CN101932730B - 浓集核酸分子的方法 - Google Patents

浓集核酸分子的方法 Download PDF

Info

Publication number
CN101932730B
CN101932730B CN200880126122.8A CN200880126122A CN101932730B CN 101932730 B CN101932730 B CN 101932730B CN 200880126122 A CN200880126122 A CN 200880126122A CN 101932730 B CN101932730 B CN 101932730B
Authority
CN
China
Prior art keywords
nucleic acid
acid molecule
molecule
magnetic bead
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880126122.8A
Other languages
English (en)
Other versions
CN101932730A (zh
Inventor
沃尔特·冈布雷赫特
彼得·波利卡
曼弗雷德·斯坦泽尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Vetmedica GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN101932730A publication Critical patent/CN101932730A/zh
Application granted granted Critical
Publication of CN101932730B publication Critical patent/CN101932730B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供在表面上浓集试样的待检测核酸分子的方法,其中特异性结合捕捉探针的捕捉分子固定在所述表面上,该方法包括以下步骤:提供载体材料,该载体材料具有捕捉探针,并且能够特异性连接至所述核酸分子以生成包括所述载体材料和所述核酸分子的复合物;温育载体材料和试样,并且形成复合物;将复合物移动至表面上;和至少一部分的所述复合物通过捕捉探针与捕捉分子结合。

Description

浓集核酸分子的方法
本发明涉及在表面上浓集试样的待检测核酸分子的方法。 
核酸诊断学越来越多地利用“生物芯片”。“生物芯片”用来例如检测不同类型和种类的核酸,这些核酸可以是DNA、RNA、cDNA或其他核酸。基于生物芯片的分析方法通常旨在检测试样中的特殊核酸。因此,例如可以检查患者的DNA中是否存在表示疾病遗传缺陷的特定序列。同样可以通过证实在患者血样里存在病原体(如病毒和细菌(如HIV、HPV、HCV))的DNA或RNA来检测病原体。这些分析方法的优势是比传统免疫测定法的准确度更高,因为直接检测了病原体,而不是经由制备的与其对应的抗体来检测的。 
所用生物芯片的最简单的形式是基于玻璃基底,在玻璃基底上固定了可以特异性结合至待检测核酸的捕捉分子(例如寡聚核苷酸)。这些通常由合成方式制备的短核酸片段就其序列而言至少是与待检测核酸的序列部分互补的,这导致高特异性结合。为了防止获得假阳性结果,无论如何都必须避免除了待检测核酸以外的其他核酸发生结合。在很多方法中,通过荧光方法实际检测核酸,在该荧光方法中,荧光染料连接待检测的核酸,例如通过生物素-链霉抗生素蛋白结合而连接。在核酸与捕捉分子特异性杂交后,漂洗生物芯片以除去未结合的物质。结果,溶液不再包含任何荧光染料。通过激发染料,可以通过使用CCD照相机观测到荧光,从而可以进行检测。 
生物芯片的一个优势是多路检测能力。因此,可以在生物芯片的不同位点上固定靶向不同待检测核酸的不同种类的捕捉分子。然后,可以通过空间分辨(space-resolved)的荧光测量进行检测。从而可以在单个过程中实现多种核酸检测。 
因为已有的核酸拷贝数通常对于直接检测来说是不足的,所以在检测前复制(扩增)核酸。扩增可以例如通过聚合酶链反应(PCR)进行。PCR是基于在热稳定的DNA聚合酶的帮助下复制核酸。这包括使一对寡聚核苷酸引物(单链寡聚核苷酸)接触待扩增的核酸。选择引物使得引物结合在互补链上待扩增片段的两端。然后,在延伸期间,引物在沿着特定靶核酸链的3′方向延伸(正向引物和反向引物)。正向引物和反向引物或者也称作上游引物或下游 引物(sense or antisense primers)。以这样的方式可以对位于靶核酸各位点之间的片断进行扩增,其中靶核酸与引物是互补的。为了后续的检测反应,有利地从PCR混合物的引物、核酸和其他干扰成分中移出PCR产物。 
PCR方法包括大量的热循环,每个所述的热循环包括三个步骤:首先加热试样(例如至94℃),从而对存在于试样中的双链靶向DNA的各链进行分离(变性)。接着降低温度(例如至45℃~60℃),从而引物可以连接目前单链DNA的互补区域(退火)。在最后的步骤中,结合在单链上的引物按照DNA模板链的信息使用在溶液中用作结构单元的相应的三磷酸核苷通过DNA聚合酶在3′方向上进行延长(extend)(延伸(elongation),例如在72℃时)。在PCR期间,该循环典型地进行大约15-50次。上述温度仅作为实例给出,应该根据在每个情况中具体实施的PCR对温度进行调整。 
因此,可以实现在非常短的时间内由现有的少量DNA(或通常为核酸)样品制备大量的DNA拷贝,其浓度对于后续的定性检测试样中的所述DNA或核酸是充足的。例如,20个PCR循环(典型地需要20~40分钟)理论上生成初始应用的核酸数量的220倍,即106倍。同时,PCR可以使用能被检测的标记物,其结合入所得PCR产物。因此,通过使用例如生物素标记的PCR引物或三磷酸核苷,从而可以得到合成的生物素化的PCR产物。在PCR产物连接了固定的捕捉分子后,结果是,生物素同样也固定在相应位点的生物芯片上。在进一步的步骤中,链霉抗生素蛋白结合的荧光染料接着可以与所述的生物素结合,这使得能够检测核酸或它的PCR产物。其他的检测***,例如基于电化学检测的检测***,可以用作除了荧光染料的备选方案。 
基于生物芯片的检测方法的重点是杂交,即,待检测核酸(该术语在本文中与从核酸制备的PCR产物同义)的结合。核酸检测的灵敏度取决于杂交效率。一般通过生物芯片对核酸进行温育以发生杂交。杂交可以通过选择合适的温度和缓冲媒介得以改善。同样重要的是,将核酸移动至生物芯片的表面,该表面被能够发生杂交的捕捉分子所占据。因此如果核酸的移动仅是由热扩散引起就不是最理想的。所以,例如当25聚体(25mer)寡聚核苷酸的速率常数仅为约8×10-8cm2/s时(“Observation of hybridization and dehybridization of Thiol-tethered DNA using two-color surface plasmon resonance spectroscopy”Peterlinz et al.(1997),J.Am.Chem.Soc.119 3401-3402),结果是,在16个小时的杂交时间内仅有0.096cm的平均迁移。因此,假设表面的尺寸为4cm2, 单独的被动扩散使得只有约1.5%的试样核酸可与固定在生物芯片上的捕捉分子进行杂交。很多有效的方法可以增加杂交效率。 
因此,C.F.Erdmann等在“Electric field directed nucleic acid hybridization on microchips”,Nucleic Acids Research(1997)25,4907-4914中公开了施加电场以电泳方式将核酸移动至生物芯片的方法。与仅通过热移动核酸相比,将核酸浓集在生物芯片的表面附近使得杂交明显快得多。另外,通过翻转电势可以从生物芯片的表面除去未杂交的核酸。所述方法要求电极用保护层特别制备,从而阻止电极反应中的自由基和pH变化破坏浓集的核酸。M.J.Heller等人在“An Active Microelectronics Device for Multiplex DNA Analysis”,IEEE Engineering in Medicine and Biology(1996)March/April,100-104中公开了一个对比方法。 
生物化学和医学诊断学中的很多方法利用了磁性材料、聚合物载体材料(特别是聚合物颗粒)来方便细胞、蛋白质和核酸的移动。与传统的分离方法相比,使用磁性载体材料的优势在于:装载的载体材料可以在磁场力的帮助下容易且快速地从试样的其他成分中除去。基于聚乙烯醇的磁珠形或球状聚合物颗粒已被证实对于所述分离方法是特别合适的,上述颗粒的粒径分布狭窄,在小于10μm的范围内(WO 97104862)。 
已知的还有,特殊的生物材料、特别是核酸和蛋白质只有通过更多的努力才可以从它们的自然环境中分离出来。这尤其是由于以下事实:必须利用机械的、化学的和生物的溶胞方法从细胞核或细胞膜或细胞器中分离出核酸和蛋白质。此外,相应的生物试样通常进一步包括会削弱分离作用的固体和/或溶解组分例如其他的蛋白质和细胞骨架的成分。另外的一个难点是,很多时候在待研究的生物试样中只存浓度很小的核酸或蛋白质。 
但是,为了能够利用使用磁性颗粒的优势从生物试样中分离出核酸,已经特别建议在具有基本无孔的玻璃表面的磁性颗粒的帮助下分离核酸(WO96141811)。为了实现所需的功效,所述颗粒必须有特定的组成(composition),也就是说,它们的玻璃表面必须有特定的组成。此外制备这些颗粒需要相对复杂的工艺以实现必要的玻璃表面的烧结。 
已知的诊断方法,例如核酸和蛋白质诊断,通常需要大量人工操作以得到分析结果。这尤其要求将待检测成分与试样的其余部分中分离。已知的分离方法的实例是过滤、离心、色谱和提取。所有这些方法都为化学和物理分 离方法,通常不适用于从试样序列特异性分离DNA或蛋白质。例如,使用表面官能化的、从而能够结合DNA或蛋白质的树脂。靶分子通过以下方式纯化:与树脂的固相结合,接着进行大量的洗涤步骤,然后在合适的缓冲条件下将靶分子从固相中分离出来。靶分子必须被紧密结合,而试样的污染成分溶解在不同的液相中。在各种洗涤程序之后,靶分子然后必须从固相中再次分离出来,例如通过改变液相而分离。反复改变液相首先就材料而言是非常昂贵的,其次产品产量因为每个附加的方法步骤而有所波动,这使得定量校准很难进行。具体来说,在整合的分析方法中,例如在芯片上的实验室(lab-on-a-chip)***中基本上自动地制备和分析试样,这样一来,检查单个方法步骤经常是不可能的,结果是在各个方法步骤中的偏差彼此放大并且会导致分析结果的偏差很大。 
通过所述的载体颗粒,也称为磁珠(magnetic bead),可以对单个步骤进行简化或甚至完全自动化。所述磁珠设有亲和性配体或其他表面改性措施,从而所述磁珠适于从溶液中将特定的生物分子如DNA结合至其表面上。纯化方法通常包括向试管中的待分离试样中加入磁珠的悬浮液。在数分钟的使亲和性配体与所需生物分子结合的温育时间之后,施加磁场,由此通过将颗粒积聚在试管壁上而移去颗粒。弃去上清液,然后至少洗涤颗粒一次。为了这个目的,首先撤去磁场,将颗粒悬浮在新鲜的缓冲溶液中,该缓冲溶液主要包含阻止生物分子从载体材料分离的离液序列高的盐。然后通过再次施加磁场使磁珠沉积在容器壁上。这样就有可能在多个洗涤步骤后,通过低盐缓冲溶液将分子洗出至(与粗提取物相比而言的)无干扰成分的溶液中,其中低盐缓冲溶液将结合的生物分子从磁珠除去。磁珠再次沉积在容器壁上,使得生物分子留在上清液溶液中。该方法的缺点是在各情况下都需要大量的液体,对于每个单个的方法步骤都需要数百微升范围的液体。 
已知对于真核细胞或原核细胞或病毒通过例如与荧光标记物或磁珠偶联的特异性抗体进行分离。这种抗体通常是单克隆的,并且指向特异性结合位点,例如指向细胞或病毒的相应抗原的表面受体分子。通过将抗体偶联至特异性结合位点对所需细胞或病毒进行标记,并且例如通过FACS或永磁体进行分选(sort)。分选方法首先可以以“正选择”的方式进行,涉及进一步处理标记的细胞或者病毒。其次,可以进行“负选择”,涉及移去标记的细胞以及进一步处理剩余的细胞。两个方法都可以使得细胞或者病毒被量化,并且, 作为结果,可以对所述进一步处理所需的试剂量进行计算。 
DE 101 11 520 B4公开了在磁性颗粒的帮助下纯化生物分子的方法,所述的方法尤其可以以基本自动化的方式纯化较少量的液体。该方法描述了具有磁性颗粒的悬浮液通过被强磁场穿过的管道。通过设置合适的直径、流动速度和磁场强度,磁性颗粒在通过管道时沉积到管壁上。通过清空管道弃去上清液,或者将上清液收集在容器中。然后可以用洗液漂洗捕获的颗粒。在洗涤程序中,磁性颗粒可以保留在管道中或者再次悬浮或沉积。通过用合适的缓冲液进行漂洗将生物分子从悬浮液的磁性颗粒分离。这里的管道应当涉及成还可以处理少于50μL的少量液体。所描述的方法特别适用于纯化DNA或RNA。在这种方法的结束时,溶液中得到的DNA或者RNA可以自动引入相应的分析***中。可以用移液机器人实现自动操作。如果通过序列特异性杂交来检测DNA,则建议额外使管道流经加热元件从而实现DNA双链的变性。然而,为了使用这种方法分析DNA,还必须通过未描述的方法步骤从试样里提取所述DNA。 
磁珠不仅适用于纯化试样也可以用于其他的目的。因此,US2004/0219066 A1描述了可以分选各种颗粒的装置。所述颗粒与具有不同磁矩的不同磁珠结合。由于磁珠的磁矩不同,在反应容器中产生的磁场梯度将磁珠移动至不同的收集盒中。因此不同的颗粒可以通过不同设计的磁珠进行区分。 
WO 00/47983描述了一种电化学生物传感器,其中磁珠经由亲和性配体连接至试样的各成分。酶与试样的结合成分进行偶联,并且添加的酶底物被所述酶分解(cleave)。所述的酶底物生成了可以进行氧化还原循环过程的分子。可以这种方式对试样的特定成分进行检测。 
另外,已知使用顺磁性的磁珠用于检测DNA。这里,与待检测的DNA互补的捕捉分子位于磁致伸缩传感器上。如果研究的试样包含待检测的DNA,在所述的待检测DNA和捕捉分子之间则发生杂交。杂交的DNA已经标记有或标记了生物素,其中链霉抗生素蛋白涂覆的磁珠偶联至该生物素。生物素标记物通常通过上游PCR(upstream PCR)利用生物素标记的引物或者核苷酸引入至待检测的DNA中。在与顺磁珠偶联后,通过应用磁场磁化顺磁珠,并且通过磁阻传感器测量它们的杂散场(stray field)。这间接引起对试样中的DNA的定量检测。 
DE 41 27 657和WO 97104862中关于载体材料制备方法的公开内容引入本文作为参考,它们公开了制备磁性聚乙烯醇载体材料的方法,该载体材料优选为珠状颗粒设计。根据所披露的方法,可以制备粒径分布非常狭窄且粒径为1~4μm的磁性颗粒,其特别用于分离悬浮液中的生物物质以及用于诊断医学。 
聚乙烯醇颗粒是通过向油包水乳状液的油相中添加特定乳化剂混合物而制备的。作为添加剂加入油相中的合适乳化剂有环氧丙烷-环氧乙烷嵌段共聚物、失水山梨糖醇脂肪酸酯、季戊四醇脂肪酸酯和柠檬酸的混合复合酯、聚乙二醇-蓖麻油衍生物、蓖麻油衍生物的嵌段共聚物、聚乙二醇、改性聚酯、聚氧乙烯失水山梨糖醇脂肪酸酯、聚氧乙烯-聚环氧丙烷-乙二胺嵌段共聚物、聚甘油基衍生物、聚氧乙烯醇衍生物、烷基苯基聚乙二醇衍生物、多羟基脂肪酸-聚乙二醇嵌段共聚物、聚乙二醇醚衍生物。这类物质已知特别以商品名 
Figure BPA00001189096900061
BrijOR、ReneXOR、 或 
Figure BPA00001189096900063
销售。 
为了得到均匀的珠形聚合物颗粒并优选其粒径为0.5~10μm,向油相中添加至少由2种、优选3-4种所述表面活性剂组成的混合物。优选的是混合亲脂性乳化剂成分和至少一种具有半亲水性特性的乳化剂,即,半亲水性特性的乳化剂在水和油中都是可溶的。符合后一种特性的乳化剂实例有:环氧乙烷作为主要部分的环氧乙烷-环氧丙烷嵌段共聚物衍生物、聚乙二醇十六烷基醚、短链聚氧乙烯失水山梨糖醇脂肪酸酯、聚乙二醇或短链失水山梨糖醇脂肪酸酯。油相中乳化剂的浓度通常是2~6体积%,优选3.5~5.0体积%。就聚合物液滴的细度和狭窄粒径分布而言,包含至少两种亲脂性成分和一种版亲水性乳化剂的乳化剂混合物是有利的。半亲水性乳化剂的浓度通常为15-30体积%(基于乳化剂总量)。除了颗粒细度外,所述颗粒显示珠样形状。 
除了用于油相的乳化剂之外,可溶于聚合物水相中的特殊的表面活性剂也是有利于改善乳化的质量,尤其是低分子量的聚乙烯醇溶液(Mowiol,Clariant GmbH,Frankfurt am Main,DE)。此外,通过添加离子型乳化剂成功地将以固体形式添加的磁性胶体细微分散。也可以用作二元混合物的乳化剂的例子如下:血清白蛋白、凝胶、脂肪族的磺酸衍生物和芳香族的磺酸衍生物、聚乙二醇、聚N-乙烯吡咯烷酮或乙酸丁酸纤维素。使用的乳化剂的量通常为0.01~2重量%(基于聚合物相),离子乳化剂的浓度总是0.01~0.05重 量%。熟练技术人员对于搅拌速度、两相的浓度和粘性对粒径的影响是熟悉的。为了得到优选的0.5~10μm的粒径,需要每分钟1500~2000转的搅拌速度,使用传统的双螺旋桨叶片搅拌机。 
原则上,可以使用这些具有合适的粒径和通常具有50~400高斯的磁饱和的铁磁胶体或超顺磁胶体作为磁性颗粒,在该方法中将该磁性颗粒包封入聚乙烯醇基质中。磁性颗粒要满足的另一个要求是在包含聚乙烯醇的聚合物水相中的可分散性。在有机相中进行后续乳化时,同时在聚合物液滴中包含磁性胶体。 
合适的磁性胶体优选是粒径为10~200nm的磁石。这种物质可以是市购的,例如,商品名为Bayferrox或Ferrofluidics。因为制备这种胶体通常是现有技术,也可以通过已公开的方法制备磁性颗粒,例如在Shinkai et al.,Biocatalysis,Vol.5,1991,61,或Kondo et al.,Appl.Microbiol.Biotechnol.,Vol.41,1994,99中所描述的方法。对于由于制备过程已经是含水胶体的胶体而言,胶体在聚合物相中的浓度通常为4~14体积%(在各情况中,基于该聚合物相),并且对于固态物质而言为0.3~2体积%。制备包括将磁性胶体与聚合物相直接混合。为了保证颗粒的细微分散和均匀分布,通过高转数的分散工具(Ultra-Turrax)以及后续的超声处理对含水分散体进行快速混合是有利的。用于制备磁性颗粒所需的聚合物相通常包含2.5~10重量%的聚乙烯醇溶液。 
对于熟练技术人员来说,然后可以通过本身已知的方法如过滤和洗涤从悬浮液中得到磁性聚乙烯醇载体材料。 
已知的官能化方法包括在载体材料表面上配置亲和性配体。这通常需要在所述表面上粘附化学反应性基团,亲和性配体然后与附上的化学反应组结合。这些基团可以是例如甲苯磺酰基、羟基、醛或羧基、氨基、硫醇或环氧基团。通常可以通过对未经涂覆的单分散的超顺磁性颗粒进行处理得以提供这些化学反应性基团,从而向颗粒提供带有这些官能团的聚合物的表面层,所述聚合物为提供羟基的纤维衍生物或含聚乙二醇的聚氨酯、提供羧基的丙烯酸或甲基丙烯酸的聚合物或共聚物、或提供氨基的氨基烷基化聚合物。US4654267公开了大量表面涂层(coating)。 
DE 100 13 995 A1公开基于聚乙烯醇的磁性载体材料,其表面的至少部分是硅烷化的,并且在合适时该材料配备有与生物分子偶联的亲和性配体。所描述的载体材料可以设计成过滤器、膜或颗粒。优选赋予磁性载体材料以 珠状或球状颗粒,所述颗粒的粒径优选为0.2~50μm,特别优选0.5~5μm。除了优选的珠状和球形的颗粒设计以外,它们的粒径分布应该在尽可能小的范围内。优选通过使聚乙烯醇载体材料和有机硅烷化合物进行反应来制备颗粒形式的载体材料。然后使硅烷化的颗粒与亲和性配体进行反应。 
原则上可以进行偶联的亲和性配体是在亲和色谱法中使用的任何配体。这些配体的实例有:蛋白质A、蛋白质G、蛋白质L、链霉抗生素蛋白、生物素、肝磷脂、抗体、血清白蛋白、凝胶、赖氨酸、伴刀豆球蛋白A、低聚糖、寡聚核苷酸、多聚核苷酸、结合蛋白质的金属离子、外源凝集素、适体或酶。使用这些亲和基质实施的特殊的分段分离(fractionation)是一般现有技术。 
所述磁珠的优势也可用于在生物芯片上浓集核酸,如US 2002/0166764A1所记载的。其中所描述的设备包括安置在腔体内的生物芯片。调节通过腔体的液体流。在腔体外面,存在可以使腔体内的磁珠移动到生物芯片表面的磁场发生器。核酸在进入腔体前与磁珠特异性连接。所述连接通过磁珠上的寡聚核苷酸提供。磁珠并因此核酸也在容器内通过磁场发生器移动至生物芯片的表面并且保持在那里。在磁珠上的核酸的存在通过氧化还原循环过程检测。所述方法不能多路进行,因为磁珠不能如在微阵列中一样定位至单个位点。磁珠非特定性地保持在生物芯片表面的附近。 
WO 98/4584公开了一种检测蛋白质的方法(免疫测定),该方法也利用了磁珠。能偶联至靶结合分子的捕捉分子固定在磁珠上。靶结合分子转而与待检测蛋白质连接。在蛋白质、靶结合分子、捕捉分子和磁珠的复合物形成以后,可以通过磁力将复合物与试样的其余部分分离。在“温和”条件下(未详细说明),捕捉分子和靶结合分子之间的键可以溶解,且靶结合分子不失去其结合能力。之后移动除去上面仍具有捕捉分子的磁珠。蛋白质通过固定在表面上的抗体而结合,并且因此类似地得到固定。检测分子如荧光染料结合至靶结合分子用于检测。从而可以检测试样中的蛋白质。 
本发明的目的是提供在生物芯片上浓集核酸的改进方法。 
所述目的通过具有权利要求1、8和21的方法步骤的方法实现。 
权利要求1建议一种在表面上浓集试样的待检测核酸分子的方法,其中特异性结合捕捉探针的捕捉分子固定在所述表面上。该方法包括以下步骤: 
-提供载体材料,所述载体材料具有捕捉探针,并且能够特异性连接至 核酸分子以生成包括所述载体材料和所述核酸分子的复合物, 
-温育载体材料和试样,并且形成复合物, 
-将复合物移动至表面上,和 
-至少一部分的所述复合物通过捕捉探针与捕捉分子结合。 
这种方法具有如下的优势,使用捕捉探针并使其与生物芯片表面上固定的捕捉分子连接,使得磁珠有效地连接至捕捉分子。结果是,待检测的核酸在表面附近固定,并且可以通过已知方法检测。另外,该生物芯片不是特定用于核酸的,因此可以普遍被使用。特异性仅由载体材料的设计而引起,该载体材料首先包括独立于试样的捕捉探针用于选择性(一般意义上的选择性(可寻址性))连接至表面,其次能够特异性结合至待检测核酸。因此,可以在试样制备中将待检测核酸与适当设计的载体材料混合,并通过生物芯片对其进行温育。生物芯片本身总是可以相同方式大规模生产,且无需修饰就可用于各种核酸的任何检测。核酸一般形成载体材料的活性部分(其结合至固定在芯片表面的捕捉分子),靶分子-特异性部分可以包括核酸、蛋白质或适体。 
可以以简单的方式平行进行所述方法,这就是说,所述方法是可以多路进行的。这要求多种类型的具有各种捕捉探针的载体材料,捕捉探针在各情况下可连接至不同的待检测的核酸从而得到不同的复合物。所述不同的核酸因此可以通过捕捉分子被捕获在生物芯片的不同位点处,其中捕捉分子固定在生物芯片上的不同位点处并且指向所述的不同捕捉探针。已知的检测过程使得能以空间分辨的方式检测核酸。 
在本发明的有利实施方式中,未结合的复合物从表面移去,然后再移回到表面。接着,将至少另一部分的复合物结合至捕捉分子。这里强调的问题是具有固定核酸的载体材料由于通过磁场移动而均匀地分布在生物芯片的表面上。因此,特别是在多路方法中,在生物芯片上未找到任何捕捉分子形式的固定配偶体的测量位置(点)处的核酸可以重新分布。与生物芯片的整个表面相比,测量点的尺寸通常是小的。通过多次重复方法步骤,杂交效率可以得到提高,因为尚未杂交的复合物再被移动到表面并且在此部分结合。 
在该方法的一个有利形式中,载体材料具有这样的载体材料表面:在该表面上固定了捕捉探针和结合核酸分子的转移分子。这种载体材料可以通过之前描述的方法容易地制造。所选核酸仅对每种载体材料的高度特异性结合提供了高度的误差可信度。 
在该方法的一个有利形式中,捕捉分子、捕捉探针和转移分子是核酸。以这种途径,可以简单的方式生成该方法所要求的高度特异性结合事件。 
权利要求8提供了本发明问题的另一解决方案。权利要求8要求保护在表面上浓集试样的待检测核酸分子的方法,其中特异性结合核酸分子的捕捉分子固定在该表面上,该方法包括以下步骤: 
-提供载体材料,所述载体材料能够特异性连接至待检测的核酸分子以生成包括所述载体材料和所述核酸分子的复合物, 
-温育载体材料和试样,并且形成复合物, 
-将复合物移动至表面, 
-从载体材料分离核酸分子,和 
-至少一部分的核酸分子与捕捉分子结合。 
该方法的特别优点为:所述部分的核酸分子高效率地结合至表面,这是因为将复合物移动至表面上引起了它们的浓集。此外,与权利要求1中所述的方法相比,可以省却额外的捕捉探针。然而,上述相对于已知方法的优点是一致的。在这个实施方式中,检测方法的特异性由于捕捉分子固定在表面上而在于生物芯片本身。 
在该方法的一个有利实施方式中,待检测的核酸分子从载体材料分离,并且载体材料从表面上除去。这可以防止载体材料对后续方法步骤如核酸检测的可能影响。这里,核酸本身保持固定至生物芯片表面上的捕捉分子。 
在该方法的一个有利实施方式中,载体材料是磁珠的形式,该磁珠的表面具有转移分子用于结合核酸。芯片结合的捕捉分子和转移分子还可以是核酸的形式。 
在有利的实施方式中,该方法进一步包括以下步骤: 
-在各情况中,捕捉分子包括与待检测核酸分子的核酸序列部分互补的核酸序列, 
-在各情况中,转移分子包括与待检测核酸分子的核酸序列部分互补的核酸序列, 
-与待检测核酸分子互补的捕捉分子和转移分子的核酸序列是按照以下方式选择的:核酸分子-转移分子杂化物的解链温度低于核酸分子-捕捉分子杂化物的解链温度。 
捕捉分子和转移分子的这个实施方式提供了简单地分离复合物的可能 性。部分互补的核酸序列通常是连续的。通过互补核酸序列的长度这种简单的方式实现杂化物的不同解链温度。这确保了当转移分子和核酸间的连接头(linkage)溶解时,核酸分子和捕捉分子间的连接头保持完整,并且核酸分子仍然是固定的。因此,载体材料可以这种简单的方式除去。一般来说,可以利用改变严紧条件进行分离。因此例如可以通过改变盐浓度或甲酰胺含量改变严紧条件。 
因此,该方法的一个有利实施方式包括在低于核酸分子-转移分子杂化物的解链(变性)温度的严紧条件下进行温育。该复合物在低于核酸分子-转移分子杂化物的解链温度的严紧条件下移动至表面上。 
该方法的一个有利实施方式包括在低于核酸分子-转移分子杂化物的解链温度的第一温度时进行温育。在低于核酸分子-转移分子杂化物的解链温度的第二温度时将复合物移动至表面上。在复合物结合至捕捉分子后,将温度提高温度至第三温度,该第三温度介于核酸分子-转移分子杂化物的解链温度和核酸分子-捕捉分子杂化物的解链温度之间。这确保在核酸和捕捉分子之间的连接头保持完整,而在核酸分子和转移分子之间的连接头被剪切。 
所描述的方法和有利的方案可以容易地平行进行。只需要用各种捕捉分子装配生物芯片的不同位点,这些捕捉分子与待检测核酸是部分互补的。还需要提供具有不同转移分子的各种载体材料,然后转移分子将转移所述各种核酸运输至表面。取决于待检测的核酸,还可以使用相同种类的磁珠,所有这些磁珠都能结合任一待检测的核酸。这是有可能的,是因为固定至生物芯片的表面由于位于此处的捕捉分子而具有高度特异性。 
权利要求21提供了本发明目的的另一解决方案。所述权利要求要求保护在表面上浓集试样的不同待检测核酸分子的方法,其中特异性结合所述核酸分子的捕捉分子分组固定在表面上的不同位点处,该方法包括以下步骤: 
-提供载体材料,该载体材料能够特异性连接至待检测的核酸分子以生成包括所述载体材料和所述核酸分子的复合物, 
-温育载体材料和试样,并且形成复合物, 
-将复合物移动至表面, 
-从载体材料分离核酸分子,和 
-至少一部分的核酸分子与捕捉分子结合。 
这个多路方法可以特别容易地得以实现,这是因为只要求一种类型的具有结合不同核酸性能的载体材料。
另外可以实施同样的如上所述的此方法的有利方案。 
本方法的其他优点和改进从下文描述的实施例中得出,并且基于附图进行解释。 
附图说明
图1~10描述杂交过程的各种方法步骤,和 
图11~13描述可供选择的杂交过程的不同方法步骤。 
以下描述的示例性实施方式涉及浓集DNA分子的方法。原则上可以以同一方式应用于任何核酸。对于可以通过所描述方法得到特异性结合配偶体的其他生物分子,同样也可以浓集。通过列举数个或仅一个核酸样品的实施例对所述的方法进行描述。通常使用大量的样品以便于随后可以对核酸进行检测。 
图1示意描述了磁珠1,磁珠1具有三种不同的寡聚核苷酸3a,3b,3c作为转移分子。同样描述了两种不同的待检测DNA分子5a和5b。寡聚核苷酸3a和3b具有对于DNA分子5a和5b部分互补的序列。在各情况中DNA分子5a和5b具有生物素分子7。图1的情况表示本方法的温育阶段的开始。 
在温育阶段之前,DNA分子5a和5b已经被从例如患者的血样中分离、纯化和合适时通过已知方法扩增。然而也可以通过下文的方法本身进行分离和纯化。事先可能只要求必要的溶胞过程以使DNA分子5a和5b从相应的细胞或病毒中释放。 
在图2中,磁珠1与DNA分子5a和5b的温育已经完成。DNA分子5a和5b分别结合至寡聚核苷酸3a和3b,并且因此固定在磁珠1上。DNA分子5a与寡聚核苷酸3a的结合通过两根连接线象征性地表示。所述连接线表示DNA分子5a与寡聚核苷酸3a的互补核酸序列的重叠。DNA分子5b与寡聚核苷酸3b的结合以类似的方式表示。 
图3示意描述了生物芯片101的表面。生物芯片101包括三个传感器区域103a,103b和103c,传感器区域的装配是用于检测各种DNA分子。设置了磁场发生器105(这里仅示意性表示)。其可以设计成,例如可移动的永磁体或线圈。生物芯片101位于溶液填充的反应腔(未显示)中。所述溶液包 括经温育的磁珠1,其浓度C1=n1/V1,其中n1是磁珠1的数目,V1是溶液的体积。 
图4描述了在通过磁场发生器105施加磁场后的生物芯片101。磁珠1通过磁场已经移动至生物芯片101的表面,并且在那里以C2=n1/V2的浓度存在,其中V2是目前磁珠1浓集在生物芯片101上方的体积。因为V2<<V1,所以浓度C2高于C1。因此磁珠1已经浓集在生物芯片101的表面附近。 
图5描述了在传感器区域103a的表面201上的情形的部分。在传感器区域103a上固定捕捉分子寡聚核苷酸203。以寡聚核苷酸3a为例,它们指向DNA分子5a,虽然指向不同的序列。 
如同寡聚核苷酸3a,寡聚核苷酸203具有与DNA分子5a互补的序列。然而这个序列比DNA分子5a和寡聚核苷酸3a的互补序列更长。在温度T1时,用传感器区域103a的表面201温育与磁珠1结合的DNA分子5a,T1低于DNA分子5a和寡聚核苷酸3a的杂化物的解链温度。因此,该杂化物将在此温度T1时保持稳定。因为互补序列的长度不同,所以DNA分子5a在温度T1时趋向于与寡聚核苷酸203形成杂化物。因此,形成的杂化物的解链温度高于DNA分子5a和寡聚核苷酸3a的杂化物的解链温度。 
图6分别描述在磁珠1和DNA分子(5a,5b)的复合物***后传感器区域103a的表面201的情况。 
复合物的***已经通过将温度提高至温度T2来实现。所选温度T2高于DNA分子5a和5b与寡聚核苷酸3a和3b的各自的杂化物的解链温度。将温度提高至温度T2导致杂化物解链,从而固定了寡聚核苷酸3a的磁珠1从DNA分子5a中溶解出来。 
将温度提高至温度T2同样溶解了DNA分子5b和寡聚核苷酸3b的杂化物,结果是DNA分子5b再次从磁珠1独立并释放至溶液中。 
温度T2低于DNA分子5a和寡聚核苷酸203的杂化物的解链温度,并且因此所述杂化物在所选温度T2时是稳定的。图7描述了在DNA分子5a和寡聚核苷酸203杂交以后的表面201。寡聚核苷酸203与DNA分子5a的连接通过四根连接线象征性地表示。同样固定在磁珠1上的DNA分子5b在传感器区域103a的表面201上的寡聚核苷酸203中找不到任何的配偶体,导致在这种情况中未发生连接。 
如果同样要检测DNA分子5b,相应的寡聚核苷酸必须固定在分开的感 应区域上(例如在感应区域103b上),然后DNA分子5b可以在这里通过固定在那里的寡聚核苷酸的互补序列进行结合。相应地,DNA分子5a在感应区域103b中找不到配偶体。 
在关闭磁场以后,磁珠1将再次释放至溶液中,以至于感应区域103a的表面201不再由磁珠1占据。这相应于图3中的情况,除了先前已杂交的DNA分子5a。因此排除了对随后的DNA分子5a的检测反应的干扰。 
可以设想,在生物芯片101的整个表面上的磁珠1的随机均匀的分布没有成功地在传感器区域103a的表面201上固定充足的DNA分子5a的样品。相应于均匀的分布,在打开磁场以后具有DNA分子5a的磁珠1均匀分布在表面上。图7通过如下事实证实了,在这里,DNA分子5b位于传感器区域103a的上方而不是如最终想要的位于传感器区域103b上。相应地,具有DNA分子5a的其他拷贝的磁珠1将在生物芯片的其他传感器区域的表面上存在或者在传感器区域的表面之间存在。通过重复如上所述的方法步骤,DNA分子5a的其他样品可以移动至传感器区域103a的表面201上。在温度T2及磁场关闭时,磁珠和还没有固定在传感器区域上的DNA分子5a和5b再次释放至体积为V1的溶液中。通过将温度再次降低至上述的低于DNA分子5a和寡聚核苷酸3a的杂化物的解链温度T1,溶液中游离的DNA分子5a和5b再次固定在磁珠1上。这个方法是有效的,因为已添加高浓度的磁珠,因此获得足量的DNA分子5a和5b的杂交配偶体。DNA分子5a和5b在短时间内找到杂交配偶体的概率是足够高的。再次打开磁场将磁珠1再次移动至生物芯片的表面上,其中磁珠1上具有再次固定的DNA分子5a和5b,此时,磁珠1在明显更小的体积V2中浓集,这基本上相应图4中的情况。 
图8描述了这个情况。在之前的过程中已经移动至传感器区域103a的表面201的DNA分子5a仍然与其中一个寡聚核苷酸203连接且因此固定在表面201上。在磁珠1上,与DNA分子5a一致的DNA分子5a′现在再次与寡聚核苷酸3a结合,并且现在能和另一个寡聚核苷酸203杂交。如在第一个过程循环中,这个方法是有效的,因为DNA分子5a′在表面201附近浓集。 
在DNA分子5a′与寡聚核苷酸203杂交以后,温度再一次地提高到高于DNA分子5a′与寡聚核苷酸3a的杂化物的解链温度的温度T2,结果,磁珠从DNA分子5a′上分离。这在图9中显示。所描述的方法可以重复任意次使得在相应的传感器表面上有效地实施DNA分子5a和5b的浓集。 
同样地,在图5的情况中,还可以在DNA分子5a从磁珠1分离以前使DNA分子5a与寡聚核苷酸203进行杂交。这在图10中描述。将提高温度至温度T2,从而得到如图7中的相同情况。DNA分子5a和寡聚核苷酸3a的杂化物解链,而DNA分子5a和寡聚核苷酸203的杂化物是稳定的。相应的方法具有以下步骤: 
-至少一部分的核酸分子与捕捉分子结合, 
-提供载体材料,该载体材料可以特异性连接至待检测核酸分子以生成包括所述载体材料和所述核酸分子的复合物, 
-温育载体材料和试样,形成复合物, 
-将复合物移动至表面上,和 
-至少一部分的复合物与捕捉分子结合。 
基于图1~10描述的方法使用了磁珠1,其在各情况中在表面上具有不同的寡聚核苷酸(3a,3b,3c)。这样的优势为:只要使用一种磁珠1,仍然可以实施多路过程。在可选的示例性实施方式中,可以在各情况中在磁珠1上固定一种寡聚核苷酸3a,3b或3c用于仅一个结合配偶体(DNA分子5a或5b),从而生成不同种类的磁珠1。如果仅有一种待检测DNA分子,这是首先要求的。然而,同样地,该方法可以通过添加不同种类的磁珠1平行进行,在各情况中在磁珠1的表面上具有寡聚核苷酸3a、3b或3c中的一种。因此可以例如储备许多不同种类的磁珠1,其在各情况中涂覆一种寡聚核苷酸3a、3b或3c,并且依照待检测DNA分子5a或5b混合磁珠1成反应混合物。 
图11描述本发明的可选的实施方式。其中描述了两种磁珠,501a和501b,它们在各情况中携带寡聚核苷酸3a和3b中的一种。寡聚核苷酸3a指向溶液中的DNA分子5a。寡聚核苷酸3b指向溶液中没有的DNA分子。此外,寡聚核苷酸503a和503b进一步固定在磁珠501a和501b的表面上。图13举例说明寡聚核苷酸503a和503b的作用。 
图12描述在磁珠501a和501b已经与含有DNA分子5a的溶液温育后的情况。DNA分子5a和寡聚核苷酸3a的杂化物已经形成。由于缺乏相应的寡聚核苷酸的结合配偶体,在磁珠501b上没有发生杂交。 
磁珠501a和501b随后通过磁场移动至生物芯片的表面,并保持在那里。这在图13中描述。生物芯片505包括两个传感器区域,507a和507b。寡聚核苷酸509a固定在传感器区域507a上,寡聚核苷酸509a具有与寡聚核苷 酸503a部分互补的核酸序列。相应地,寡聚核苷酸509b固定在传感器区域507b上,寡聚核苷酸509b具有与寡聚核苷酸503b部分互补的核苷酸序列。以与上述方法类似的方式,浓集磁珠501a和501b从而浓集寡聚核苷酸503a和503b,这支持所述寡聚核苷酸503a和503b与寡聚核苷酸509a和509b在传感器区域507a和507b上进行杂交。在充足的温育周期以后,关闭磁场从而从表面移去未固定的磁珠501a和501b。作为结果,标记的DNA分子5a仅通过传感器区域507a上方的寡聚核苷酸503a和509a的杂化物的固定而结合。因此排除了仅通过传感器区域507b上方的磁场进行固定。然后可以通过已知的检测方法对DNA分子5a经由传感器区域507a位点的标记物511进行检测。经由DNA分子5a特异性结合至磁珠501a上的寡聚核苷酸3a以及其经由寡聚核苷酸503a与传感器区域507a处的寡聚核苷酸509a的杂交,使得DNA分子5a分配至传感器区域507a是明确的。这要求除去传感表面上的未固定的磁珠501a和501b的样品。因为提供的试样不包含寡聚核苷酸3b的结合配偶体,在传感器区域507b处将检测不到DNA分子,因此测定相应地为阴性的。 
以与上述示例性实施方式类似的方式,该方法还可以循环重复,从而使更多种类的磁珠501a接近传感器表面507a并且固定在那里。这有利于增加浓集的效率,特别是如果只存在少量拷贝的DNA分子5a。 
所描述的方法可以普遍地使用,因为就待检测的DNA分子而言,磁珠501a和501b的固定是非特异性的。仅通过形成磁珠501a和501b和固定其上的寡聚核苷酸3a和3b实现检测的特异性。相应的具有不同感应区域507a和507b的生物芯片505因此适合用于检测任何种类的DNA分子。检测仅要求不同设计的、能结合待检测分子的磁珠。 
所描述的示例性实施例只记载了检测DNA分子的实施例。然而它们可以以类似的方式用于任何核酸分子或其他能特异性结合的分子。因此,可以固定指向试样中存在的蛋白质的抗体,用于在所述方法的磁珠上进行检测。磁珠可以相应地在这里任选地通过蛋白质本身固定(示例性实施方式1)或通过其他的具有抗体的蛋白质或甚至核酸固定(示例性实施方式2)。 

Claims (2)

1.在传感器区域(103a)的表面(201)上浓集试样的待检测核酸分子(5a,5b)的方法,该传感器区域(103a)的表面(201)形成生物芯片的表面(101)的一部分,其中特异性结合所述核酸分子(5a,5b)的捕捉分子(203)固定在所述表面(201)上,所述方法包括以下步骤:
(a)提供其上固定了转移分子(3a,3b,3c)的磁珠(1),该转移分子(3a,3b,3c)能够连接至待检测的核酸分子(5a,5b)以生成包括所述磁珠(1)与所述转移分子(3a,3b,3c)和所述待检测核酸分子(5a,5b)的复合物,其中所述转移分子(3a,3b)具有与所述核酸分子(5a,5b)部分互补的序列;
提供包含表面(101)的生物芯片,该表面(101)包括传感器区域(103a,103b,103c),该传感器区域装配用于检测各种核酸分子(5a,5b)的捕捉分子(203),其中所述捕捉分子(203)具有与核酸分子(5a,5b)部分互补的序列;
提供磁场发生器(105);
其中捕捉分子(203)和转移分子(3a,3b,3c)的核酸序列是按照以下方式选择的:核酸分子(5a,5b)-转移分子(3a,3b,3c)杂化物的解链温度低于核酸分子(5a,5b)-捕捉分子(203)杂化物的解链温度;
(b)温育磁珠(1)和核酸分子(5a,5b),其中在低于核酸分子(5a,5b)-转移分子(3a,3b)杂化物的解链温度的温度进行温育,由此核酸分子(5a,5b)结合至转移分子(3a,3b);
(c)通过磁场发生器(105)施加磁场,由此将通过磁场结合至磁珠(1)的核酸分子(5a,5b)移动至生物芯片的表面(101),
(d)在低于核酸分子(5a,5b)-转移分子(3a,3b)杂化物的解链温度的温度温育结合至磁珠(1)的核酸分子(5a,5b)与传感器区域(103a,103b,103c)的表面(201);
(e)通过将温度提高至高于核酸分子(5a,5b)-转移分子(3a,3b,3c)杂化物的解链温度以及低于核酸分子(5a,5b)-捕捉分子(203)杂化物的解链温度的温度T2,从其上固定有转移分子的磁珠(1)分离核酸分子(5a),
(f)至少一部分的核酸分子(5a,5b)与捕捉分子(203)结合,
(g)通过关闭磁场从生物芯片的表面(101)移去磁珠(1),
(h)重复步骤(b)至(g)以增加杂交效率。
2.根据权利要求1所述的方法,其中提供不同种类的磁珠(1),各磁珠上固定有一种特异性转移分子(3a,3b,3c),该特异性转移分子(3a,3b,3c)能够结合待检测的特异性核酸分子(5a,5b)。
CN200880126122.8A 2007-12-03 2008-11-03 浓集核酸分子的方法 Expired - Fee Related CN101932730B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07023377.0 2007-12-03
EP07023377A EP2067867A1 (en) 2007-12-03 2007-12-03 Process for concentrating nucleic acid molecules
PCT/EP2008/064876 WO2009071404A1 (en) 2007-12-03 2008-11-03 Process for concentrating nucleic acid molecules

Publications (2)

Publication Number Publication Date
CN101932730A CN101932730A (zh) 2010-12-29
CN101932730B true CN101932730B (zh) 2014-03-26

Family

ID=39027540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880126122.8A Expired - Fee Related CN101932730B (zh) 2007-12-03 2008-11-03 浓集核酸分子的方法

Country Status (6)

Country Link
US (1) US8975017B2 (zh)
EP (2) EP2067867A1 (zh)
CN (1) CN101932730B (zh)
DK (1) DK2217729T3 (zh)
ES (1) ES2545584T3 (zh)
WO (1) WO2009071404A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815610B2 (en) * 2010-10-15 2014-08-26 International Business Machines Corporation Magnetic nanoparticle detection across a membrane
US10519487B2 (en) 2016-08-18 2019-12-31 City University Of Hong Kong Kit and a method for determining the presence or amount of a target nucleic acid sequence in a sample
WO2019157191A1 (en) * 2018-02-07 2019-08-15 Georgia Tech Research Corporation Methods for multiplexed cell isolation using dna gates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110222A1 (en) * 2002-12-05 2004-06-10 Yokogawa Electric Corporation Biopolymer detecting method and biochip
WO2006122002A2 (en) * 2005-05-09 2006-11-16 Panomics, Inc. Multiplex capture of nucleic acids
WO2007002567A3 (en) * 2005-06-23 2007-03-29 Nanosphere Inc Selective isolation and concentration of nucleic acids from complex samples

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO155316C (no) 1982-04-23 1987-03-11 Sintef Fremgangsmaate for fremstilling av magnetiske polymerpartikler.
DE4127657B4 (de) 1991-08-21 2008-03-13 Chemagen Biopolymer-Technologie Aktiengesellschaft Perlförmige Polyvinylalkoholgele für die Aufreinigung und Auftrennung biologischer Flüssigkeiten, Verfahren zu ihrer Herstellung und Verwendung
US5445971A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
DE19520398B4 (de) 1995-06-08 2009-04-16 Roche Diagnostics Gmbh Magnetisches Pigment
DE19528029B4 (de) * 1995-07-31 2008-01-10 Chemagen Biopolymer-Technologie Aktiengesellschaft Magnetische Polymerpartikel auf der Basis von Polyvinylalkohol, Verfahren für ihre Herstellung und Verwendung
AU3616497A (en) 1996-07-26 1998-02-20 Michael T. Kelly Cyclic decapeptide antibiotics
JP4222635B2 (ja) * 1997-05-02 2009-02-12 ジェン−プローブ・インコーポレーテッド 2段階ハイブリダイゼーションおよびポリヌクレオチドの捕捉
US20020166764A1 (en) 1997-08-12 2002-11-14 University Of Southern California Electrochemical sensor devices and methods for fast, reliable, and sensitive detection and quantitation of analytes
JP2002536660A (ja) 1999-02-11 2002-10-29 ユニバーシティ・オブ・サザン・カリフォルニア 酵素結合の免疫磁気性電気化学的バイオセンサー
WO2002033125A1 (en) * 2000-09-20 2002-04-25 Datascope Investment Corp. Nucleic acid detection by dendrimeric labeling
DE10013995A1 (de) 2000-03-22 2001-09-27 Chemagen Biopolymer Technologi Magnetische, silanisierte Trägermaterialien auf Basis von Polyvinylalkohol
DE10111520B4 (de) 2001-03-09 2004-01-15 Chemagen Biopolymer-Technologie Aktiengesellschaft Verfahren zur Aufreinigung von Biomolekülen mit Hilfe magnetischer Partikel
US20060040286A1 (en) * 2001-03-28 2006-02-23 Nanosphere, Inc. Bio-barcode based detection of target analytes
US20030059823A1 (en) * 2001-09-21 2003-03-27 Juki Corporation Hybridization apparatus and method for detecting nucleic acid in sample using the same
US20030186465A1 (en) 2001-11-27 2003-10-02 Kraus Robert H. Apparatus used in identification, sorting and collection methods using magnetic microspheres and magnetic microsphere kits
US7906345B2 (en) * 2003-11-12 2011-03-15 The Board Of Trustees Of The Leland Stanford Junior University Magnetic nanoparticles, magnetic detector arrays, and methods for their use in detecting biological molecules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110222A1 (en) * 2002-12-05 2004-06-10 Yokogawa Electric Corporation Biopolymer detecting method and biochip
WO2006122002A2 (en) * 2005-05-09 2006-11-16 Panomics, Inc. Multiplex capture of nucleic acids
WO2007002567A3 (en) * 2005-06-23 2007-03-29 Nanosphere Inc Selective isolation and concentration of nucleic acids from complex samples

Also Published As

Publication number Publication date
EP2217729A1 (en) 2010-08-18
US20100248242A1 (en) 2010-09-30
EP2217729B1 (en) 2015-06-03
WO2009071404A1 (en) 2009-06-11
ES2545584T3 (es) 2015-09-14
CN101932730A (zh) 2010-12-29
US8975017B2 (en) 2015-03-10
DK2217729T3 (en) 2015-08-24
EP2067867A1 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
EP1379693B1 (en) Bio-barcodes based on oligonucleotide-modified particles
US7323309B2 (en) Bio-barcodes based on oligonucleotide-modified particles
CN106574925B (zh) 用于生物测定的底物介导的反应器
US20120045748A1 (en) Particulate labels
EP1540006B1 (en) Nanoparticle polyanion conjugates and methods of use thereof in detecting analytes
US6100079A (en) Method for treating biopolymers, microorganisms or materials by using more than one type of magnetic particles
AU2004254367B2 (en) Bio-barcode based detection of target analytes
JP2007537450A (ja) バイオバーコードに基づく標的検体の検出
EP2997166B1 (en) Analyte enrichment methods
US20200072826A1 (en) System and method for preparing a sequencing device
CN101001960A (zh) 基于生物条形码检测靶分析物
CN101932730B (zh) 浓集核酸分子的方法
US20230126528A1 (en) A library of prefabricated microparticles and precursors thereof
WO2005062982A2 (en) Signal amplification methods for analyte detection
WO2008140620A2 (en) Ultra sensitive biomolecule detection using double stranded dna co-loaded gold nanoparticles and co-immobilized capture molecules
Elaissari et al. Biomedical application for magnetic latexes
WO2008108006A1 (ja) 細胞分離方法ならびに細胞検査方法とその試薬キット
Elaissari et al. Latexes: Magnetic
US7348147B2 (en) Method and system for nucleic acid detection
FR2797690A1 (fr) Procede de detection d'un analyte et necessaire pour la mise en oeuvre de ce procede
AU2007203391A1 (en) Bio-barcodes based on oligonucleotide-modified particles
JP2008125383A (ja) 核酸の検出方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BOEHRINGER INGELHEIM VETMEDICA GMBH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20140701

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140701

Address after: In Germany

Patentee after: BOEHRINGER INGELHEIM VETMEDICA GmbH

Address before: Munich, Germany

Patentee before: Siemens AG

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140326