蚀刻。图4表示了无意纳米线。避免这些无意纳米线既节约了用于消除它们的蚀刻步骤,还避免了这样的蚀刻步骤所导致的纳米结构的角落和边缘的圆化。
虽然不希望受限于理论,但是据信在本发明这些方法中所用的一些可选择的氧化剂不侵袭金属,或者对金属的侵袭程度远低于H2O2。这可能是为什么使用可选择的氧化剂的方法避免了无意纳米线形成的原因。为此原因,令人期望的是使用这样的氧化剂,其与金属的反应没有H2O2那样容易,或者与金属的反应速率低于H2O2
为了避免无意线,令人期望的是该金属膜没有小的无意空穴,并且沉积在没有氧化物的清洁的硅表面上。
本发明方法另外一种优点是它们能够在特定的晶体取向上延伸。使用本发明的至少一些方法,不管硅表面的晶体取向如何,该纳米线将至少大致垂直于所述表面进行蚀刻。为了实现这样的目的,令人期望的是该金属膜不具有破裂或者裂缝,该破裂或者裂缝会导致膜的一部分与其余部分分开。还令人期望的是该金属膜具有足够的粘附性,并且沉积在清洁的硅表面上。在纳米线轴和垂直于基底的矢量之间期望的角度可以例如小于大约0.25度,大约0.5度,大约1度或者大约2度。
使用本发明的方法,可以制造具有明显锥度的线,这导致该线的直径随着蚀刻的进行稍有增加。已经发现该锥度随着HF浓度的增加而增加。对于某些应用来说,该锥度不是令人期望的。但是,对于光伏应用来说,锥度会是有益的。例如,使用微小的锥度,纳米线中的游离载体将冲出所述线的边缘,并因此倾向于向下蔓延向基底。如果该光伏电池的p-n结处于基底中,而非纳米线中,则可以预期这种朝着基底提高的扩散会提高电池的效率。令人期望的锥角可以是例如不大于大约0.5度,大约1度,大约2度或者大约4度,或者是大约0.5度到大约1度,大约2度或者大约4度。
使用本发明的方法,能够实现纳米线的平均直径(例如,具有平均值或者中值)低于大约150nm,低于大约125nm,低于大约100nm,低于大约70nm或者低于大约50nm。小的纳米线在某些应用中是重要的,例如其中该小的尺寸改变了硅的带结构的应用中。期望的是例如大部分的或者至少大约75%或者大约90%或者大约95%的纳米线的直径小于所选择的尺寸例如上述的这些尺寸。
D.应用。
本发明的方法用于将硅构造成光电装置(参见参考文献(i))。它们可以用于利用光电子或者光伏效应的装置中,例如太阳能电池(参见例如参考文献(j)和(k)),光电探测器,光电二极管(参见参考文献(a)),光电晶体管,光电倍增器和集成的光学电路。经由这种方法制作的硅纳米线阵列或者单个的纳米线可以用于这些应用的每个中。
本发明的方法可以用于生产用多晶硅制造的或者包含多晶硅的装置。本发明包括这样的方法,其能够与任何晶体取向的硅一起使用。这样的方法可以用于对多晶硅的表面进行纹理化和/或形成纳米线。多晶硅是一种比晶体硅更便宜的材料,但是它典型的比单晶硅更难以纹理化和结构化,这归因于所述晶粒的无规取向。本发明的方法同样能够用来在无定形硅中形成纳米线。
硅纳米线阵列可以用于这样的应用中,在其中硅将经历应力或者应变,在这里该纳米结构能够吸收和松弛这种应力或者应变。例如,纳米线能够充当体硅与另外一种在其上面生长的材料(其与体硅之间不是晶格匹配的)之间的界面层。
本发明的方法还能够应用于锂离子电池工艺。已经观察到硅是锂离子电池中的阳极材料的一种期望的备选品,这归因于它低的放电势和高的带电能力。它在过去的应用是有限的,这归因于与离子***和离子抽出有关的体积大的变化。在硅中形成的大量的应力和应变导致硅层降解,产生了非常短的性能寿命。由于纳米线能够经受这些应力和应变,因此对它们进行了研究开发(参见参考文献(1))。在锂离子电池阳极的制造中,本发明方法所提供的这样的能力是有利的,即,形成良好有序的和对准的纳米结构,并且对所形成的直径和它们之间的空隙间隔进行有力控制这样的能力。另外,这样的事实,即,多孔硅(纳米孔或者微孔)还可以经由本发明的方法来制作这样的事实,将使得人们能够制作另外一种阳极几何结构,该结构能够经受锂离子电池应用中的离子***/抽出的应力和应变。
另外还可以形成特定类型的硅(所谓的n类型)之外的多孔模板或者硅纳米线阵列,并且利用备选的技术例如蒸气,液体,固体(VLS)方法来用p类型的硅纳米线填充所述的孔,产生新的n/p结的构造,其能够用于广泛的多种光电的(LED,光伏的)和电子的(晶体管)应用。(关于VLS方法的一些总说明,参见参考文献(p))。这种方法是特别有利的,因为Ag粒子(其催化了硅基底的蚀刻,来形成模板)还能够用于催化孔底部的线的生长(例如,在VLS或者VSS这),来合成该线。另外,该Ag粒子能够充当用于所述装置的电接线。不同于硅的广泛的多种材料也可以在模板中形成。几个例子是Bi,Ge,GaN,ZnO,和GaAs。
本发明的方法可以用来产生纳米结构,其使得硅进入到中间带光伏材料(IBPV)中。(参见参考文献(n))。硅具有用于IBPV的优异的带结构,限定能够增强具体的电子跃迁的强度。进行此的唯一方式是形成硅纳米线的致密阵列,并且具体控制线的直径,掺杂和晶体取向,如参考文献(i)所述。本发明的方法可以用于制造这样的纳米线阵列。
下面的参考文献是与本申请有关的和令人感兴趣的:
(a)K.Peng,Z.Huang,和J.Zhu,Adv.Mater.16(1)(2004)73-76;
(b)T.Qiu,X.L.Wu,X.Yang,G.S.Huang,和Z.Y.Zhang,App.Phys.Lett.,84(19)(2004)3867;
(c)H.Fang,Y.Wu,J.Zhao,和J.Zhu,Nanometer technology17(2006)3768和Y.Yang,P.Chu,Z.Wu,S.Pu,T.Hung,K.Huo,G.Qian,W.Zhang,X.Wu,Appl.Surf.Sci.254(2008)3061和X.Li和P.Bohn,Appl.Phys.Lett.77(16)(2000)2572和H.Asoh,F.Arai,S.Ono,Electrochem.Comm.9(2007)535;
(d)K.Peng,J.Hu,Y.Yan,Y.Wu,H.Fang,Y.Xu,S.Lee,和J.Zhu Adv.Mat.16(2006)387;
(e)Z.Huang,H.Fang,J.Zhu,Adv.Fun.Mat.19(2007)pg.744;
(f)K.Peng,M.Zhang,A.Lu,N.Wong,R.Zhang,S.Lee,App.Phys.Lett.90(2007)163123;
(g)US临时专利申请No.61/044573,2008年4月14日申请;
(h)US临时专利申请No.61/195872,2008年10月9日申请;
(i)US专利申请公开No.2007/0278476,2007年2月27日申请;
(j)L.Tsakalakos,J.Balch,J.Fronheiser等人 App.Phys.Lett.91(23)(2007)233117;
(k)M.D.Kelzenberg,D.B.Turner-Evans,B.M.Kayes等人,Nano Lett.8(2)(2008)710-714;
(l)C.K.Chan,H.Peng,G.Liu,K.McIlwrath,X.F.Zhang,R.A.Huggins,和Y.Cui Nature Nanotech.3(2008)31-35;
(m)US公开专利申请No.2007/0190542,2006年10月3日申请;
(n)A.Luque,A.Marti,Phys.Rev.Lett.78(26)(1997)5014-5017;
(o)Q.Shao,A.A.Balandin,App.Phys.Lett.91(2007)163503;
(p)Y.Cui等人,App.Phys.Lett.78(2001)2214-2216。
全部的专利,专利申请和其中所提及的公开文献在此以它们全部引入作为参考。但是,在将包含措词定义的专利,专利申请或者公开文献引入作为参考的情况中,这些措词定义应当理解为可以应用于它们存在于其中的所引入的专利,专利申请或者公开文献中,并且不可应用于该申请文本的其他部分中,特别是该申请的权利要求中。

Claims (32)

1.一种对准的硅纳米线阵列,该硅纳米线在基底的晶体硅表面上附着到该基底上,其中大部分的该纳米线的直径不大于大约150nm,并且至少大致垂直地附着到该基底上,其中在该阵列附着之处的晶体硅表面是处于不同于(100)和(111)的取向上的晶体平面。
2.权利要求1所述的阵列,其中该硅表面的至少一部分涂覆有银。
3.权利要求1所述的阵列,其中大部分的纳米线的直径低于硅中的电子或者空穴的相干长度。
4.权利要求1所述的阵列,其中大部分的纳米线的直径低于硅的电子或者空穴的德布罗意波长。
5.一种蚀刻的纳米线阵列,其中至少大约75%的纳米线的直径低于大约150nm。
6.权利要求5的纳米线阵列,其中该蚀刻是在反应性低于H2O2的氧化剂存在下进行的。
7.一种纳米线阵列,其包含多晶硅。
8.权利要求7的纳米线阵列,其中该阵列是通过蚀刻基底来形成的,该基底主要包含无定形的或者多晶硅。
9.权利要求8的纳米线阵列,其中该阵列中的大部分纳米线的直径不大于150nm。
10.一种蚀刻含硅基底来形成结构的方法,其包含步骤:
(a)将纳米粒子沉积到含硅基底的表面上,
(b)以如下方式将金属沉积到该纳米粒子和硅的上面,即,该金属在期望蚀刻之处存在和与硅接触,并且在其他地方被阻止与硅接触或者不存在,和
(c)将该金属化基底与蚀刻剂水溶液接触,该水溶液包含大约2-大约49重量%的HF和氧化剂,
其中该方法得到纳米线阵列,其中纳米线的平均直径小于大约125nm。
11.权利要求10所述的方法,其中该氧化剂是鼓泡通过该蚀刻剂水溶液的氧气。
12.权利要求10所述的方法,其中在步骤(b)中沉积和图案化的金属是银。
13.权利要求12所述的方法,其中银的厚度小于大约50nm。
14.权利要求10所述的方法,其中步骤(a)-(c)得到纳米线阵列,其中平均纳米线直径小于大约100nm。
15.权利要求14所述的方法,其中步骤(a)-(c)得到纳米线阵列,其中所述纳米线直径小于大约50nm。
16.权利要求10所述的方法,其中步骤(a)-(c)得到锥形的纳米线阵列,以使得纳米线的底部大于尖端。
17.权利要求10所述的方法,其中该纳米粒子充当了所述金属和含硅基底之间的屏障物,来防止该金属与基底的某些区域中的硅接触。
18.权利要求10所述的方法,其中使用该纳米粒子来除去不期望蚀刻之处的金属,并且暴露出硅表面。
19.权利要求10所述的方法,其中在金属沉积之前,该含硅基底是体硅晶片。
20.权利要求10所述的方法,其中在金属沉积之前,该含硅基底是在绝缘体上的硅晶片。
21.权利要求10所述的方法,其中在金属沉积之前,该含硅基底包含多晶硅或者微晶硅。
22.权利要求10所述的方法,其中在金属沉积之前,该含硅基底包含外延生长的硅。
23.权利要求10所述的方法,其中在金属沉积之前,该含硅基底包含在硅上的锗或者在硅上的氧化物上的锗。
24.权利要求10所述的方法,其中将步骤(a)-(c)的产品进一步加工,来生产光电装置。
25.权利要求24所述的方法,其中该光电装置是发光二极管。
26.权利要求10所述的方法,其中将步骤(a)-(c)的产品进一步加工,来生产光元件和/或波导管。
27.权利要求10所述的方法,其中将步骤(a)-(c)的产品进一步加工,来生产光伏或者太阳能电池装置。
28.权利要求10所述的方法,其中将步骤(a)-(c)所产生的图案与在图案化和蚀刻的含硅基底中的电子态进行混合。
29.权利要求10所述的方法,其中可以选择所述的硅,来具有任何期望的晶体取向。
30.权利要求10所述的方法,其进一步包含步骤:使用步骤(a)-(c)所产生的图案,来作为锂离子电池的锂吸收部件。
31.权利要求10所述的方法,其中继续步骤(b)的金属沉积,以使得不存在会使膜的一部分变得与其余部分分开的破裂或者裂缝。
32.一种锂离子吸收材料,其包含硅纳米线,该硅纳米线是通过硅的金属增强的蚀刻来制成的。
CN2009801220858A 2008-04-14 2009-04-14 制作纳米线阵列的方法 Pending CN102084467A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US4457308P 2008-04-14 2008-04-14
US61/044573 2008-04-14
US14108208P 2008-12-29 2008-12-29
US61/141082 2008-12-29
PCT/US2009/040552 WO2009137241A2 (en) 2008-04-14 2009-04-14 Process for fabricating nanowire arrays

Publications (1)

Publication Number Publication Date
CN102084467A true CN102084467A (zh) 2011-06-01

Family

ID=41163224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801220858A Pending CN102084467A (zh) 2008-04-14 2009-04-14 制作纳米线阵列的方法

Country Status (5)

Country Link
US (8) US8143143B2 (zh)
EP (1) EP2277045A4 (zh)
JP (1) JP2011523902A (zh)
CN (1) CN102084467A (zh)
WO (1) WO2009137241A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147125A (zh) * 2013-02-27 2013-06-12 中国科学院半导体研究所 廉价粉末多晶硅基纳米线的制备方法
CN103526299A (zh) * 2013-10-21 2014-01-22 北京师范大学 一种制备硅纳米结构材料的方法
CN103553046A (zh) * 2013-10-15 2014-02-05 北京师范大学 一种制备多功能硅微纳米结构材料的方法
CN103875100A (zh) * 2011-10-17 2014-06-18 日产自动车株式会社 电气器件用负极活性物质
CN104577077A (zh) * 2013-10-16 2015-04-29 国家纳米科学中心 硅-碳纳米复合薄膜及其制备方法和应用以及锂离子电池
CN107777659A (zh) * 2017-09-28 2018-03-09 广东工业大学 金属折点纳米线阵列的制备方法及其金属折点纳米线阵列
CN108459054A (zh) * 2017-02-20 2018-08-28 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
CN110010864A (zh) * 2019-03-21 2019-07-12 中国科学院半导体研究所 硅-石墨烯电池负极材料及其制备方法、锂电池
CN115430450A (zh) * 2022-08-30 2022-12-06 上海交通大学 Rh纳米颗粒修饰III族氮氧化物Si催化剂的制备方法及其应用

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8734659B2 (en) * 2008-10-09 2014-05-27 Bandgap Engineering Inc. Process for structuring silicon
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US10096817B2 (en) 2009-05-07 2018-10-09 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
WO2011017173A2 (en) * 2009-07-28 2011-02-10 Bandgap Engineering Inc. Silicon nanowire arrays on an organic conductor
JP5581716B2 (ja) * 2010-02-05 2014-09-03 ソニー株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
CN105206794B (zh) 2010-03-03 2018-02-23 安普瑞斯股份有限公司 用于沉积活性材料的模板电极结构
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US8940610B2 (en) * 2010-04-16 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Electrode for energy storage device and method for manufacturing the same
WO2011156419A2 (en) * 2010-06-07 2011-12-15 The Regents Of The University Of California Lithium ion batteries based on nanoporous silicon
TW201200465A (en) * 2010-06-29 2012-01-01 Univ Nat Central Nano/micro-structure and fabrication method thereof
US20120015247A1 (en) * 2010-07-14 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Silicon crystal body and power storage device using the silicon crystal body
CN101973517A (zh) * 2010-10-21 2011-02-16 东华大学 一种低掺杂多孔硅纳米线阵列的制备方法
WO2012064373A2 (en) * 2010-11-12 2012-05-18 Bandgap Engineering Inc. Process for forming silver films on silicon
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
US9240328B2 (en) * 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
US8829485B2 (en) * 2011-01-18 2014-09-09 Bandgap Engineering, Inc. Selective emitter nanowire array and methods of making same
JP6025284B2 (ja) * 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 蓄電装置用の電極及び蓄電装置
TW201330294A (zh) 2011-09-19 2013-07-16 Bandgap Eng Inc 奈米結構區域的電性接點
GB201122315D0 (en) 2011-12-23 2012-02-01 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
WO2013123066A1 (en) 2012-02-14 2013-08-22 Bandgap Engineering, Inc. Screen printing electrical contacts to nanowire areas
KR101327744B1 (ko) 2012-06-22 2013-11-11 원광대학교산학협력단 고효율의 태양전지 제조방법
CN102817084B (zh) * 2012-08-03 2015-06-10 华北电力大学 一种硅纳米线双层阵列结构材料的制备方法
US20150380740A1 (en) * 2012-12-28 2015-12-31 Advanced Silicon Group, Inc. Metal backed nanowire arrays
US9251934B2 (en) 2013-01-11 2016-02-02 Infineon Technologies Ag Method for manufacturing a plurality of nanowires
CN103594535A (zh) * 2013-01-14 2014-02-19 江苏大学 一种硅纳米线量子阱太阳能电池及其制备方法
WO2014120830A1 (en) 2013-01-30 2014-08-07 Bandgap Engineering, Inc. Necklaces of silicon nanowires
US9099481B2 (en) 2013-03-15 2015-08-04 Semiconductor Components Industries, Llc Methods of laser marking semiconductor substrates
US9449855B2 (en) 2013-07-12 2016-09-20 Advanced Silicon Group, Inc. Double-etch nanowire process
WO2015023760A1 (en) 2013-08-14 2015-02-19 Board Of Regents, The University Of Texas System Methods of fabricating silicon nanowires and devices containing silicon nanowires
WO2015038340A1 (en) * 2013-09-10 2015-03-19 Bandgap Engineering, Inc. Metal assisted etch combined with regularizing etch
CA2829605C (en) 2013-10-07 2016-06-14 Springpower International Incorporated A method for mass production of silicon nanowires and/or nanobelts, and lithium batteries and anodes using the silicon nanowires and/or nanobelts
US9691849B2 (en) 2014-04-10 2017-06-27 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
DE102014107379A1 (de) * 2014-05-26 2015-11-26 Ernst-Abbe-Fachhochschule Jena Halbleiterbauelement und Verfahren zu seiner Herstellung
US9324899B2 (en) 2014-06-09 2016-04-26 Natcore Technology, Inc. Emitter diffusion conditions for black silicon
US20160002096A1 (en) 2014-07-02 2016-01-07 Corning Incorporated Silicon and silica nanostructures and method of making silicon and silica nanostructures
WO2016063281A1 (en) 2014-10-21 2016-04-28 Ramot At Tel-Aviv University Ltd High-capacity silicon nanowire based anode for lithium-ion batteries
WO2016205610A1 (en) * 2015-06-18 2016-12-22 The University Of Florida Research Foundation, Inc. 2d tunable nanosphere lithography of nanostructures
CN104961094A (zh) * 2015-07-21 2015-10-07 中国科学院上海微***与信息技术研究所 基于mems工艺的细胞微阵列结构及其制备方法
US10507466B2 (en) * 2016-04-27 2019-12-17 International Business Machines Corporation Metal assisted chemical etching for fabricating high aspect ratio and straight silicon nanopillar arrays for sorting applications
WO2018044900A1 (en) * 2016-08-30 2018-03-08 The Regents Of The University Of California Ultrafine nanowires as highly efficient electrocatalysts
EP3545575A4 (en) * 2016-11-28 2020-08-05 Sila Nanotechnologies Inc. HIGH CAPACITIVE BATTERY ELECTRODES WITH IMPROVED BINDERS, CONSTRUCTION AND PERFORMANCE
US11585807B2 (en) 2019-02-20 2023-02-21 Advanced Silicon Group, Inc. Nanotextured silicon biosensors
CN110064347B (zh) * 2019-05-23 2021-09-07 中国石油大学(华东) 基于仿生维管束微结构的多孔气凝胶及其制备方法和应用
WO2023220001A1 (en) * 2022-05-13 2023-11-16 Carnegie Mellon University Growth of vertically-aligned nanowires on conductive surfaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855552A (zh) * 2005-03-16 2006-11-01 通用电气公司 高效的无机纳米杆增强的光电装置
CN101010780A (zh) * 2004-04-30 2007-08-01 纳米***公司 纳米线生长和获取的体系和方法

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2639841C3 (de) 1976-09-03 1980-10-23 Siemens Ag, 1000 Berlin Und 8000 Muenchen Solarzelle und Verfahren zu ihrer Herstellung
DE3016498A1 (de) 1980-04-29 1981-11-05 Siemens AG, 1000 Berlin und 8000 München Lichtempfindliche halbleiterbauelemente
DE3308269A1 (de) 1983-03-09 1984-09-13 Licentia Patent-Verwaltungs-Gmbh Solarzelle
US4589191A (en) 1983-10-20 1986-05-20 Unisearch Limited Manufacture of high efficiency solar cells
AU570309B2 (en) 1984-03-26 1988-03-10 Unisearch Limited Buried contact solar cell
US4938568A (en) 1988-01-05 1990-07-03 Hughes Aircraft Company Polymer dispersed liquid crystal film devices, and method of forming the same
US5034068A (en) 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
US5178685A (en) 1991-06-11 1993-01-12 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
US5221854A (en) 1991-11-18 1993-06-22 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
US5391235A (en) 1992-03-31 1995-02-21 Canon Kabushiki Kaisha Solar cell module and method of manufacturing the same
JP2983787B2 (ja) 1993-01-05 1999-11-29 シャープ株式会社 表示装置の駆動回路
DE69433695T2 (de) * 1993-11-02 2004-08-12 Matsushita Electric Industrial Co., Ltd., Kadoma Halbleiterbauelement mit Aggregat von Mikro-Nadeln aus Halbleitermaterial
JP3563860B2 (ja) 1996-02-23 2004-09-08 シャープ株式会社 重合性化合物およびそれを用いた液晶表示素子
US5841931A (en) 1996-11-26 1998-11-24 Massachusetts Institute Of Technology Methods of forming polycrystalline semiconductor waveguides for optoelectronic integrated circuits, and devices formed thereby
DE19811878C2 (de) 1998-03-18 2002-09-19 Siemens Solar Gmbh Verfahren und Ätzlösung zum naßchemischen pyramidalen Texturätzen von Siliziumoberflächen
US6063695A (en) * 1998-11-16 2000-05-16 Taiwan Semiconductor Manufacturing Company Simplified process for the fabrication of deep clear laser marks using a photoresist mask
JP2000162599A (ja) 1998-11-30 2000-06-16 Sanyo Electric Co Ltd 液晶表示装置
JP4162313B2 (ja) 1998-12-28 2008-10-08 シャープ株式会社 液晶表示装置
JP3407865B2 (ja) 1999-02-03 2003-05-19 シャープ株式会社 液晶表示装置
JP2000250045A (ja) 1999-02-26 2000-09-14 Sharp Corp 液晶表示装置およびその製造方法
JP3619053B2 (ja) 1999-05-21 2005-02-09 キヤノン株式会社 光電変換装置の製造方法
JP2001033815A (ja) 1999-07-19 2001-02-09 Matsushita Electric Ind Co Ltd 液晶パネル
US6649824B1 (en) 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP3879326B2 (ja) 1999-09-30 2007-02-14 セイコーエプソン株式会社 液晶装置の製造方法
JP4606541B2 (ja) 2000-03-23 2011-01-05 シャープ株式会社 液晶表示装置
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
GB0114896D0 (en) 2001-06-19 2001-08-08 Bp Solar Ltd Process for manufacturing a solar cell
JP4801848B2 (ja) 2001-06-22 2011-10-26 東芝モバイルディスプレイ株式会社 液晶表示装置
US6916740B2 (en) * 2001-06-25 2005-07-12 Hewlett-Packard Development Company, L.P. Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices
JP2003031824A (ja) 2001-07-13 2003-01-31 Sharp Corp 太陽電池モジュール
US7113241B2 (en) 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4714187B2 (ja) 2001-10-12 2011-06-29 シャープ株式会社 液晶表示装置
DE10150199A1 (de) 2001-10-12 2003-04-24 Wolfgang E Schultz Verfahren und Schaltung zur Erkennung der Ankerlage eines Elektromagneten
US20030178057A1 (en) 2001-10-24 2003-09-25 Shuichi Fujii Solar cell, manufacturing method thereof and electrode material
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7566680B2 (en) * 2002-05-15 2009-07-28 Sud-Chemie Inc. High surface area iron material prepared from a low surface area iron metal precursor
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4248306B2 (ja) 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
WO2004068548A2 (en) 2003-01-21 2004-08-12 Rensselaer Polytechnic Institute Three dimensional radiation conversion semiconductor devices
US6984579B2 (en) 2003-02-27 2006-01-10 Applied Materials, Inc. Ultra low k plasma CVD nanotube/spin-on dielectrics with improved properties for advanced nanoelectronic device fabrication
US7279832B2 (en) * 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
US7265037B2 (en) 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
CN1224111C (zh) 2003-07-04 2005-10-19 清华大学 硅纳米线阵列太阳能转换装置
JP4434658B2 (ja) 2003-08-08 2010-03-17 キヤノン株式会社 構造体及びその製造方法
US6986838B2 (en) 2003-08-14 2006-01-17 Johnson Research & Development Co., Inc. Nanomachined and micromachined electrodes for electrochemical devices
KR100601090B1 (ko) 2003-10-14 2006-07-14 주식회사 엘지화학 다공성 템플레이트를 이용하여 제조된 고표면적 전극시스템 및 이를 이용한 전기 소자
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
WO2005094231A2 (en) 2004-03-19 2005-10-13 The Regents Of The University Of California Methods for fabrication of positional and compositionally controlled nanostructures on substrate
FR2880198B1 (fr) * 2004-12-23 2007-07-06 Commissariat Energie Atomique Electrode nanostructuree pour microbatterie
JP4523848B2 (ja) 2005-02-04 2010-08-11 シャープ株式会社 液晶表示装置
US20060216603A1 (en) * 2005-03-26 2006-09-28 Enable Ipc Lithium-ion rechargeable battery based on nanostructures
US7618838B2 (en) 2005-04-25 2009-11-17 The Research Foundation Of State University Of New York Hybrid solar cells based on nanostructured semiconductors and organic materials
CN1312034C (zh) 2005-05-20 2007-04-25 清华大学 单一轴向排布的单晶硅纳米线阵列制备方法
US7824579B2 (en) 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
US8330173B2 (en) 2005-06-25 2012-12-11 Seoul Opto Device Co., Ltd. Nanostructure having a nitride-based quantum well and light emitting diode employing the same
JP4525500B2 (ja) 2005-07-14 2010-08-18 パナソニック電工株式会社 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法
US7589880B2 (en) 2005-08-24 2009-09-15 The Trustees Of Boston College Apparatus and methods for manipulating light using nanoscale cometal structures
DE102005041877A1 (de) 2005-09-02 2007-03-08 Koynov, Svetoslav, Dr. Verfahren zur Herstellung siliziumhaltiger Oberflächen und optoelektronische Bauelemente
WO2007041621A2 (en) 2005-10-03 2007-04-12 Xingsheng Sean Ling Hybridization assisted nanopore sequencing
EP1772773B1 (en) * 2005-10-06 2011-06-29 STMicroelectronics Srl Method for realizing a multispacer structure, use of said structure as a mould and method for producing circuital architectures using said mould
KR100759556B1 (ko) * 2005-10-17 2007-09-18 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
US8314327B2 (en) 2005-11-06 2012-11-20 Banpil Photonics, Inc. Photovoltaic cells based on nano or micro-scale structures
WO2007083362A1 (ja) 2006-01-18 2007-07-26 Fujitsu Limited 抵抗記憶素子及びその製造方法
CA2636033A1 (en) 2006-01-20 2007-07-26 Bp Corporation North America Inc. Methods and apparatuses for manufacturing geometric multi-crystalline cast silicon and geometric multi-crystalline cast silicon bodies for photovoltaics
JP2007194485A (ja) 2006-01-20 2007-08-02 Osaka Univ 太陽電池用シリコン基板の製造方法
KR101327723B1 (ko) 2006-02-27 2013-11-11 로스 알라모스 내셔널 씨큐어리티 엘엘씨 향상된 전자 전이를 갖는 물질을 포함한 광전 장치
US7709341B2 (en) 2006-06-02 2010-05-04 Micron Technology, Inc. Methods of shaping vertical single crystal silicon walls and resulting structures
WO2008057629A2 (en) 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
US8866007B2 (en) 2006-06-07 2014-10-21 California Institute Of Technology Plasmonic photovoltaics
US20080038467A1 (en) * 2006-08-11 2008-02-14 Eastman Kodak Company Nanostructured pattern method of manufacture
GB2442768A (en) 2006-10-11 2008-04-16 Sharp Kk A method of encapsulating low dimensional structures
US7659631B2 (en) * 2006-10-12 2010-02-09 Hewlett-Packard Development Company, L.P. Interconnection between different circuit types
WO2008057558A2 (en) 2006-11-07 2008-05-15 Nanosys, Inc. Systems and methods for nanowire growth
CN100426534C (zh) 2006-12-31 2008-10-15 高文秀 硅片表面金属电极制作方法
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
MY158347A (en) 2007-02-15 2016-09-30 Massachusetts Inst Technology Solar cells with textured surfaces
US7608530B2 (en) 2007-03-01 2009-10-27 Hewlett-Packard Development Company, L.P. Hetero-crystalline structure and method of making same
KR100809248B1 (ko) 2007-03-14 2008-02-29 삼성전기주식회사 반도체 이종구조 나노선을 이용한 광기전력 소자 및 그제조방법
WO2008124154A2 (en) 2007-04-09 2008-10-16 Amberwave Systems Corporation Photovoltaics on silicon
JP5112761B2 (ja) 2007-06-26 2013-01-09 パナソニック株式会社 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
ATE547812T1 (de) 2007-07-18 2012-03-15 Imec Verfahren zur herstellung einer emitterstruktur und daraus resultierende emitterstrukturen
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
JP4610669B2 (ja) 2007-10-24 2011-01-12 三菱電機株式会社 太陽電池の製造方法
JP5286046B2 (ja) 2007-11-30 2013-09-11 株式会社半導体エネルギー研究所 光電変換装置の製造方法
JP2009151204A (ja) 2007-12-21 2009-07-09 Sharp Corp 液晶表示装置
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US8592675B2 (en) 2008-02-29 2013-11-26 International Business Machines Corporation Photovoltaic devices with enhanced efficiencies using high-aspect-ratio nanostructures
US8551558B2 (en) 2008-02-29 2013-10-08 International Business Machines Corporation Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
US7704866B2 (en) 2008-03-18 2010-04-27 Innovalight, Inc. Methods for forming composite nanoparticle-metal metallization contacts on a substrate
US8075792B1 (en) 2008-03-21 2011-12-13 Alliance For Sustainable Energy, Llc Nanoparticle-based etching of silicon surfaces
US20090236317A1 (en) 2008-03-21 2009-09-24 Midwest Research Institute Anti-reflection etching of silicon surfaces catalyzed with ionic metal solutions
US8273591B2 (en) 2008-03-25 2012-09-25 International Business Machines Corporation Super lattice/quantum well nanowires
US20120132266A1 (en) 2008-04-02 2012-05-31 Korea Institute Of Machinery & Materials Photoelectric conversion device using semiconductor nanomaterial
JP2011520244A (ja) 2008-04-03 2011-07-14 バンドギャップ エンジニアリング, インコーポレイテッド 性能を改善するナノ構造の光電子デバイスのホストの設計
US8157948B2 (en) 2008-04-08 2012-04-17 Los Alamos National Security, Llc Method of fabricating metal- and ceramic- matrix composites and functionalized textiles
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
US8491718B2 (en) 2008-05-28 2013-07-23 Karin Chaudhari Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
JP2009290105A (ja) 2008-05-30 2009-12-10 Sharp Corp 太陽電池、太陽電池の製造方法および太陽電池モジュール
WO2010065170A1 (en) 2008-08-20 2010-06-10 Manhattan Technologies Ltd. Multibeam doubly convergent electron gun
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
JP2010087105A (ja) 2008-09-30 2010-04-15 Fujifilm Corp 太陽電池
US8734659B2 (en) 2008-10-09 2014-05-27 Bandgap Engineering Inc. Process for structuring silicon
JP5612591B2 (ja) 2008-11-14 2014-10-22 バンドギャップ エンジニアリング, インコーポレイテッド ナノ構造デバイス
CN101540348B (zh) 2008-12-12 2011-03-16 北京师范大学 一种多用途硅微纳米结构制备技术
CN101840953B (zh) 2009-03-18 2011-10-12 中国科学院微电子研究所 一种制备表面混合调制晶硅太阳能电池的方法
CN101882643B (zh) 2009-05-06 2012-08-22 中国科学院微电子研究所 一种制作晶硅高效太阳能电池的方法
US8048814B2 (en) 2009-05-19 2011-11-01 Innovalight, Inc. Methods and apparatus for aligning a set of patterns on a silicon substrate
KR101033028B1 (ko) 2009-06-25 2011-05-09 한양대학교 산학협력단 태양 전지 및 그 제조 방법
WO2011017173A2 (en) 2009-07-28 2011-02-10 Bandgap Engineering Inc. Silicon nanowire arrays on an organic conductor
FR2949278B1 (fr) 2009-08-18 2012-11-02 Commissariat Energie Atomique Procede de fabrication d'un dispositif d'emission de lumiere a base de diodes electroluminescentes
KR101076355B1 (ko) 2009-09-07 2011-10-25 주식회사 신성홀딩스 태양 전지 및 그 제조 방법
DE102009043975B4 (de) 2009-09-10 2012-09-13 Q-Cells Se Solarzelle
EP2502264A4 (en) 2009-11-19 2015-09-16 California Inst Of Techn METHOD FOR PRODUCING SELF-ORIENTAL ARRANGEMENTS ON SEMICONDUCTORS
US20110155229A1 (en) 2009-12-30 2011-06-30 Du Pont Apollo Ltd. Solar cell and method for manufacturing the same
JP2011187901A (ja) 2010-03-11 2011-09-22 Canon Inc 半導体デバイスの製造方法
CN102201465A (zh) 2010-03-26 2011-09-28 北京师范大学 硅微纳米结构光伏太阳能电池
WO2011143341A2 (en) 2010-05-11 2011-11-17 Molecular Imprints, Inc. Backside contact solar cell
US20110277825A1 (en) 2010-05-14 2011-11-17 Sierra Solar Power, Inc. Solar cell with metal grid fabricated by electroplating
CN102270688A (zh) 2010-06-01 2011-12-07 刘爱民 一种太阳能电池
US8659037B2 (en) 2010-06-08 2014-02-25 Sundiode Inc. Nanostructure optoelectronic device with independently controllable junctions
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
WO2012064373A2 (en) 2010-11-12 2012-05-18 Bandgap Engineering Inc. Process for forming silver films on silicon
US8829485B2 (en) 2011-01-18 2014-09-09 Bandgap Engineering, Inc. Selective emitter nanowire array and methods of making same
US11251318B2 (en) 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
CN102227002B (zh) 2011-05-31 2013-01-09 上海交通大学 多晶硅纳米线太阳能电池及其制备方法
KR20130030122A (ko) 2011-09-16 2013-03-26 엘지이노텍 주식회사 태양전지 및 이의 제조방법
TW201330294A (zh) 2011-09-19 2013-07-16 Bandgap Eng Inc 奈米結構區域的電性接點
WO2013123066A1 (en) 2012-02-14 2013-08-22 Bandgap Engineering, Inc. Screen printing electrical contacts to nanowire areas
US20150380740A1 (en) 2012-12-28 2015-12-31 Advanced Silicon Group, Inc. Metal backed nanowire arrays
WO2014120830A1 (en) 2013-01-30 2014-08-07 Bandgap Engineering, Inc. Necklaces of silicon nanowires
US9449855B2 (en) 2013-07-12 2016-09-20 Advanced Silicon Group, Inc. Double-etch nanowire process
WO2015038340A1 (en) 2013-09-10 2015-03-19 Bandgap Engineering, Inc. Metal assisted etch combined with regularizing etch
US20170052182A1 (en) 2015-08-21 2017-02-23 University Of Iowa Research Foundation Optoelectronic cartridge for cancer biomarker detection utilizing silicon nanowire arrays
US11585807B2 (en) 2019-02-20 2023-02-21 Advanced Silicon Group, Inc. Nanotextured silicon biosensors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010780A (zh) * 2004-04-30 2007-08-01 纳米***公司 纳米线生长和获取的体系和方法
CN1855552A (zh) * 2005-03-16 2006-11-01 通用电气公司 高效的无机纳米杆增强的光电装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979016B2 (en) 2011-10-17 2018-05-22 Nissan Motor Co., Ltd. Negative electrode active material for electric device
CN103875100A (zh) * 2011-10-17 2014-06-18 日产自动车株式会社 电气器件用负极活性物质
CN103147125A (zh) * 2013-02-27 2013-06-12 中国科学院半导体研究所 廉价粉末多晶硅基纳米线的制备方法
CN103553046A (zh) * 2013-10-15 2014-02-05 北京师范大学 一种制备多功能硅微纳米结构材料的方法
CN104577077A (zh) * 2013-10-16 2015-04-29 国家纳米科学中心 硅-碳纳米复合薄膜及其制备方法和应用以及锂离子电池
CN104577077B (zh) * 2013-10-16 2018-03-06 国家纳米科学中心 硅‑碳纳米复合薄膜及其制备方法和应用以及锂离子电池
CN103526299A (zh) * 2013-10-21 2014-01-22 北京师范大学 一种制备硅纳米结构材料的方法
CN108459054A (zh) * 2017-02-20 2018-08-28 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
CN108459054B (zh) * 2017-02-20 2020-06-19 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
CN107777659B (zh) * 2017-09-28 2018-08-21 广东工业大学 金属折点纳米线阵列的制备方法及其金属折点纳米线阵列
CN107777659A (zh) * 2017-09-28 2018-03-09 广东工业大学 金属折点纳米线阵列的制备方法及其金属折点纳米线阵列
CN110010864A (zh) * 2019-03-21 2019-07-12 中国科学院半导体研究所 硅-石墨烯电池负极材料及其制备方法、锂电池
CN115430450A (zh) * 2022-08-30 2022-12-06 上海交通大学 Rh纳米颗粒修饰III族氮氧化物Si催化剂的制备方法及其应用

Also Published As

Publication number Publication date
WO2009137241A3 (en) 2010-01-21
EP2277045A4 (en) 2012-09-19
US9859366B2 (en) 2018-01-02
US8791449B2 (en) 2014-07-29
US20180090568A1 (en) 2018-03-29
US20180350908A1 (en) 2018-12-06
US20200273950A1 (en) 2020-08-27
US20090256134A1 (en) 2009-10-15
WO2009137241A9 (en) 2010-04-08
US20220254883A1 (en) 2022-08-11
EP2277045A2 (en) 2011-01-26
US20120301785A1 (en) 2012-11-29
US10692971B2 (en) 2020-06-23
US20160049471A1 (en) 2016-02-18
JP2011523902A (ja) 2011-08-25
US11355584B2 (en) 2022-06-07
WO2009137241A2 (en) 2009-11-12
US9202868B2 (en) 2015-12-01
US8143143B2 (en) 2012-03-27
US20140335412A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
CN102084467A (zh) 制作纳米线阵列的方法
Qu et al. Porous silicon nanowires
US9099583B2 (en) Nanowire device with alumina passivation layer and methods of making same
KR20110098910A (ko) 나노 구조 소자
US10079322B2 (en) Necklaces of silicon nanowires
US20200220033A1 (en) Metal-assisted etch combined with regularizing etch
Megouda et al. Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution
US9449855B2 (en) Double-etch nanowire process
Kismann et al. Ordered arrays of Si nanopillars with alternating diameters fabricated by nanosphere lithography and metal-assisted chemical etching
US20140332068A1 (en) Screen printing electrical contacts to nanowire areas
US8945794B2 (en) Process for forming silver films on silicon
US10147789B2 (en) Process for fabricating vertically-aligned gallium arsenide semiconductor nanowire array of large area
CN102650069B (zh) 一种制备大尺寸硅孔阵列的方法
Razak et al. High-Aspect-Ratio Silicon Nanostructures on N-type Silicon Wafer Using Metal-Assisted Chemical Etching (MACE) Technique
Razak et al. Create High-Aspect-Ratio Silicon Nanostructures Using Metal-Assisted Chemical Etching (MACE) Technique
Nasir et al. Investigation near IR absorption in thin crystalline Si wafers with randomly etched nano-pillars
Baek et al. Morphological evolution of silver nanoparticles and its effect on metal-induced chemical etching of silicon
Nichkalo et al. Morphology of Nanowire Arrays Produced by Metal-Assisted Chemical Etching on Si Wafers of Different Types: Comparative Analysis
Liu et al. Effect of etching temperature on the growth of silicon nanowires
Benoit-Moez et al. Formation of Si Nanowire Arrays by Metal-Assisted Chemical Etching
Mohseni et al. III-As pillar arrays by metal-assisted chemical etching for photonic applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1158821

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110601

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1158821

Country of ref document: HK