CN101827298A - 麦克风单元 - Google Patents

麦克风单元 Download PDF

Info

Publication number
CN101827298A
CN101827298A CN201010129654A CN201010129654A CN101827298A CN 101827298 A CN101827298 A CN 101827298A CN 201010129654 A CN201010129654 A CN 201010129654A CN 201010129654 A CN201010129654 A CN 201010129654A CN 101827298 A CN101827298 A CN 101827298A
Authority
CN
China
Prior art keywords
microphone
sound
output signal
zero point
microphone unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010129654A
Other languages
English (en)
Inventor
堀边隆介
高野陆男
田中史记
猪田岳司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Publication of CN101827298A publication Critical patent/CN101827298A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

一种麦克风单元,包括第一麦克风和第二麦克风以及延迟元件。当声音输入至第一麦克风和第二麦克风单元时,延迟元件对第一麦克风的输出信号进行延迟,以便利用第一麦克风的输出信号与第二麦克风的输出信号之间的差分信号对声音进行检测。延迟元件对第一麦克风的输出信号进行延迟以满足关系式0.76≤D/Δr≤2.0,其中D为用于第一麦克风的输出信号的延迟量,Δr为该第一和第二麦克风之间的距离。关系式D/Δr≤2.0能够减低远场噪声,而关系式0.76≤D/Δr能够提高对从零点所发出声音的检测灵敏度。

Description

麦克风单元
技术领域
本发明涉及一种麦克风单元,其对声音(即,空气振动)进行检测并将检测到的声音转换成电信号以作为输出信号。
背景技术
一种已知的麦克风单元包括第一麦克风及第二麦克风,用于分别接收输入声音并将接收到的声音转换成电信号以作为输出信号,以便利用第一麦克风与第二麦克风的输出信号之间的差来检测声音。一种麦克风单元为差动式麦克风单元,其具有“8”字形的双向特性(模式)。与利用单个麦克风的输出信号来检测声音的非定向(全向)麦克风单元相比,这种麦克风单元具有降低远场噪声的效果(降低检测从远处发出的声音的检测灵敏度)。
图12为显示了在差动式麦克风单元及非定向麦克风单元中声源距离(发出声音的位置)与检测灵敏度之间的关系图。从图12所示的关系可明显看出,从近处发出声音的检测灵敏度与从远处发出声音的检测灵敏度之间的差(对从远处所发出声音相较于从近处所发出声音的检测灵敏度的减小程度)在差动式麦克风的情况下要大于在非定向麦克风情况下。由此可以理解的是,与非定向麦克风单元相比,差动式麦克风单元具有降低远场噪声的效果。
现在考虑传统差动式麦克风单元中发出声音的位置(声源的位置),其中存在这样一个位置,在该位置处第一麦克风输出信号的相位等于第二麦克风输出信号的相位。这种位置被称为零点(null point)。在传统的差动式麦克风单元中,零点形成在从声源到第一麦克风的声音传播时间等于从声源到第二麦克风的声音传播时间的位置处,即,在从声源到第一麦克风的距离等于从声源到第二麦克风的距离的位置处。因而,在传统的差动式麦克风单元中,从零点发出的声音会导致输入至第一麦克风的声波在相位和振幅上都与输入至第二麦克风的声波相同,使得来自第一麦克风的输出信号在相位和振幅上都与来自第二麦克风的输出信号相同。因而,从零点发出的声音会导致第一和第二麦克风的输出信号之间没有差,由此造成对从零点发出声音的零检测输出。
当被安装在诸如移动电话之类的产品中时,传统的差动式麦克风具有能够接收近距离通话者(使用者)的语音及降低远场噪声的优点。然而其存在一个问题:如果通话者(使用者)的嘴巴位于零点,则通话者的语音(声音)的等级(level)会显著降低,从而致使不能识别通话语音。在图13所示的移动电话90中尤其如此,该图为显示将差动式麦克风单元80安装在移动电话90中的一实例的示意正视图。请参见图13,移动电话90的一侧上形成有声音接收开口92a、92b,而差动式麦克风单元80则包括分别具有声音接收部82a、82b的第一麦克风81a和第二麦克风81b,其中声音接收部82a、82b分别面对声音接收开口92a、92b,并被置于放置声音接收开口92a、92b的同一侧。这样的布置可能会导致上述问题,妨碍良好的语音质量。
现有技术中还有一些其他已知的麦克风单元。例如,日本特开第2007-180896号公报公开了一种声音(音频)信号处理设备,其具有彼此靠近放置的双向麦克风(第一麦克风)和非定向麦克风(第二麦克风),其中第一和第二麦克风的输出信号被处理以从中提取一具有预定相关性的信号,以便允许定向特性在一较窄的角度范围内很高。日本专利3620133公开了一种具有四个麦克风胶囊(microphone capsule)的立体声麦克风,其中四个麦克风胶囊的输出信号被处理以得到一立体声声音(音频)信号。
日本特开第2003-44087号公报公开了一种具有多个麦克风的环境噪声降低***,其中所述多个麦克风的输入信号被处理以从中除去声音(音频)信号,以便从除去声音(音频)信号后余下的信号中估计环境噪声信号。将环境噪声信号的频谱从输入信号的频谱分量中除去,以降低环境噪声信号。日本特开平第5-284588号公报公开了一种具有第一和第二麦克风的声音(音频)信号输入设备,其中第二麦克风的输出信号被延迟,然后再进行反相。将第二麦克风的这一反相后的输出信号与第一麦克风的输出信号进行相加并放大,以便于消除环境噪声。另外,PCT申请号2002-507334的日文公开译本公开了一种噪声控制设备,其具有一弯曲反射体来偏转环境噪声,以便于消除环境噪声。尽管如此,这些已知的设备或***都没有解决以上问题。
发明内容
本发明的目的是提供一种麦克风单元,其能够在降低远场噪声的同时提高对从零点所发出声音的检测灵敏度。
根据本发明,这一目的通过一种麦克风单元来实现,其包括:第一麦克风和第二麦克风,用于将声音转换成电信号以作为输出信号,以便基于该第一麦克风和第二麦克风的输出信号对声音进行检测;以及延迟装置,用于对该第一麦克风的输出信号进行延迟。该延迟装置对该第一麦克风的输出信号进行延迟以满足关系式0.76≤D/Δr≤2.0,其中D为用于该第一麦克风的输出信号的延迟量,Δr为该第一麦克风和第二麦克风之间的距离。而且,声音是利用该第一麦克风经该延迟装置延迟后的输出信号与该第二麦克风的输出信号之间的差分信号进行检测的。
本发明的麦克风单元对该第一麦克风的输出信号进行延迟以便于将零点置于这样一个位置,从这个位置到该第一麦克风和第二麦克风的距离互不相同。这便导致输入至该第一麦克风的声音的振幅不同于输入至该第二麦克风的声音的振幅。因此,基于从零点所发出声音的第一麦克风和第二麦克风的输出信号在振幅上互不相同。即使两路输出信号在相位上彼此相同,基于从零点所发出声音的第一麦克风和第二麦克风的输出信号之间在振幅上的这种差异也会存在。因而,从零点所发出的声音会导致两路输出信号之间的差异,防止对从零点所发出声音的零检测输出,从而可利用这两路输出信号之间的差来检测从零点发出的声音。
另外,该第一麦克风的输出信号是以一满足关系式0.76≤D/Δr≤2.0的延迟量D进行延迟,其中Δr为该第一麦克风和第二麦克风之间的距离。这使得在降低远场噪声的同时可以增大对从零点所发出声音的检测灵敏度。另外,由于该第一麦克风的输出信号的延迟,零点会形成在使得从此处到第一和第二麦克风的距离互不相同的位置处,从而本发明的麦克风单元的有效灵敏度的角度范围可以增大。本发明的麦克风单元借鉴了具有降低远场噪声特性的差动式麦克风单元的优点。另外,即使当通话者(使用者)的嘴巴位于零点,本发明的麦克风单元也可以将由零点所造成的通话者音量等级的降低最小化,从而可以解决语音无法辨清(语音消退)的问题。尤其是当安装在移动电话中时,本发明的麦克风单元可以有利地获得良好的语音质量。
根据本发明的麦克风单元,该延迟装置可以是延迟元件或者用于延迟声音传播的传播延迟组件。
尽管本发明的新颖性特征在所附权利要求书中加以阐明,但结合附图从下文详细的描述中将能更好地理解本发明。
附图说明
以下将参考附图对本发明进行阐述。需要指出的是,所有附图所显示的均用于说明本发明或其实施例的技术构思,其中:
图1为根据本发明第一实施例的麦克风单元的示意性立体图;
图2为第一实施例的麦克风单元的示意性方框图;
图3A及图3B均为显示第一实施例的麦克风单元中延迟量与零点之间关系的图表;
图4A至图4F为在角坐标系中显示第一实施例的麦克风单元在不同延迟量下对500mm处远场声源的灵敏度特性的图表;
图5A至图5F为在角坐标系中显示第一实施例的麦克风单元在不同延迟量下对25mm处近场声源的灵敏度特性的图表;
图6为在直角坐标系中显示第一实施例的麦克风单元的灵敏度特性的图表,其与图5A至图5F中的图表相对应,并通过在直角坐标系中叠加图5A至图5F的曲线获得。
图7为显示在第一实施例的麦克风单元中延迟量与零点处增益衰减之间关系的图表;
图8为显示在第一实施例的麦克风单元中延迟量与降噪效果之间关系的图表;
图9为显示将第一实施例的麦克风单元安装在移动电话中的一实例的示意性正视图;
图10为本发明的第二实施例的麦克风单元的示意性剖视图;
图11为本发明的第三实施例的麦克风单元的示意性剖视图;
图12为显示在传统差动式麦克风单元及非定向麦克风单元中声源距离与检测灵敏度之间关系的图表;以及
图13为将传统差动式麦克风单元安装在移动电话中的一实例的示意性正视图。
具体实施方式
作为实施本发明的最佳方式,本发明的多个实施例将在下文中参考附图加以阐述。本发明涉及一种麦克风单元。需要理解的是,此处实施例并非意图限制本发明,或是意图覆盖本发明的全部范围。请注意,在所有附图中使用相同的附图标记或符号代表相同的部件。
(第一实施例)
将参考图1至图9阐述根据本发明第一实施例的麦克风单元1。图1为根据第一实施例的麦克风单元1的示意性立体图。麦克风单元1被安装并应用于诸如移动电话或助听器之类的产品中,并对空气中传播的声音(即,空气振动)进行检测,还将检测到的声音转换成电信号以作为输出信号。麦克风单元1包括:第一麦克风2a和第二麦克风2b,均用于对声音进行检测并将检测到的声音转换成电信号;安装基板(base)10,用于安装第一麦克风2a和第二麦克风2b;等等。麦克风单元1属于差动式,其基于第一麦克风2a和第二麦克风2b的输出信号对声音进行检测。
第一麦克风2a具有声音接收部20a,用于接收通过自身输入的声音,并将输入声音转换成电信号,再进一步输出电信号以作为输出信号,该输出信号具有与该输入声音的相位和振幅对应的相位和振幅。第二麦克风2b与第一麦克风2a相似,这样第二麦克风2b具有声音接收部20b,用于接收通过自身输入的声音,并将输入声音转换成电信号,再进一步输出电信号以作为输出信号,该输出信号具有与该输入声音的相位和振幅对应的相位和振幅。第一麦克风2a和第二麦克风2b安装在安装基板10上(在安装基板的一侧),以使它们的声音接收部20a、20b面对同一个方向。
第一麦克风2a和第二麦克风2b均具有用于声音检测的电容,其由振动膜(vibratory diaphragm)和背电极组成,其中输入的声音使振动膜振动,而该电容的静电电容的变化会检测到该振动膜的振动,以便检测该输入的声音并输出电信号以作为输出信号,该输出信号具有与输入声音的相位和振幅相对应的相位和振幅。该第一和第二麦克风中每一个的振动膜和背电极是以所谓的MEMS(Micro Electro Mechanical System,微机电***)的形式构成。更具体地,第一麦克风2a和第二麦克风2b中每一个的振动膜和背电极是通过采用半导体精细加工技术、使用具有导电性的硅(例如,采用离子注入或离子植入)制成。因为该振动膜和背电极是由硅制成的,所以第一麦克风2a和第二麦克风2b被称为硅麦克风。由于采用了使用硅的MEMS结构,麦克风单元1能够实现在尺寸上的减小以及性能上的提高。
图2为麦克风单元1的示意性方框图。如图2所示,除了上述元件,麦克风单元1还包括:延迟元件3,耦接至第一麦克风2a的输出端;减法器4,耦接至该第二麦克风的输出端和延迟元件3的输出端;等等。麦克风单元1的延迟元件3用于对其中的输入信号进行延迟,并接收第一麦克风2a的输出信号作为这里的输入信号,以使延迟元件3对第一麦克风2a的输出信号进行延迟用以输出。更具体地,延迟元件3对第一麦克风2a的输出信号进行延迟以满足关系式0.76≤D/Δr≤2.0,其中D为用于第一麦克风2a的输出信号的延迟量(延迟时间),而Δr为第一麦克风2a和第二麦克风2b之间(更具体是指声音接收部20a、20b之间)的距离。优选地,距离Δr为5mm或更短,以便于有效地降低全向的远场噪声。在本实施例中,距离被设定为Δr=5mm。
麦克风单元1的减法器4用于计算两路输入信号之间的差,并输出差分信号(difference signal),并在这里接收延迟元件3的输出信号(其为经延迟元件3延迟后的第一麦克风2a的输出信号)、以及作为输入信号的第二麦克风2b的输出信号,从而减法器4输出的是第二麦克风2b的输出信号与经延迟元件3延迟后的第一麦克风2a的输出信号之间的差分信号。两个麦克风2a、2b之间的这一差分信号被作为麦克风单元1所检测的声音的电信号予以输出。
概括而言,当声音输入至具有这种配置的麦克风单元1的第一麦克风2a和第二麦克风2b时,第一麦克风2a和第二麦克风2b都输出一电信号,该电信号的相位和振幅对应于输入声音的相位和振幅。第一麦克风2a的输出信号经延迟元件3延迟并输入至减法器4,而第二麦克风2b的输出信号则不经延迟就输入至减法器4。因而,减法器4输出的是经延迟元件3延迟后的第一麦克风2a的输出信号与第二麦克风2b的输出信号之间的差分信号。换言之,具有第一麦克风2a和第二麦克风2b(均输入有声音)的麦克风单元1利用经延迟元件3延迟后的第一麦克风2a的输出信号(即,经延迟元件3延迟并具有对应于所输入声音的相位和振幅的相位和振幅的电信号)与第二麦克风2b的输出信号(即,具有对应于所输入声音的相位和振幅的相位和振幅且未经延迟的电信号)之间的差分信号来检测声音。
图3A及图3B均为显示在麦克风单元1中延迟量D(第一麦克风1a的输出信号经延迟元件3延迟的延迟时间)和零点之间关系的图表。零点是指这样一个位置,当声音从这一位置(声源的位置)发出时会使得第一麦克风2a的输出信号的相位等于第二麦克风2b的输出信号的相位。因而,使用延迟量D,零点限定为声源的这样一位置,从该位置到第一麦克风2a的声音传播时间与其到第二麦克风2b的声音传播时间之间的差等于延迟量D。换言之,假设Rd为对应于延迟量D的声音传播距离,Ra为从零点到第一麦克风2a的距离,Rb为从零点到第二麦克风2b的距离,则零点的位置是这样一个位置,其使得距离Ra和Rb之间的差为常量Rd(Rd=Rb-Ra)。
请参见图3A,这点将在下文加以详细阐述。在图3A中,假设第一麦克风2a和第二麦克风2b的位置分别为Fa、Fb,且第一麦克风2a和第二麦克风2b之间的中点为O,则零点位于下述所定义的曲面S上的任意一点P处。曲面S为满足等式Rd=Rb-Ra的点P的集合(轨迹),该等式定义出以连接位置Fa、Fb的线段L为轴的旋转对称面,并且曲面S具有位于线段L上的顶点So。中点O与顶点So之间的距离为(1/2)×Rd。曲面S的曲率随着延迟量D和从中点O到顶点So的距离的增大(减小)而增大(减小)。另一方面,如图3B所示,当延迟量为0(零)时,零点则位于平面T上的任意点Q,该平面T为满足等式Rb-Ra=0的点Q的集合(轨迹)。平面T穿过中点O并垂直于线段L。
如上所述,本实施例的麦克风单元1对第一麦克风2a的输出信号进行延迟以便将零点置于这样一个位置(曲面S上的位置),从这个位置到第一麦克风2a和第二麦克风2b的距离互不相同。这使得从零点发出的声音在以球状扩展(spread out)时(由此依据传播距离衰减声音的振幅)到达第一麦克风2a的传播距离不同于其到达第二麦克风2b的传播距离,从而输入至第一麦克风2a的声音的振幅不同于输入至第二麦克风2b的声音的振幅。因此,基于从零点所发出声音的第一麦克风2a和第二麦克风2b的输出信号在振幅上互不相同。即使两路输出信号在相位上彼此相同,基于从零点所发出声音的第一麦克风2a和第二麦克风2b的输出信号之间在振幅上的这种差异也会存在。因而,从零点发出的声音会导致两路输出信号之间的差,从而可利用这两路输出信号之间的差来检测从零点发出的声音。
图4A至图4F为在角坐标系中显示本实施例的麦克风单元1在不同延迟量D下对假定为远场噪声的500mm处远场声源的灵敏度特性的图表。另一方面,图5A至图5F为在角坐标系中显示麦克风单元1在不同延迟量D下对假定为近距离通话者的25mm处近场声源的灵敏度特性的图表。图6为在直角坐标系中显示麦克风单元1的灵敏度特性的图表,其与图5A至图5F中的图表相对应,并通过在直角坐标系中叠加图5A至图5F的曲线获得。
在图4A至图4F以及图5A至图5F中,坐标的原点对应于麦克风单元1的第一麦克风2a和第二麦克风2b之间的中点,且坐标的0°方向(零度)对应于从第一麦克风2a和第二麦克风2b之间的中点看过去时第二麦克风2b的方向。请注意到在图6中,对从图5A至图5F中0°方向位置所发出声音的检测灵敏度(最大灵敏度)均显示为0(零)dB。图4A至图4F、图5A至图5F及图6中所示的本实施例的麦克风单元1的灵敏度特性,是通过将第一麦克风2a和第二麦克风2b之间的距离Δr设定为Δr=5mm,并将声音的频率设定为人声的基频1kHz所获得的灵敏度特性。
从图4A至图4F显然看出,在假定为远场噪声的500mm处远场声源的情况中,零点出现在0μs延迟量D下的90°方向和270°方向的位置(即,与第一麦克风2a和第二麦克风2b等距的位置),并且当增加延迟量D时零点的位置会发生变化。随着延迟量D的增大,零点以更远离90°和270°方向并更接近180°方向的趋势移动。另外,在0μs的延迟量D下,对从零点所发出声音的检测灵敏度为0(零)。随着延迟量D的增大,该检测灵敏度会增大,而对从零点所发出声音的检测灵敏度相较于最大灵敏度(针对从0°方向的位置所发出声音的检测灵敏度)的降低量则会减小。
而且,从图5A至图5F及图6显然看出,在假定为近距离通话者的25mm处近场声源的情况中,零点出现在0μs延迟量D下的90°方向和270°方向的位置,并且当增加延迟量D时零点的位置会发生变化。随着延迟量D的增大,零点以更远离90°和270°方向并更接近180°方向的趋势移动。另外,在0μs的延迟量D下,对从零点所发出声音的检测灵敏度为0(零)。随着延迟量D的增大,该检测灵敏度会增大,而对从零点所发出声音的检测灵敏度相较于最大灵敏度(针对从0°方向的位置所发出声音的检测灵敏度)的降低量则会减小。将从最大灵敏度(针对从0°方向的位置所发出声音的检测灵敏度)到-10dB的检测灵敏度的角度范围定义为有效灵敏度的角度范围,则在0μs的延迟量D下有效灵敏度的角度范围为140°。随着延迟量D的增大,有效灵敏度的角度范围也增大,且在11.3μs的延迟量D下,有效灵敏度的角度范围为170°。
图7为显示在假定为近距离通话者的25mm处近场声源的情况下,麦克风单元1中延迟量D与零点处增益衰减(reduction)之间关系的图表。这里,零点处的增益衰减是指对从零点所发出声音的检测灵敏度相较于最大灵敏度的降低,其表明随着零点处增益衰减的降低,对从零点所发出声音的检测灵敏度会增大。图7显示出零点处增益衰减随着延迟量D的变化而发生的变化,其中横轴为延迟量D,竖轴为零点处的增益衰减。请注意,竖轴的绝对值标示零点处的增益衰减量,其表明随着竖轴的绝对值的减小,零点处的增益衰减也在降低。
此处图7所示的麦克风单元1中零点处的增益衰减是基于上述图5A至图5F和图6所示的结果而获得的结论。因而,其是通过采用本实施例的麦克风单元1而得到的结果,在本实施例中,第一麦克风2a和第二麦克风2b之间的距离Δr被设定为Δr=5mm,并且声音的频率被设定为人声的基频1kHz。从实践的角度来看,零点处的增益衰减需要为20dB或更低,或者更具体而言,其需要从人类听知觉考虑允许使用者能够不费力地听见并辨清声音。
从图7所示的结果可以理解到,较小(较大)的延迟量D会导致零点处增益衰减的增大(降低)。由此得到的一个结论是:当延迟量D为3.8μs或更大时,零点处的增益衰减为20dB或更低。通过将D除以Δr来对延迟量D与第一麦克风2a和第二麦克风2b之间的距离Δr(=5mm)进行归纳,得到的结果表明如果D/Δr(μs/mm)为0.76或更高,则零点处的增益衰减为20dB或更低。获得类似的多个结果表明,即使本实施例的麦克风单元1中第一麦克风2a和第二麦克风2b之间的距离Δr被设定为2mm或10mm,如果D/Δr(μs/mm)为0.76或更高,则零点处的增益衰减为20dB或更低。从这些结果可以得出,从实践的角度来看,为了通过抑制零点处的增益衰减来提高针对从零点所处位置发出的声音的检测灵敏度,D/Δr(μs/mm)需要为0.76或者更高(关系式0.76≤D/Δr通过抑制这种增益衰减来允许这种检测灵敏度的提高)。
图8为显示在麦克风单元1中延迟量D与降噪效果之间关系的图表。这里,降噪效果是指降低远场噪声(降低对从较远距离的位置发出的声音的检测灵敏度)的效果,更具体而言,其对应于对从较近距离的位置发出的声音的检测灵敏度与对从较远距离的位置发出的声音的检测灵敏度之间的差。在普通的非定向麦克风单元中,声音是基于不具有降噪效果的单个麦克风的输出信号来进行检测的,从而前一检测灵敏度(检测诸如需要被检测的通话语音之类的声音)与后一检测灵敏度(检测不需要被检测的声音)之间的差较小。与此相反,从图8中显然看出,在本实施例的麦克风单元中,前一灵敏度和后一灵敏度之间的差要更高于普通非定向麦克风单元中的这一差。
图8显示了通过改变延迟量D实际造成的降噪效果的测量结果,其中横轴为延迟量D而纵轴为降噪效果,其标示着降噪效果随着纵轴值的增大而提高。请注意,该降噪效果的测量是通过使用本实施例的麦克风单元1以及一用于对比的传统非定向麦克风并将这些麦克风单元置于真实噪声环境中而获得的,本实施例中第一麦克风2a和第二麦克风2b之间的距离Δr被设定为Δr=5mm。
请注意,从实践的角度来看,降噪效果需要为6dB或更大,更具体而言,其需要允许使用者从人类听知觉的角度能够感觉到噪声有效地降低。从图8所示的实际测量结果可以理解的是,较小(较大)的延迟量D会导致降噪效果的提高(降低)。由此得到的实际测量结果为,在延迟量D为10μs或更小时可以获得6dB或更高的降噪效果。通过将D除以Δr来对延迟量D与第一麦克风2a和第二麦克风2b之间的距离Δr(=5mm)进行归纳,得到的实际测量结果表明,如果D/Δr(μs/mm)为2.0或更低,则可以获得6dB或更高的降噪效果。获得类似的多个实际测量结果表明,即使本实施例的麦克风单元1中第一麦克风2a和第二麦克风2b之间的距离Δr被设定为2mm或10mm,如果D/Δr(μs/mm)为2.0或更低,则降噪效果为6dB或更高。从这些结果可以得出,从实践的角度来看,为了获得能够降低远场噪声的降噪效果,D/Δr(μs/mm)需要为2.0或者更低(关系式D/Δr≤2.0实现了这种能够降低远场噪声的降噪效果)。
从以上可以理解,在本实施例的麦克风单元1中,重要的是使延迟元件3以满足关系式0.76≤D/Δr≤2.0的延迟量D对第一麦克风2a的输出信号进行延迟。本实施例的麦克风单元1基于关系式D/Δr≤2.0使降低远场噪声成为可能,同时基于关系式0.76≤D/Δr能够提高对从零点位置发出的声音的检测灵敏度。因而,通过以满足关系式0.76≤D/Δr≤2.0的延迟量D对第一麦克风2a的输出信号进行延迟,本实施例的麦克风单元1能够在降低远场噪声的同时提高对从零点所发出声音的检测灵敏度。
如上所述,根据本实施例的麦克风单元1,第一麦克风2a的输出信号的延迟量D使得零点的位置到第一麦克风2a和第二麦克风2b的距离不同。为了基于此点确定有效灵敏度的角度范围,实际测量也通过将麦克风单元1置于各种位置来进行,以测量对从零点所处位置以及从零点所处位置以外的其他位置发出的声音的检测灵敏度。实际测量的结果表明,从零点所处位置以外的其他位置发出的声音能够以很高的灵敏度被检测到。这表明本实施例的麦克风单元1能够具有增大的有效灵敏度角度范围。
如前所述,本实施例的麦克风单元1使提高对从零点所发出声音的检测灵敏度成为可能,同时降低了远场噪声,并增大有效灵敏度的角度范围。换言之,本实施例的麦克风单元1借鉴了具有降低远场噪声特性的差动式麦克风单元的优点,同时又解决了在零点处音量等级降低(voice level reduction)的问题。更具体地,即使当通话者(使用者)的嘴巴处于零点处,麦克风单元1也能够将由零点所造成的通话者语音等级的降低最小化,从而使语音无法辨清(语音消退)的问题能够得以解决。尤其是当安装在移动电话中时,麦克风单元1可以有利地获得良好的语音质量。
图9为显示将本实施例的麦克风单元1安装在移动电话90中的一实例的正视图。请参见图9,本实施例的麦克风单元1例如安装在具有壳体91的移动电话90中,其具有形成在其一侧(面对使用者或通话者)的声音接收开口92a、92b;而第一麦克风2a和第二麦克风2b分别具有声音接收部20a、20b,其中声音接收部20a、20b分别面对声音接收开口92a、92b,并被置于声音接收开口92a、92b所放置的同一侧。当按照这种方式将麦克风单元1安装在移动电话90中时,零点会出现在通话者的方向上(在通话者这侧上)。即使按照这种方式安装在移动电话90中(即使零点出现在通话者的方向上),本实施例的麦克风单元1也能够提高对从零点所发出声音的检测灵敏度,并增大有效灵敏度的角度范围,使语音无法辨清(语音消退)的问题能够得以解决并获得良好的语音质量。
(第二实施例)
将参考图10阐述根据本发明第二实施例的麦克风单元1,图10为本实施例的麦克风单元1的示意性剖视图。除了还包括用于罩住第一麦克风2a和第二麦克风2b的罩体5、以及不包括第一实施例中使用的延迟元件3之外,本实施例的麦克风单元1与第一实施例中的麦克风单元1是一样的。更具体地,本实施例的麦克风单元1利用第一麦克风2a的输出信号(即,具有对应于其所输入声音的相位和振幅的相位和振幅且未经延迟的电信号)与第二麦克风2b的输出信号(即,具有对应于其所输入声音的相位和振幅的相位和振幅且未经延迟的电信号)之间的差分信号来检测声音。
罩体5具有连接至安装基板10的整个周围边缘(peripheral end)的端部(竖直壁的端部),其中安装基板10用于安装第一麦克风2a和第二麦克风2b。罩体5具有用于允许声音通过其输入的第一开口5a和第二开口5b。第一开口5a和第二开口5b形成于罩体5的顶壁中,即,形成在罩体5的同一个平面上(也即,在麦克风单元1的同一个平面上)。这里,从第一开口5a到第一麦克风2a(声音接收部20a)的距离(声音传播路径的长度)不同于从第二开口5b到第二麦克风2b(声音接收部20b)的距离(声音传播路径的长度),使得前一距离长于后一距离。从第一开口5a到第一麦克风2a的距离与从第二开口5b到第二麦克风2b的距离之间的差导致从第一开口5a到第一麦克风2a的声音传播时间与从第二开口5b到第二麦克风2b的声音传播时间之间的差。根据本实施例,这一时间差用于将零点定位于这样一个位置,从这个位置到第一开口5a(第一麦克风2a)的距离与其到第二开口5b(第二麦克风2b)的距离互不相同。
现在,假设Δr为第一开口5a与第二开口5b之间的距离,D为从第一开口5a到第一麦克风2a的声音传播时间与从第二开口5b到第二麦克风2b的声音传播时间之间的时间差。在本实施例中,从第一开口5a到第一麦克风2a的距离与从第二开口5b到第二麦克风2b的距离之间的距离差被选择或设定为,使时间差D满足关系式0.76≤D/Δr≤2.0。优选地,距离Δr为5mm或更短,以便于有效地降低全向远场噪声。在本实施例中,距离被设定为Δr=5mm。由于时间差D与第一实施例中的延迟量D以相同的方式起作用,因此可以理解的是,时间差D也可被称为延迟量D。本实施例的麦克风单元1也具有与第一实施例的麦克风单元相似的功能和效果。
(第三实施例)
将参考图11阐述根据本发明第三实施例的麦克风单元1,图11为本实施例麦克风单元1的示意性剖视图。除了还包括用于罩住第一麦克风2a和第二麦克风2b的罩体5以及用于延迟声音传播的传播延迟组件6、并且不包括第一实施例中使用的延迟元件3之外,本实施例的麦克风单元1与第一实施例中的麦克风单元1是一样的。罩体5具有连接至安装基板10的整个周围边缘的一端部(竖直壁的端部),其中安装基板10用于安装第一麦克风2a和第二麦克风2b。罩体5具有用于允许声音通过其得以输入的第一开口5a和第二开口5b。第一开口5a和第二开口5b形成于罩体5的顶壁中,即,形成在罩体5的同一个平面上(也即,在麦克风单元1的同一个平面上)。这里,从第一开口5a到第一麦克风2a(声音接收部20a)的距离等于从第二开口5b到第二麦克风2b(声音接收部20b)的距离。
传播延迟组件6是由,例如,毡制品(felt)之类的材料制成,并且其对声音进行延迟(延迟声音传播)而不会衰减声音的振幅。传播延迟组件6设置在第一开口5a与第一麦克风2a之间(即,在从第一开口5a到第一麦克风2a的声音传播路径上)。传播延迟组件6在第一开口5a与第一麦克风2a之间的设置,会导致从第一开口5a到第一麦克风2a的声音传播时间与从第二开口5b到第二麦克风2b的声音传播时间之间的时间差。根据本实施例,这一时间差被用作将零点定位在这样一个位置,从这个位置到第一开口5a(第一麦克风2a)的距离与其到第二开口5b(第二麦克风2b)的距离互不相同。
现在,假设Δr为第一开口5a与第二开口5b之间的距离,D为从第一开口5a到第一麦克风2a的声音传播时间与从第二开口5b到第二麦克风2b的声音传播时间之间的时间差。在本实施例中,传播延迟组件6被选择或设定为满足关系式0.76≤D/Δr≤2.0。优选地,距离Δr为5mm或更短,以便于有效地降低全向的远场噪声。在本实施例中,距离被设定为Δr=5mm。由于时间差D与第一实施例中的延迟量D以相同的方式起作用,因此可以理解的是,时间差D也可被称为延迟量D。本实施例的麦克风单元1具有与第一实施例的麦克风单元相似的功能和效果。
需要指出的是,本发明并不限于以上实施例,在本发明的构思与范围之内可进行各种修改。例如,在上述的第一实施例中,可以使用延迟元件对第二麦克风的输出信号进行延迟,而不是由延迟元件对第一麦克风的输出信号进行延迟。另外,在第一实施例中,也可以使用传播延迟组件(例如由毡制品之类的材料制成)代替延迟元件来对声音传播进行延迟,并可以将传播延迟组件置于第一或第二麦克风的声音接收部上。这样的布置也能够获得类似于第一实施例中实现的功能和效果。
此外,在第一至第三实施例中,所采用的第一和第二麦克风中的任一个都不限于以MEMS(硅麦克风)形式由振动膜和背电极构成的麦克风,而可以是驻极体电容的类型,其中振动膜由驻极体膜(带有剩余极化的电介质体)形成。而且,其还可以是电动式、电磁式或压电(晶体)式的麦克风。并且,在第二和第三实施例中,第一开口5a和第二开口5b可以形成在罩体的不同平面上(麦克风单元的不同平面)。这样的布置也能够实现第二和第三实施例中那样类似的功能和效果。
本发明虽以目前优选的实施例阐述如上,但这种阐述不应被解释为对本发明的限制。在阅读本说明书后,对于本领域的普通技术人员来说一些修改将变得明显、显然或显而易见。因此,所附的权利要求书应该被解释成涵盖落入本发明构思与范围内的所有修改和变动。
本申请基于2009年3月3日提交的日本专利申请2009-049921,其全部内容通过参考援引于此。

Claims (3)

1.一种麦克风单元,包括:
第一麦克风和第二麦克风,用于将声音转换成电信号作为输出信号,以便基于该第一麦克风和该第二麦克风的输出信号对声音进行检测;以及
延迟装置,用于对该第一麦克风的输出信号进行延迟,
其中,该延迟装置对该第一麦克风的输出信号进行延迟使得满足关系式0.76≤D/Δr≤2.0,其中D为用于该第一麦克风的输出信号的延迟量,Δr为该第一麦克风与该第二麦克风之间的距离;并且
其中,声音是利用该第一麦克风经该延迟装置延迟后的输出信号与该第二麦克风的输出信号之间的差分信号进行检测的。
2.如权利要求1所述的麦克风单元,其中,该延迟装置为一延迟元件。
3.如权利要求1所述的麦克风单元,其中,该延迟装置为用于延迟声音传播的传播延迟组件。
CN201010129654A 2009-03-03 2010-03-03 麦克风单元 Pending CN101827298A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049921A JP5293275B2 (ja) 2009-03-03 2009-03-03 マイクロホンユニット
JP2009-049921 2009-03-03

Publications (1)

Publication Number Publication Date
CN101827298A true CN101827298A (zh) 2010-09-08

Family

ID=42167414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010129654A Pending CN101827298A (zh) 2009-03-03 2010-03-03 麦克风单元

Country Status (5)

Country Link
US (1) US20100226507A1 (zh)
EP (1) EP2227034A1 (zh)
JP (1) JP5293275B2 (zh)
KR (1) KR20100099671A (zh)
CN (1) CN101827298A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026058A (zh) * 2010-12-29 2011-04-20 瑞声声学科技(深圳)有限公司 线控耳机装置及其设计方法
CN102595294A (zh) * 2012-03-06 2012-07-18 歌尔声学股份有限公司 一种mems麦克风
CN102638740A (zh) * 2012-02-17 2012-08-15 合肥讯飞数码科技有限公司 呼吸面罩的差分双麦克降噪方法
CN102740206A (zh) * 2011-04-02 2012-10-17 哈曼国际工业有限公司 双单元微机电***组件
CN107533135A (zh) * 2015-04-22 2018-01-02 罗伯特·博世有限公司 用于在主方向上发送声学信号和/或从主方向接收声学信号的设备
CN109788417A (zh) * 2018-12-25 2019-05-21 中音讯谷科技有限公司 一种数字阵列麦克风

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238964A (ja) * 2011-05-10 2012-12-06 Funai Electric Co Ltd 音分離装置、及び、それを備えたカメラユニット
JP5834818B2 (ja) * 2011-06-24 2015-12-24 船井電機株式会社 マイクロホンユニット、及び、それを備えた音声入力装置
JP5799619B2 (ja) * 2011-06-24 2015-10-28 船井電機株式会社 マイクロホンユニット
TWI429298B (zh) * 2013-01-29 2014-03-01 Hong Xiang Technology 麥克風校正方法
KR101480615B1 (ko) * 2013-05-29 2015-01-08 현대자동차주식회사 지향성 마이크로폰 장치 및 그의 동작방법
CN105679356B (zh) * 2014-11-17 2019-02-15 中兴通讯股份有限公司 录音方法、装置及终端
US10397711B2 (en) * 2015-09-24 2019-08-27 Gn Hearing A/S Method of determining objective perceptual quantities of noisy speech signals
KR102378675B1 (ko) * 2017-10-12 2022-03-25 삼성전자 주식회사 마이크로폰, 마이크로폰을 포함하는 전자 장치 및 전자 장치의 제어 방법
GB2575491A (en) * 2018-07-12 2020-01-15 Centricam Tech Limited A microphone system
US11170752B1 (en) * 2020-04-29 2021-11-09 Gulfstream Aerospace Corporation Phased array speaker and microphone system for cockpit communication
US11284187B1 (en) * 2020-10-26 2022-03-22 Fortemedia, Inc. Small-array MEMS microphone apparatus and noise suppression method thereof
CN113905305A (zh) * 2021-08-02 2022-01-07 钰太芯微电子科技(上海)有限公司 一种指向可变换的mems麦克风及电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577285U (zh) * 1980-06-13 1982-01-14
JPH05284588A (ja) 1992-03-30 1993-10-29 Casio Comput Co Ltd 音声入力装置及び送話装置
JPH07135694A (ja) * 1993-11-11 1995-05-23 Matsushita Electric Ind Co Ltd マイクロホン
JP3620133B2 (ja) 1996-01-16 2005-02-16 ソニー株式会社 ステレオマイクロフォン装置
US5854848A (en) 1996-10-08 1998-12-29 Umevoice, Inc. Noise control device
US7116792B1 (en) * 2000-07-05 2006-10-03 Gn Resound North America Corporation Directional microphone system
JP2003032779A (ja) * 2001-07-17 2003-01-31 Sony Corp 音処理装置、音処理方法及び音処理プログラム
JP2003044087A (ja) 2001-08-03 2003-02-14 Matsushita Electric Ind Co Ltd 騒音抑圧装置、騒音抑圧方法、音声識別装置、通信機器および補聴器
US7146014B2 (en) * 2002-06-11 2006-12-05 Intel Corporation MEMS directional sensor system
US7711136B2 (en) * 2005-12-02 2010-05-04 Fortemedia, Inc. Microphone array in housing receiving sound via guide tube
JP2007180896A (ja) 2005-12-28 2007-07-12 Kenwood Corp 音声信号処理装置および音声信号処理方法
JP2007300513A (ja) * 2006-05-01 2007-11-15 Ari:Kk マイクロフォン装置
US8638955B2 (en) * 2006-11-22 2014-01-28 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, method of producing the same, and information processing system
EP2007167A3 (en) * 2007-06-21 2013-01-23 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input-output device and communication device
JP5114106B2 (ja) * 2007-06-21 2013-01-09 株式会社船井電機新応用技術研究所 音声入出力装置及び通話装置
JP4938592B2 (ja) 2007-08-22 2012-05-23 オンセミコンダクター・トレーディング・リミテッド ハウリング抑制装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026058A (zh) * 2010-12-29 2011-04-20 瑞声声学科技(深圳)有限公司 线控耳机装置及其设计方法
CN102740206A (zh) * 2011-04-02 2012-10-17 哈曼国际工业有限公司 双单元微机电***组件
CN102740206B (zh) * 2011-04-02 2014-11-19 哈曼国际工业有限公司 双单元微机电***组件
CN102638740A (zh) * 2012-02-17 2012-08-15 合肥讯飞数码科技有限公司 呼吸面罩的差分双麦克降噪方法
CN102638740B (zh) * 2012-02-17 2015-06-10 合肥讯飞数码科技有限公司 呼吸面罩的差分双麦克降噪方法
CN102595294A (zh) * 2012-03-06 2012-07-18 歌尔声学股份有限公司 一种mems麦克风
CN102595294B (zh) * 2012-03-06 2015-01-21 歌尔声学股份有限公司 一种mems麦克风
CN107533135A (zh) * 2015-04-22 2018-01-02 罗伯特·博世有限公司 用于在主方向上发送声学信号和/或从主方向接收声学信号的设备
CN107533135B (zh) * 2015-04-22 2021-06-01 罗伯特·博世有限公司 用于在主方向上发送声学信号和/或从主方向接收声学信号的设备
CN109788417A (zh) * 2018-12-25 2019-05-21 中音讯谷科技有限公司 一种数字阵列麦克风

Also Published As

Publication number Publication date
JP2010206541A (ja) 2010-09-16
US20100226507A1 (en) 2010-09-09
KR20100099671A (ko) 2010-09-13
JP5293275B2 (ja) 2013-09-18
EP2227034A1 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
CN101827298A (zh) 麦克风单元
US8457342B2 (en) Differential microphone
WO2021036560A1 (zh) 无线耳机
KR102571141B1 (ko) 스피커와 마이크를 포함하는 전자 장치
US8948432B2 (en) Microphone unit
US20150341718A1 (en) Ear microphone
US20100142743A1 (en) Voice input apparatus
WO2007129507A1 (ja) カード型memsマイクロホン
US20120243721A1 (en) Differential Microphone Unit and Mobile Apparatus
US9438986B2 (en) In-ear headphone with sound pick-up capability
CN212115606U (zh) 麦克风结构和耳机
CN101835075A (zh) 麦克风单元
US8135144B2 (en) Microphone system, sound input apparatus and method for manufacturing the same
CN112291691A (zh) Mems压电微扬声器、微扬声器单元及电子设备
US6421444B1 (en) Embedded higher order microphone
CN112019985B (zh) 麦克风结构和电子设备
KR20080073022A (ko) 음향 송수신 장치
US10621967B2 (en) Ultrasonic lens for receiver application
CN113259820A (zh) 麦克风
CN113259819A (zh) 麦克风
JPH0970086A (ja) 骨伝導音声ピックアップ装置及び通話装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100908