CN102045133A - 用于无线传感器网络节点的芯片及芯片上的数字基带*** - Google Patents

用于无线传感器网络节点的芯片及芯片上的数字基带*** Download PDF

Info

Publication number
CN102045133A
CN102045133A CN 200910236528 CN200910236528A CN102045133A CN 102045133 A CN102045133 A CN 102045133A CN 200910236528 CN200910236528 CN 200910236528 CN 200910236528 A CN200910236528 A CN 200910236528A CN 102045133 A CN102045133 A CN 102045133A
Authority
CN
China
Prior art keywords
module
unit
data
digital
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200910236528
Other languages
English (en)
Other versions
CN102045133B (zh
Inventor
王�义
陆世龙
赵泽
崔莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Computing Technology of CAS
Original Assignee
Institute of Computing Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Computing Technology of CAS filed Critical Institute of Computing Technology of CAS
Priority to CN 200910236528 priority Critical patent/CN102045133B/zh
Publication of CN102045133A publication Critical patent/CN102045133A/zh
Application granted granted Critical
Publication of CN102045133B publication Critical patent/CN102045133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种用于无线传感器网络节点芯片的数字基带***,包括基带调制单元、基带解调单元、自动增益控制单元以及循环码校验器;其中,循环码校验器将经过校验的待发送数据传输到基带调制单元,由基带调制单元完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的调制处理,然后将处理后的数据发送出去;基带解调单元对接收到的数据做包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的解调处理,然后将处理后的数据传输到所述的循环码校验器做数据校验;自动增益控制单元根据数据发送或接收过程中的信号强度RSSI以及链路质量LQI调整增益判决门限,从而实现对发射增益和接收增益的控制。

Description

用于无线传感器网络节点的芯片及芯片上的数字基带***
技术领域
本发明涉及无线传输领域,特别涉及用于无线传感器网络节点的芯片及芯片上的数字基带***。
背景技术
无线传感器网络(Wireless Sensor Network,WSN)是由大量密集部署在监控区域的自治节点构成的一种自组织网络应用***。它的应用前景十分广阔,能够广泛应用于军事、环境监测、医疗健康、交通管理以及商业应用等领域。虽然无线传感器网络节点有着各种各样的应用,但这些应用对无线传感器网络节点有着一些相同的要求,其中最具挑战性的要求就是如何使无线传感器网络节点的计算能力更强、应用环境更广、功耗更低、体积更小、成本更低、通信质量更好。
目前的无线传感器网络节点大多采用通用的嵌入式平台来实现。由于此类传感器网络节点的器件不是专门为无线传感器网络设计的,因此处理能力、功耗和体积等指标往往难以达到实际应用的要求。而随着FPGA/ASIC技术的发展以及片上***(System on chip)技术的出现,采用片上***的方法在FPGA上实现无线传感器网络节点平台,并在有大规模应用时将其转为ASIC批量生产的设计方法将成为解决节点处理能力、功耗和体积等问题的关键技术手段。
信号采集、信号处理及组网通信是无线传感器网络节点的三大功能。根据上述功能,无线传感器网络节点通常由传感模块、处理模块、无线通信模块以及能量模块四个部分组成,其中的无线通信模块占整个无线传感器网络节点功耗的绝大部分,无线通信模块中的数字基带在无线通信模块中起到了控制射频收发增益、信道编解码、对射频载波泄漏抑制控制、数字信号成形调制、最佳相干解调、位同步及抽样判决等作用,这些都影响到了无线传感器网络节点的功耗、性能、硬件成本及误码率,因此,设计低功耗、高性能、低误码率的数字基带***对于降低无线传感器网络节点的功耗与硬件成本、提高节点通信质量及增强节点对环境的适应性有着重要的作用。
为了满足无线传感器网络节点低功耗、低成本的设计目标,ZigBee联盟推出了针对WSN的ZigBee协议,使得该协议成为无线传感器网络的一个新兴的通信标准。该协议的物理层(PHY)和媒体接入层(MAC)由IEEE802.15.4工作组制定,该工作组所制定的IEEE802.15.4标准中定义了900MHz和2.4GHz两个频段,在2.405GHz-2.480GHz的范围内共定义了16个频道,信道间隔为5MHz,调制方式为O-QPSK,其数据传输速率为250Kb/s,采用了基于伪随机噪声(PN)码的直接序列扩频(DSSS)技术,扩频增益为8。上述通信协议的应用有利于不同厂家所生成的无线传感器网络节点间的相互通信,有利于降低无线传感器网络节点的功耗与成本,有利于无线传感器网络的推广与应用。
但在现有技术中,采用片上***设计方法实现的无线传感器大多采用各自制定的通信标准,很少根据IEEE802.15.4标准设计传感器中的数字基带***。例如,瑞士CMES开发的无线传感器网络节点WiseNet,虽然采用了片上***的技术并且专为无线传感器网络设计,但该节点中的数字基带采用2FSK调制,最高数据率为100kb/s,均不符合IEEE802.15.4的标准,使芯片不具有兼容其它符合IEEE802.15.4标准的传感器网络节点芯片的通用性。
现有技术中也存在符合IEEE802.15.4标准的数字基带***,如Chipcon公司的CC2431和CC2510以及JENNIC公司的JN5121系列芯片中的数字基带***,但包含这些数字基带***的芯片仍然存在一定的局限性,包括:
1、这些芯片的数字基带***可以做自动增益控制,且增益范围可通过软件配置,但自动增益控制过程中所涉及的判决门限采用固定门限值,不具有自适应调整的特性。而且普遍采用信号强度RSSI作为反馈值进行控制,将信号放大至饱和,而很少综合考虑接收链路质量LQI。信道内的窄带干扰会增加RSSI,但会降低链路质量LQI,因此采用单一RSSI作为反馈调整接受增益是不准确的。考虑到无线传感器网络节点应用环境广泛的实际情况,在实际应用过程中会面临信道情况复杂多变、发射功率不确定以及通信距离的实时变化等问题,这些都会影响节点丢包率和能耗,现有数字基带***采用固定门限值的判决方式会导致节点的环境适应性下降。
2、这些芯片的数字基带***在进行信号相位判决时没有采用自适应门限的施密特触发器方式,而是采用传统的过零触发方式进行信号相位判决,因此不能避免因输入相位的频繁跳变而造成的解调误码率升高。
3、这些芯片的数字基带***在做循环码校验时采用了固定生成多项式而非软件可配置,造成基带的灵活性和通用性都不强。
4、这些芯片的数字基带***没有抑制载波泄漏的功能,因此对射频芯片质量要求很高,提高了节点成本。
发明内容
本发明的一个目的是提供一种能够对自动增益控制的判决门限值做自适应调整的数字基带***。
本发明的另一个目的是克服信号相位判决时因输入相位的频繁跳变而造成的解调误码率升高的缺陷,从而提供一种能降低解调误码率的数字基带***。
本发明的又一个目的是提供一种包含用户可配置的循环码校验器的数字基带***,增强数字基带的灵活性和通用性。
本发明的再一个目的是提供一种包含自动抑制射频载波泄漏的数字基带***,降低对射频芯片的质量要求,降低节点成本。
为了实现上述目的,本发明提供了一种用于无线传感器网络节点芯片的数字基带***,包括基带调制单元、基带解调单元、自动增益控制单元以及循环码校验器;其中,
所述的循环码校验器将经过校验的待发送数据传输到所述的基带调制单元,由所述的基带调制单元完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的调制处理,然后将处理后的数据发送出去;
所述的基带解调单元对接收到的数据做包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的解调处理,然后将处理后的数据传输到所述的循环码校验器做数据校验;
所述的自动增益控制单元根据数据接收过程中的信号强度RSSI以及链路质量LQI调整增益判决门限,配合软硬件协同的工作方式,从而实现对发射增益和接收增益的控制。
上述技术方案中,还包括用于自动监测载波泄露功率,补偿并抑制发射端载波泄漏的抑制载波泄漏单元;该单元与外部的发射端连接。
上述技术方案中,所述的基带调制单元包括直接序列扩频模块、延迟模块、O-QPSK数字调制模块以及第一数模转换模块、第二数模转换模块;其中,
所述的直接序列扩频模块根据直接序列扩频编码表对所要发送的数据做扩频编码,并将扩频编码后的数据转换成I、Q两路串行数据;所述的延迟模块延迟Q路数据;所述的I、Q两路串行数据都在所述的O-QPSK数字调制模块中做成形调制,然后分别在所述的第一数模转换模块和第二数模转换模块中做模数转换。
上述技术方案中,所述的O-QPSK数字调制模块采用两个分别保存有正弦和余弦的波形码表的ROM存储器实现。
上述技术方案中,所述的基带解调单元包括第一模数转换模块、第二模数转换模块、第一匹配滤波器模块、第二匹配滤波器模块、第三匹配滤波器模块、第四匹配滤波器模块、第一位同步模块、第二位同步模块以及扩频解调模块;其中,
所述的第一模数转换模块、第二模数转换模块分别将接收到的模拟波形信号的I路信号和Q路信号转换成波形电平数字信号;所述的第一匹配滤波器模块、第二匹配滤波器模块、第三匹配滤波器模块、第四匹配滤波器模块分别对信号做滤波操作,消除接收信号的码间串扰并对其进行最佳相干解调;滤波后的信号经积分、比较后得到判决时刻的输出信号,然后通过所述的第一位同步模块、第二位同步模块提取抽样判决脉冲进行采样判决,输出解调结果到扩频解调模块;所述的扩频解调模块将接收到的经过扩频调制的片码解码为数据码流,同时得到链路质量LQI值;经过前述滤波后的信号的强度RSSI以及链路质量LQI值被传输到所述自动增益控制模块。
上述技术方案中,所述的第一匹配滤波器模块、第二匹配滤波器模块、第三匹配滤波器模块、第四匹配滤波器模块采用电路复用实现,通过高频时钟驱动,将一个时钟周期完成的计算量分为数个时钟周期完成,将并行的大量组合逻辑电路分为少量时序逻辑电路。
上述技术方案中,所述的第一位同步模块、第二位同步模块采用了自适应门限的施密特触发器进行信号相位判决;其中,
当本次相位判决输出1时,只有在所述匹配滤波器输出信号大于所述门限时,下一次输出才为0,否则输出1;当本次相位判决输出0时,只有在所述匹配滤波器输出信号小于门限时,下一次输出才为1,否则输出0。
上述技术方案中,所述的自适应门限的施密特触发器中的门限值根据信号强度RSSI自适应调整,同时用户根据信道环境来动态地配置判决系数。
上述技术方案中,自动增益控制单元的增益判决门限为LQI与RSSI的最大值的(k-1)/k,其中的k表示判决系数;
所述自动增益控制单元在实现增益控制的过程中存在四种状态:初始状态、锁定状态、增加增益状态、降低增益状态;其中,在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI小于其最大值的(k-1)/k,从当前状态进入增加增益状态;在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI大于其最大值的(k-1)/k,从当前状态进入降低增益状态;在任何状态下,当LQI大于其最大值的(k-1)/k时进入锁定状态;当LQI和RSSI的值都大于它们各自的历史记录值,就会从锁定状态中跳出,把相应值存入最大值寄存器,然后进入初始状态,重新进行增益调整,直到锁定状态。
上述技术方案中,自动增益控制单元的门限初始值、增益初始值以及判决系数k都有用户设定。
上述技术方案中,所述循环码校验器的生成多项式系数根据用户需要进行配置。
上述技术方案中,所述的抑制载波泄漏模块包括AD采样单元、低通滤波单元、滑动窗积分单元以及直流补偿算法单元;基带信号依次经由所述的AD采样单元做AD采样、低通滤波单元做低通滤波以及滑动窗积分单元做积分后,得到发射信号直流强度,由直流补偿算法单元根据这一发射信号直流强度生成用于抑制载波泄漏的补偿值。
本发明还提供了一种用于无线传感器网络节点的芯片,包括所述的数字基带***。
本发明的优点在于:
1、本发明的数字基带***在增益控制中采用基于信号强度RSSI与链路质量LQI综合反馈的自适应门限的自动增益控制机制,达到在保证一定通信质量的前提下降低节点误码率和节省功耗的目的,从而适应复杂多变的应用环境。
2、本发明的数字基带***能够支持IEEE802.15.4通信协议标准,使得采用该数字基带***的芯片与其它支持IEEE802.15.4通信协议标准的电子器件兼容。
附图说明
图1为包含有数字基带***的传感器网络节点芯片的一个实施例的结构示意图;
图2为数字基带***中的基带调制单元的结构示意图;
图3为数字基带***中的基带解调单元和自动增益控制单元的结构示意图;
图4为数字基带***中的匹配滤波器的结构示意图;
图5为数字基带***中的位同步模块实现相位判决的示意图;
图6为数字基带***中的自动增益控制单元的状态转换图;
图7为数字基带***中的循环码校验器的结构图;
图8为包含有数字基带***的传感器网络节点芯片的另一个实施例的结构示意图;
图9为抑制载波泄漏模块的结构图。
具体实施方式
下面结合附图和具体实施方式对本发明加以说明。
图1给出了本发明的用于无线传感器网络节点的芯片的一个实施例,下面结合图1对该芯片的结构加以说明。从图中可以看出,本发明的芯片包括有处理器1、程序存储器2、数据存储器3、MAC协议模块4、数字基带模块5、无线射频模块6以及其他模块7。其中,处理器1与数据存储器3、MAC协议模块4、数字基带模块5、无线射频模块6及其他模块7之间通过总线连接,而处理器1通过程序读取线连接到程序存储器2上;MAC协议模块4与数字基带模块5之间通过双向数据线连接,而数字基带模块5与无线射频模块6之间也通过数据线建立有数据收发通路。下面对芯片中的各个部件的具体功能以及实现加以说明。
处理器1是根据程序存储器2中的程序代码完成相应操作的逻辑器件,可选择现有的IP模块或开放源代码实现,如Oregano Systems的MC8051处理器源代码、ARM系列的处理器模块等。处理器1在程序代码的控制下会对芯片中的其他部件进行包括初始化设置、控制在内的多种操作,在下面对其他部件的说明中,当涉及到处理器1时,会就处理器1的具体作用做详细说明。
程序存储器2用于存储处理器1所要运行的程序。程序存储器2一般可采用FLASH或EEPROM等成熟的工艺设计方法实现。
数据存储器3用于存储处理器1所要使用的数据,一般可以采用成熟的DRAM或是SRAM等工艺实现。
MAC协议模块4在所述处理器1的控制下设定所述无线射频模块6的工作频率、休眠方式、冲突避免机制、发送功率及信道选择,并由所述处理器1配制它所要发送和接收数据的对象以及工作休眠时间的分配,完成对数据包的解析,对信道占用的判断及冲突随机退避等。MAC协议模块4的实现可采用现有技术中任何符合IEEE802.15.4通信标准或其他MAC协议的IP模块。
所述无线射频模块6用于无线发射数据的模拟部分调制发射以及无线接收数据的模拟部分解调接收。该模块包括发射单元61、接收单元62。可选择现有的符合IEEE802.15.4通信标准的IP模块实现。
其他模块7用于实现包括供电控制、传感器控制、输入输出在内的多种功能,该模块也可通过现有技术实现。
数字基带模块5具有控制射频收发增益、直接序列扩频、数字信号成形调制、数模/模数转换、解扩频、位同步抽样判决及循环码校验等诸多功能。根据数字基带模块5的上述功能,可对该模块做进一步划分,在图1中给出了数字基带模块5的一种实现方式,该模块包括基带调制单元51、基带解调单元52、自动增益控制单元53以及循环码校验器54。其中,通过数据线与MAC协议模块4连接的循环码校验器54从MAC协议模块4接收数据后,将经过校验的数据发送到基带调制单元51,基带调制单元51将调制后的数据发送到无线射频模块6中,通过无线射频模块6发射出去。无线射频模块6在接收到数据后,会将接收到的数据发送到基带解调单元52做数据解调,解调后的数据被发送到循环码校验器54做数据校验,校验后的数据被发送到MAC协议模块4,在数据解调的过程中,还会通过自动增益控制单元53实现自动增益的调整。本发明的数字基带模块5在实现时满足IEEE802.15.4标准,在下面的描述中将就该模块中所涉及的各个单元的具体结构以及工作原理分别予以说明。
图2给出了基带调制单元51的结构示意图,根据IEEE802.15.4标准的相关规定,所述的基带调制单元51应当完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的多种操作。根据上述功能,该单元包括直接序列扩频模块511、延迟模块512、O-QPSK数字调制模块513以及数模转换(DAC)模块514、515。
直接序列扩频模块511实现了发送数据的码表变换,具体的说,是根据IEEE802.15.4通信标准提供的直接序列扩频编码表对4位2进制数据做一一映射的扩频编码,所得到的编码是伪随机噪声码并相互正交。直接序列扩频模块511可以采用一个ROM实现,当接收到来自MAC协议模块4的串行数据后,对这一串行数据做串-并变换,然后从ROM所保存的直接序列扩频编码表中读取对应码型,经过8倍扩频增益,使得数据流转换成2进制片码序列,最后用一个FIFO转换成I、Q两路串行数据。
延迟模块512将Q路信号较I路信号延迟T/2(T表示符号周期),延迟后的Q路串行数据被传输到O-QPSK调制模块513,而I路信号则不经过延迟模块512直接被传输到O-QPSK调制模块513。
O-QPSK数字调制模块513用于对数字信号做成形调制。O-QPSK数字调制模块513可以采用成型滤波器实现对数字信号的成型调制,但在本实施例中,作为一种优选实现方式,O-QPSK数字调制模块513可以采用两个分别保存有正弦和余弦的波形码表的ROM存储器,在做成形调制时,根据调制码型从波形码表中直接输出滤波后的电平。与前述的采用成型滤波器的实现方式相比,这一实现方式能够省去了成型滤波器,能够尽量减少不必要的能耗和硬件开销,符合传感器网络节点的低成本低功耗的需求。
DAC模块514、515分别对I路信号和Q路信号做模数转换,将经过调制的波形电平数字信号转换为模拟波形信号。DA模块可以采用独立IP单元或是通用DA芯片实现,作为一种优选实现方式,在本实施例中,DA模块采用了独立的IP单元。
图3给出了基带解调单元52和自动增益控制单元53的结构示意图。基带解调单元52应当完成包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的多种操作,根据上述功能,基带解调单元52包括模数转换(ADC)模块521、522,匹配滤波器模块523、524、525、526,位同步模块527、528,扩频解调模块529。
ADC模块521、522将从无线射频模块6解调所得到的模拟波形信号的I路信号和Q路信号分别转换成波形电平数字信号。与前面所提到的DA模块相类似,AD模块同样可采用独立的IP单元或通用AD芯片实现,作为一种优选实现方式,在本实施例中,采用了独立的IP单元。
匹配滤波器523、524、525、526分别对信号做滤波操作,消除接收信号的码间串扰并对其进行最佳相干解调。滤波后的结果经由积分器、比较器,从而得到判决时刻的输出信号s_diff=y1-y0,然后通过位同步模块527、528提取抽样判决脉冲进行采样判决,输出解调结果到扩频解调模块529。在此过程中还会同时得到信号通过前述匹配滤波器后的强度,该强度用RSSI=y1+y0,这一强度值将作为反馈被输出到自动增益控制模块53来实现增益控制。在计算信号强度时,先做匹配滤波有利于屏蔽背景噪声,从而得到更为精确的接收信号强度。
从上面的说明可以看出,匹配滤波器的作用在于实现对信号的滤波操作,因此现有技术中的相关滤波器从理论上都可用于本发明。但考虑到无线传感器网络节点要求低成本、低功耗的特点,图4给出了匹配滤波器在硬件上的一种优选实现方式。从图中可以看出,在这一实现方式中,根据电路复用的思想,通过采用高频时钟驱动,将一个时钟周期完成的计算量分为数个时钟周期完成,将并行的大量组合逻辑电路分为少量时序逻辑电路,对这些时序逻辑电路复用数个周期,实现相同的计算功能,以减少硬件实现单元数量,如减少乘法器和加法器,在保证线性滤波器的性能的同时达到了减少硬件资源开销的目的。如在一个实例中,假设有24MHz的AD采样率,码片速率是2MHz,因此每个采样周期要完成12次乘加运算,如果要做并行计算需要12个加法器和乘法器。而通过复用设计,采用6倍于采样频率的时钟驱动匹配滤波器模块,一个采样周期计算6个时钟周期,每个周期只使用两个加法器和乘法器,利用最少的乘法器和加法器实现了滤波器,相比传统的并行滤波器节省了5/6的硬件资源,实现了降低硬件成本的目的,符合传感器网络节点低成本的要求。
位同步模块用于调整接收端本地同步采样脉冲的相位,使之与接收的解调信号相位一致,使解调信号得到准确的采样。现有技术中,位同步模块在实现对接收解调信号的相位判决时,采用了直接对匹配滤波器的输出进行过零检测的方法,来确定输出的解调信号相位。由于在设计匹配滤波器时要求必须完全确知信号形状(包括频率、相位、幅度、到达时间等)才能达到理想的最佳接收条件,但在实际应用中,频率误差、随机相位、随机幅度、定时不准等任何一个问题都会导致无法满足匹配滤波器的“最佳接收”条件,从而使得匹配滤波器的输出在过零处发生多次过零触发,造成位同步输入会在0,1状态间频繁跳变,影响位同步效果,造成解调误码率升高。
针对现有技术在实现位同步模块时所存在的上述不足,图5给出了一种自适应门限的施密特触发器的方式进行信号相位判决,从而避免输入相位的频繁跳变。在这一实现方式中,当本次相位判决输出1时,只有在滤波器输出信号大于门限时,下一次输出才为0,否则输出1,当本次相位判决输出0时,只有在滤波器输出信号小于门限时,下一次输出才为1,否则输出0。由于无线传感器网络节点需要适应各种复杂通信环境,而且在恶劣的通信环境下往往无法满足“最佳接收”条件,匹配滤波器输出信号幅度较正常情况偏小,因此相位判决时的门限值应当是自适应可调,以避免相位判决误差。具体的说,利用前面所提到的信号强度值RSSI做反馈值来自适应地调节判决门限,同时可以根据信道环境来动态地配置判决系数k,以达到更高的可控制性和灵活性。从图中可以看出,当本次相位判决输出1时,只有在滤波器输出信号s_diff大于RSSI的k倍时,下一次输出才为0,否则输出1,当本次相位判决输出0时,只有在滤波器输出信号s_diff小于RSSI的-k倍时,下一次输出才为1,否则输出0。上述的判决方法可使判决门限根据信号强度实时变化,保证判决结果的正确率,使***误码率不会因环境恶劣而显著降低,达到了适应多种通信环境的要求。在获得解调信号相位后,本发明采用数字锁相法进行位同步。不直接用于抽样判决,而是与从比较器所获得的匹配滤波器输出信号s_diff比较误差,通过一个控制器在信号钟输出的脉冲序列中附加或扣除一个或几个脉冲,达到输出抽样判决信号与接收信号同步的目的。位同步模块最终得到的位同步脉冲、2进制片码序列被输入扩频解调模块529中进行相关解调。
扩频解调模块529用于将接收到的经过扩频调制的片码解码为数据码流。根据IEEE 802.15.4协议的规定,直接序列扩频是要将每4位数据映射为一个符号来选择16个准正交的伪随机序列,每个伪随机序列由32位片码组成。每个32位码被分成I、Q两路16位子码。由于16个伪随机序列的正交性,互相关系数很小,自相关系数很大,所以扩频解调模块529首先对接收到的信号的I路跟每个符号的I路作相关运算,根据最大似然准则取出最大值,然后跟Q路信号作相关运算,对相关结果进行符号判断,得到对应的解码4位数据。在上述解码的过程中还要同时统计接收的每个数据的片码在解码时与原片码的相关系数,相关系数越高说明信道的链路质量性能越好,将相关系数的平均值映射为链路质量LQI值。扩频解调后所得到的数据码流被送入循环码校验器54,计算得到的LQI值被送入自动增益控制单元53。
自动增益控制单元53包括发射增益控制和接收增益控制。在发射增益控制中,用户根据链路质量LQI,通过软件对发射增益进行调整,通过处理器1对配置寄存器付值,MAC协议模块4在发送预处理时刻读取,这种软硬件结合的方式控制增益不仅一定程度上减少了用户使用的复杂性,而且大大增加了***的灵活性,满足各种通信环境及低功耗的需要。在接收增益控制中,基于接收信号的信号强度RSSI与链路质量LQI的综合反馈结果对增益判决门限进行调整。下面结合图6对该方法的实现过程加以说明。
在前面的说明中已经说明了信号强度RSSI与链路质量LQI是如何获取的,在此不再重复说明。将LQI与RSSI的最大值的(k-1)/k分别作为增益判决门限,其中的k表示判决系数,可由用户设定。从图6中可以看出,增益控制过程中存在四种状态:初始状态、锁定状态、增加增益状态、降低增益状态。在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI小于其最大值的(k-1)/k,从当前状态进入增加增益状态;在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI大于其最大值的(k-1)/k,从当前状态进入降低增益状态;在任何状态下,当LQI大于其最大值的(k-1)/k时进入锁定状态;当LQI和RSSI的值都大于它们各自的历史记录值,就会从锁定状态中跳出,把相应值存入最大值寄存器,然后进入初始状态,重新进行增益调整,直到锁定状态。此外,在对增益判决门限做自适应调整之前,门限初始值、增益初始值都可由用户自行设定,使得***可以根据需求适用于多种通信环境下。
与现有的自动增益控制方法相比,图6所示的方法中,自动增益控制的门限是与通过匹配滤波器之后的接收信号强度RSSI与链路质量LQI自适应的,因此,随信道环境、发射功率及通信距离的变化,确定增益最优值的判决门限也会随之变化。在信道环境较好,发射功率较大及通信距离较近时,RSSI与LQI增大,增益下降,判决门限提高,使信号不会放大至饱和,节省一定的接收功耗。在信道环境较差,发射功率较小及通信距离较远时,RSSI与LQI下降,增益升高,判决门限下降,得到更好的接收信号质量,减小节点的丢包率。此外,根据实际测量结果可以知道,信号强度RSSI在10m以内的区域中,其随距离的衰落趋势与链路质量LQI大致相同,但当距离加大时,RSSI的衰减曲线比较平缓,明显高于LQI的衰减曲线,而LQI的衰落曲线会随着距离的增大而增大振荡,同时还有较大的不规则的衰落。这一现象说明多径干扰、绕射、障碍物对信号质量的影响在距离增大时要明显高于对信号强度的影响,而且在接收增益大到接收信号饱和时,RSSI可能不会有明显变化,但因为饱和信号会超出AD线性范围,会造成解调码率升高及LQI下降,因此采用单一的RSSI作为反馈调整接受增益是不准确的。另一方面,由于LQI随距离的震荡变化比较大,采用单一的LQI作为反馈调整接受增益又会造成***稳定性较差,因此采用基于信号强度RSSI与链路质量LQI综合反馈的自动增益控制算法能得到更准确的控制增益,在节省功耗的同时获得理想的链路质量和更稳定的接收信号
循环码校验器54用于实现循环校验码的检错纠错。循环码校验器54可以采用传统的采用固定生成多项式系数的循环码校验器,但这种循环码校验器只能支持一种循环校验码,灵活性和通用性都不强。图7给出了循环码校验器54的一种优选实现方式,从图中可以看出,循环码校验器54的生成多项式系数可通过总线由处理器1按照用户需要进行配置。在对输出数据包中的数据做循环校验时,作为高8位的8位输入数据与作为低8位的8位0并行输入缓存器(相当于对输入信息码升8阶),然后进入移位寄存器序列,与生成多项式系数进行逐位异或(相当于除以生成多项式求余),所得到的余式即为监督码元,监督码元与升高8阶的输入信息码相加输出,得到循环码编码后的***码,对输入的数据循环计算,最后得到整个数据包的校验码。对接收数据包中的数据做循环校验时,重复上述计算过程,得到计算出的接收数据包的校验码,与接收的最后几个字节校验码进行比较,检验数据包是否有错误。由于循环码校验器54的生成多项式系数可通过总线配置,因此能够满足各种循环码校验的需要,可以满足CRC-16、CRC-CCITT、CRC-12等多种循环校验码的校验,使数字基带适用的通信标准更广泛,灵活性更强。
以上是对本发明的无线传感器网络节点芯片的一个实施例的说明,在另一个较佳实施例中,如图8所示,该芯片的数字基带模块5还包括有与无线射频模块6连接的抑制载波泄漏单元55,该单元用于自动监测载波泄露功率,补偿并抑制发射端载波泄漏。载波泄漏一般是由于器件或工艺本身不理想造成的,本振高频信号通过天线泄漏,与有用信号混合在一起造成载波泄漏,载波泄漏不属于有用信号,当它泄漏到发射机端口后会造成干扰,影响接收端解调效果,造成误码率和丢包率提高。当数字基带模块5具有抑制载波泄漏单元55时,无线射频模块6还包括有射频开关63,且无线射频模块6具有两种工作模式,即正常工作模式与抑制载波泄漏配制模式,两种工作模式间的切换通过所述的射频开关63实现。
图9示出了抑制载波泄漏单元55的结构图,在无线射频模块6工作在抑制载波泄漏配制模式下时,通过射频开关63同时打开接收单元62和发射单元61的数据通道。由于载波泄漏可等效为发射端IQ路存在直流分量,在接收端下变频后会产生相应的直流分量,干扰基带解调,因此,抑制载波泄漏单元55通过对射频解调出的基带信号进行AD采样551、低通滤波552,滑动窗积分553得到接收监听的发射信号直流强度,直流补偿算法单元554与处理器总线相连,通过软件程序配置其初始控制信号值,使其具有灵活的可控制性。其中的AD采样单元551可以采用独立的IP单元或是通用AD芯片来实现,如采用独立的IP单元;低通滤波单元552和滑动窗积分单元553可以采用通用的数字格型滤波器与循环累加器实现;直流补偿算法单元554可以采用一个ROM实现,将采样滤波积分后得到的IQ路发射信号直流强度的8位数据映射为控制射频的抑制载波泄漏寄存器的补偿值,反馈到射频发射模块进行IQ路直流补偿,达到自适应抑制载波泄漏的目的,降低了对射频模块性能的要求,提高了射频芯片成品率,降低了节点成本。
从上述实施例的说明可以看出,本发明的数字基带***在增益控制中采用基于信号强度RSSI与链路质量LQI综合反馈的自适应门限的自动增益控制机制,达到在保证一定通信质量的前提下降低节点误码率和节省功耗的目的,从而适应复杂多变的应用环境。
本发明的数字基带***在位同步中采用自适应门限的施密特触发器的方式进行信号相位判决,达到避免因输入相位频繁跳变而造成的解调误码率升高的目的,降低了节点的误码率。
本发明的数字基带***中的匹配滤波器采用了对滤波器的加法器和乘法器进行复用的设计方法,在保证线性滤波器的性能的同时达到了减少硬件资源开销,降低成本的目的。
本发明的数字基带***兼容IEEE802.15.4通信标准,并带有可软件配置生成多项式系数的循环码校验器,使数字基带***所在的芯片在通信上具有兼容其它传感器网络节点芯片的通用性,并有很高的灵活性。
本发明的无线传感器网络节点数字基带具有自适应抑制载波泄漏的控制模块,可根据自适应算法配置射频芯片的抑制载波泄漏寄存器,从而实现对IQ路信号的直流补偿,达到自适应抑制载波泄漏的目的,降低了对射频模块性能的要求,提高了射频芯片成品率,降低节点成本。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (13)

1.一种用于无线传感器网络节点芯片的数字基带***,其特征在于,包括基带调制单元(51)、基带解调单元(52)、自动增益控制单元(53)以及循环码校验器(54);其中,
所述的循环码校验器(54)将经过校验的待发送数据传输到所述的基带调制单元(51),由所述的基带调制单元(51)完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的调制处理,然后将处理后的数据发送出去;
所述的基带解调单元(52)对接收到的数据做包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的解调处理,然后将处理后的数据传输到所述的循环码校验器(54)做数据校验;
所述的自动增益控制单元(53)根据数据接收过程中的信号强度RSSI以及链路质量LQI调整增益判决门限,从而实现对发射增益和接收增益的控制。
2.根据权利要求1所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,还包括用于自动监测载波泄露功率,补偿并抑制发射端载波泄漏的抑制载波泄漏单元(55);该单元与外部的发射端连接。
3.根据权利要求1或2所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的基带调制单元(51)包括直接序列扩频模块(511)、延迟模块(512)、O-QPSK数字调制模块(513)以及第一数模转换模块(514)、第二数模转换模块(515);其中,
所述的直接序列扩频模块(511)根据直接序列扩频编码表对所要发送的数据做扩频编码,并将扩频编码后的数据转换成I、Q两路串行数据;所述的延迟模块(512)延迟Q路数据;所述的I、Q两路串行数据都在所述的O-QPSK数字调制模块(513)中做成形调制,然后分别在所述的第一数模转换模块(514)和第二数模转换模块(515)中做模数转换。
4.根据权利要求3所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的O-QPSK数字调制模块(513)采用两个分别保存有正弦和余弦的波形码表的ROM存储器实现。
5.根据权利要求1或2所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的基带解调单元(52)包括第一模数转换模块(521)、第二模数转换模块(522)、第一匹配滤波器模块(523)、第二匹配滤波器模块(524)、第三匹配滤波器模块(525)、第四匹配滤波器模块(526)、第一位同步模块(527)、第二位同步模块(528)以及扩频解调模块(529);其中,
所述的第一模数转换模块(521)、第二模数转换模块(522)分别将接收到的模拟波形信号的I路信号和Q路信号转换成波形电平数字信号;所述的第一匹配滤波器模块(523)、第二匹配滤波器模块(524)、第三匹配滤波器模块(525)、第四匹配滤波器模块(526)分别对信号做滤波操作,消除接收信号的码间串扰并对其进行最佳相干解调;滤波后的信号经积分、比较后得到判决时刻的输出信号,然后通过所述的第一位同步模块(527)、第二位同步模块(528)提取抽样判决脉冲进行采样判决,输出解调结果到扩频解调模块(529);所述的扩频解调模块(529)将接收到的经过扩频调制的片码解码为数据码流,同时得到链路质量LQI值;经过前述滤波后的信号的强度RSSI以及链路质量LQI值被传输到所述自动增益控制模块(53)。
6.根据权利要求5所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的第一匹配滤波器模块(523)、第二匹配滤波器模块(524)、第三匹配滤波器模块(525)、第四匹配滤波器模块(526)采用电路复用实现,通过高频时钟驱动,将一个时钟周期完成的计算量分为数个时钟周期完成,将并行的大量组合逻辑电路分为少量时序逻辑电路。
7.根据权利要求5所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的第一位同步模块(527)、第二位同步模块(528)采用了自适应门限的施密特触发器进行信号相位判决;其中,
当本次相位判决输出1时,只有在所述匹配滤波器输出信号大于所述门限时,下一次输出才为0,否则输出1;当本次相位判决输出0时,只有在所述匹配滤波器输出信号小于门限时,下一次输出才为1,否则输出0。
8.根据权利要求7所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的自适应门限的施密特触发器中的门限值根据信号强度RSSI自适应调整,同时根据信道环境来动态地配置判决系数。
9.根据权利要求1或2所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,自动增益控制单元(53)的增益判决门限为LQI与RSSI的最大值的(k-1)/k,其中的k表示判决系数;
所述自动增益控制单元(53)在实现增益控制的过程中存在四种状态:初始状态、锁定状态、增加增益状态、降低增益状态;其中,在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI小于其最大值的(k-1)/k,从当前状态进入增加增益状态;在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI大于其最大值的(k-1)/k,从当前状态进入降低增益状态;在任何状态下,当LQI大于其最大值的(k-1)/k时进入锁定状态;当LQI和RSSI的值都大于它们各自的历史记录值,就会从锁定状态中跳出,把相应值存入最大值寄存器,然后进入初始状态,重新进行增益调整,直到锁定状态。
10.根据权利要求9所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,自动增益控制单元(53)的门限初始值、增益初始值以及判决系数k都有用户设定。
11.根据权利要求1或2所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述循环码校验器(54)的生成多项式系数根据用户需要进行配置。
12.根据权利要求2所述的用于无线传感器网络节点芯片的数字基带***,其特征在于,所述的抑制载波泄漏模块(55)包括AD采样单元(551)、低通滤波单元(552)、滑动窗积分单元(553)以及直流补偿算法单元(554);基带信号依次经由所述的AD采样单元(551)做AD采样、低通滤波单元(552)做低通滤波以及滑动窗积分单元(553)做积分后,得到发射信号直流强度,由直流补偿算法单元(554)根据这一发射信号直流强度生成用于抑制载波泄漏的补偿值。
13.一种用于无线传感器网络节点的芯片,其特征在于,包括权利要求1-11之一所述的数字基带***。
CN 200910236528 2009-10-23 2009-10-23 用于无线传感器网络节点的芯片及芯片上的数字基带*** Active CN102045133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910236528 CN102045133B (zh) 2009-10-23 2009-10-23 用于无线传感器网络节点的芯片及芯片上的数字基带***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910236528 CN102045133B (zh) 2009-10-23 2009-10-23 用于无线传感器网络节点的芯片及芯片上的数字基带***

Publications (2)

Publication Number Publication Date
CN102045133A true CN102045133A (zh) 2011-05-04
CN102045133B CN102045133B (zh) 2013-04-03

Family

ID=43910967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910236528 Active CN102045133B (zh) 2009-10-23 2009-10-23 用于无线传感器网络节点的芯片及芯片上的数字基带***

Country Status (1)

Country Link
CN (1) CN102045133B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799800A (zh) * 2011-05-23 2012-11-28 中国科学院计算技术研究所 一种安全加密协处理器及无线传感器网络节点芯片
CN106130944A (zh) * 2016-07-13 2016-11-16 华南理工大学 脉冲调制信号接收处理***和方法
CN103716137B (zh) * 2013-12-30 2017-02-01 上海交通大学 一种识别ZigBee传感器网络丢包原因的方法及其***
CN106714282A (zh) * 2015-11-18 2017-05-24 博世科智能股份有限公司 无线网络***
CN109428679A (zh) * 2017-09-05 2019-03-05 上海交通大学 ZigBee自适应多速率传输方法
CN110380774A (zh) * 2019-07-05 2019-10-25 东南大学 一种自适应距离的无人机通信多路并行传输方法与***
CN110896341A (zh) * 2018-09-06 2020-03-20 力同科技股份有限公司 一种信号处理方法、集成对讲芯片及对讲机
CN111770566A (zh) * 2020-07-09 2020-10-13 烟台毓璜顶医院 一种基于同步状态监听的无线医疗设备干扰抑制***
WO2021134638A1 (zh) * 2019-12-31 2021-07-08 深圳迈瑞生物医疗电子股份有限公司 信号发送电路、信号接收电路及便携式监护设备
CN113644990A (zh) * 2021-08-16 2021-11-12 恒玄科技(上海)股份有限公司 无线发射信号的校准方法及装置、无线信号发射***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130952Y (zh) * 2007-07-18 2008-10-08 湖南省建筑工程集团总公司 一种基于ZigBee技术的数字化社区家居智能控制***
US8218684B2 (en) * 2008-01-15 2012-07-10 Broadcom Corporation Method and system for an adaptive automatic gain control (AGC) reference for HSDPA and WCDMA
CN101478287B (zh) * 2009-01-15 2011-03-16 上海全波通信技术有限公司 直接变频调制中载波泄露的自适应消除***

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799800A (zh) * 2011-05-23 2012-11-28 中国科学院计算技术研究所 一种安全加密协处理器及无线传感器网络节点芯片
CN102799800B (zh) * 2011-05-23 2015-03-04 中国科学院计算技术研究所 一种安全加密协处理器及无线传感器网络节点芯片
CN103716137B (zh) * 2013-12-30 2017-02-01 上海交通大学 一种识别ZigBee传感器网络丢包原因的方法及其***
CN106714282A (zh) * 2015-11-18 2017-05-24 博世科智能股份有限公司 无线网络***
CN106130944A (zh) * 2016-07-13 2016-11-16 华南理工大学 脉冲调制信号接收处理***和方法
CN109428679B (zh) * 2017-09-05 2021-05-25 上海交通大学 ZigBee自适应多速率传输方法
CN109428679A (zh) * 2017-09-05 2019-03-05 上海交通大学 ZigBee自适应多速率传输方法
CN110896341A (zh) * 2018-09-06 2020-03-20 力同科技股份有限公司 一种信号处理方法、集成对讲芯片及对讲机
CN110380774A (zh) * 2019-07-05 2019-10-25 东南大学 一种自适应距离的无人机通信多路并行传输方法与***
WO2021134638A1 (zh) * 2019-12-31 2021-07-08 深圳迈瑞生物医疗电子股份有限公司 信号发送电路、信号接收电路及便携式监护设备
CN114097203A (zh) * 2019-12-31 2022-02-25 深圳迈瑞生物医疗电子股份有限公司 信号发送电路、信号接收电路及便携式监护设备
CN114097203B (zh) * 2019-12-31 2024-02-23 深圳迈瑞生物医疗电子股份有限公司 信号发送电路、信号接收电路及便携式监护设备
CN111770566A (zh) * 2020-07-09 2020-10-13 烟台毓璜顶医院 一种基于同步状态监听的无线医疗设备干扰抑制***
CN113644990A (zh) * 2021-08-16 2021-11-12 恒玄科技(上海)股份有限公司 无线发射信号的校准方法及装置、无线信号发射***
CN113644990B (zh) * 2021-08-16 2024-01-16 恒玄科技(上海)股份有限公司 无线发射信号的校准方法及装置、无线信号发射***

Also Published As

Publication number Publication date
CN102045133B (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN102045133B (zh) 用于无线传感器网络节点的芯片及芯片上的数字基带***
Vidojkovic et al. A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications
CN102577289B (zh) 无线接收机
CN100530992C (zh) 脉冲幅度调制-脉冲位置调制的信号的健壮非相干接收机
CA2774130C (en) Apparatus and method for transmitting data in low-frequency band in human body communication system, and the human body communication system
CN102440036B (zh) 随机相位多址接入通信接口***与方法
CN101605112B (zh) 一种超宽带混沌通信方法
CN106374965A (zh) 基于lora调制模式的SPI接口物联网无线收发器
JP2017520201A (ja) デジタル・ベースバンドが閾値付近である短距離ジグビー(zigbee(登録商標))互換受信機
CN103228067A (zh) 一种基于多输入多输出Zigbee技术的以太网无线网关
Lokanatha et al. Design and performance analysis of human body communication digital transceiver for wireless body area network applications
TWI501567B (zh) 無線接收器
CN206195767U (zh) 基于lora调制模式的SPI接口物联网无线收发器
CN104539317A (zh) 一种ofdm载波和gfsk无线双模通信芯片
CN204697106U (zh) 一种ofdm电力线载波和gfsk无线双模通信芯片
Bucci et al. Architecture of a digital wireless data communication network for distributed sensor applications
CN103152076B (zh) 一种基于多输入Zigbee技术的以太网无线网关
Costa et al. Energy optimization for reliable point-to-point communication in energy-constrained networks
Bucci et al. The use of wireless network for distributed measurement applications
US20120106529A1 (en) Transmitting Data Between Nodes of a Wireless Network
Song et al. Energy efficiency and throughput optimization of cognitive relay networks
Song et al. Chipnet: Enabling Large-Scale Backscatter Network with Processor-Free Devices
Sjöland et al. Ultra low power transceivers for wireless sensors and body area networks
CN203086465U (zh) 一种基于多输入Zigbee技术的以太网无线网关
CN101605389A (zh) 无线传感器网络中的实际能量模型及功率优化控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant