CN101811660B - 一种共掺杂的纳米氧化锌粉体及制备方法 - Google Patents

一种共掺杂的纳米氧化锌粉体及制备方法 Download PDF

Info

Publication number
CN101811660B
CN101811660B CN2010101354984A CN201010135498A CN101811660B CN 101811660 B CN101811660 B CN 101811660B CN 2010101354984 A CN2010101354984 A CN 2010101354984A CN 201010135498 A CN201010135498 A CN 201010135498A CN 101811660 B CN101811660 B CN 101811660B
Authority
CN
China
Prior art keywords
zinc oxide
ion
metallic element
codope
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101354984A
Other languages
English (en)
Other versions
CN101811660A (zh
Inventor
张贤鹏
王建林
魏铁锋
张宇龙
杨晔
宋伟杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN2010101354984A priority Critical patent/CN101811660B/zh
Publication of CN101811660A publication Critical patent/CN101811660A/zh
Application granted granted Critical
Publication of CN101811660B publication Critical patent/CN101811660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种共掺杂的纳米氧化锌粉体及其制备方法,共掺杂的元素包括第一金属元素和第二金属元素,第一金属元素是钛元素,第二金属元素是铝、镓、铟或锡元素;按物质的量计,第一金属元素、第二金属元素和氧化锌中锌元素的总和为100份,其中第一金属元素和第二金属元素的总和占0.005~30份,并且第一金属元素与第二金属元素的份数比范围为1∶100至100∶1。与现有技术相比,本发明方法反应条件精确可控,所用设备简单、成本低廉,便于污染控制,易于大规模工业化生产;得到的共掺杂氧化锌粉体的掺杂均匀度高,粉体颗粒均匀呈近球形,具有较高的烧结活性,在高含量掺杂元素掺杂的前提下实现了纳米粉体的单相性。

Description

一种共掺杂的纳米氧化锌粉体及制备方法
技术领域
本发明属于无机纳米材料领域,特别涉及共掺杂的纳米氧化锌粉体及制备方法。 
背景技术
透明导电氧化物(Transparent Conductive Oxide,TCO)是一种具有较高自由载流子浓度的宽禁带半导体材料,其自由载流子来自于材料的缺陷或外来的掺杂。CdO是最早发明的TCO材料,随后,SnO2和In2O3基透明导电薄膜的研究工作在技术上走向成熟而进入市场,并逐渐成为主流TCO材料而得到广泛应用。20世纪80年代起,氧化锌(ZnO)基TCO薄膜研究逐步兴起。市场主流TCO材料是氧化铟锡(Indium Tin Oxide,ITO),但是,由于ITO中的铟是一种稀有金属,储量有限,同时由于市场对于TCO材料的需求急剧攀升,ZnO基TCO材料开始成为备受期望的替代材料而成为研究热点,目前铝掺杂氧化锌(Aluminum Doped Zinc Oxide,AZO)的电导率已经达到10-5Ω·cm量级,而其在可见光范围的透过率超过了85%,已经开始了市场化应用。除了电导率和透过率,折射率、热稳定性、掺杂元素的影响等特性也是ZnO基TCO材料的研究重点,这些特性的研究对推广ZnO基透明导电薄膜的应用领域、改善薄膜特性具有重要意义。研究表明,只有单一元素掺杂的氧化锌(单掺杂氧化锌)很难满足实际应用领域中对上述各特性的要求。 
早在1984年,T.Minami率先报导了利用射频磁控溅射以氧化物为靶材制备电阻率优于2×10-4Ω·cm数量级的AZO薄膜。至今为止,射频磁控溅射仍然是ZnO基TCO薄膜最有效的、适于工业大规模应用的制备方法,具有薄膜致密度高、均匀性好、易于大面积高速沉积、重复可靠等优点。利用这种方法制备薄膜时,溅射过程中靶材的质量直接关系到溅射工艺的稳定性和薄膜性能。在制备掺杂ZnO基薄膜时,一般选用的靶材有陶瓷靶或合金靶。南开大学于2009年11月在中国发明专利申请公开说明书CN101572279A就公开了采用Al或Ga掺杂ZnO陶瓷靶,或Zn-Al、Zn-Ga合金靶作为溅射靶材制备掺杂ZnO基TCO薄膜的方法。 
与合金靶相比,陶瓷靶是工业界更为广泛采用的溅射靶材。一般,陶瓷靶是通过将靶材粉体压力成型、高温烧结而获得,其中靶材粉体的质量对于陶瓷靶材的性能有很大影响。大部分掺杂ZnO粉体的制备是将氧化锌粉体与掺杂粉体进行球磨混合,再结合压力成型和高温烧结工艺进行制备。这种方法制备工艺相对简单,但是也存在一些不足:首先,采用球磨的方式难以将少量掺杂粉体均匀混合入氧化锌粉体中,尤其难以实现纳米级的均匀混合;其次,在球磨的过程中容易引入其他杂质,降低靶材的纯度,甚至由此影响靶材的质量;再次,所用粉体材料大多为微米量级,其烧结活性较低,需要超过1300℃的高温进行烧结,而在该温度下掺杂物与氧化锌易发生反应生成不导电的偏析相(如在铝掺杂氧化锌中生成铝酸锌相),导致靶材电导率的不均匀性,从而影响溅射过程中辉光的稳定性,进而影响薄膜质量。因此如何获得均匀掺杂且烧结活性高的纳米级掺杂氧化锌粉体是提高掺杂氧化锌陶瓷靶材性能的重要课题。 
发明内容
本发明要解决的第一个技术问题是针对上述现有技术提供一种共掺杂的纳米氧化锌粉体。 
本发明要解决的第二个技术问题是提供一种共掺杂的纳米氧化锌粉体的制备方法。 
本发明解决上述第一个技术问题所采用的技术方案为:一种共掺杂的纳米氧化锌粉体,包括氧化锌和共掺杂的元素,共掺杂的元素包括第一金属元素和第二金属元素,第一金属元素是钛元素,第二金属元素是铝、镓、铟或锡元素;按物质的量计,第一金属元素、第二金属元素和氧化锌中锌元素的总和为100份,其中第一金属元素和第二金属元素的总和占0.005~30份,并且第一金属元素与第二金属元素的份数比范围为1∶100至100∶1。 
本发明解决上述第二个技术问题所采用的技术方案为:一种制备共掺杂的纳米氧化锌粉体的方法,包括如下步骤: 
步骤1:将四氯化钛溶解到0~5℃去离子水中,形成0.1~5mol/L的水溶液; 
步骤3:将包含第二金属元素的金属盐和锌盐共同溶解到常温去离子水中形成0.5~6mol/L的盐溶液,按物质的量计,其中第二金属元素离子与锌离子之间的份数比范围为0.005∶100至1∶10; 
步骤3:将步骤1和步骤2中的两种水溶液混合、搅拌充分,形成0.5~3mol/L的金属盐水溶液,按物质的量计,钛离子、第二金属元素离子和锌离子的总和为100份,其中钛离子和第二金属元素离子的总和占0.005~30份,并且钛元素与第二金属元素的份数比范围为1∶100至100∶1。 
步骤4:将沉淀剂溶解到去离子水中形成1~6mol/L的沉淀剂溶液; 
步骤5:在转速为300~800转/分钟的搅拌条件下,将步骤3中的金属盐水溶液与步骤4中的沉淀剂溶液通过不同滴加通道同时滴入已预加去离子水的反应容器中;滴加过程中,控制金属盐水溶液和沉淀剂溶液的滴加速率,使反应容器内溶液的pH值介于5~10之间,温度介于10~60℃,获得共沉淀产物。 
步骤6:将步骤5中获得的共沉淀物陈化4~48小时后,用去离子水洗涤2~5次,再用无水乙醇洗涤1~3次,然后在80~110℃烘箱中烘干4~24小时得到干燥的白色产物。 
步骤7:将步骤6中的白色产物在300~800℃温度下煅烧1~5小时,即获得第一金属元素与第二金属元素共掺杂的纳米氧化锌粉体。 
为优化上述技术方案,采取的措施还包括: 
上述第二金属元素离子是铝离子、镓离子、铟离子或锡离子。 
上述包含第二金属元素的金属盐为硝酸铝、硝酸镓、硝酸铟或氯化锡。 
上述锌盐为硫酸锌、硝酸锌、醋酸锌或氯化锌。 
上述沉淀剂为氨水、碳酸铵、碳酸氢铵或尿素。 
与现有技术相比,本发明提供了一种共掺杂氧化锌纳米粉体的制备方法,该方法反应条件精确可控,所用设备简单、成本低廉,便于污染控制,易于大规模工业化生产;采用本发明的制备方法得到的共掺杂氧化锌粉体的掺杂均匀度高,粉体颗粒均匀呈近球形,具有较高的烧结活性,在高含量掺杂元素掺杂的前提下实现了纳米粉体的单相性;所以,本发明制备的粉体可用于高性能氧化锌基透明导电薄膜溅射靶材的制备。
附图说明
图1是实施例1(钛元素与铝元素的摩尔比为18∶9)的共掺杂氧化锌基纳米粉体的粉体形貌与粒径图; 
图2是实施例1(钛元素与铝元素的摩尔比为18∶9)的XRD物相图谱。 
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。 
图1和图2所示为本发明的示意图。 
实施例1: 
将四氯化钛滴加入5℃的去离子水中,配成1mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成1mol/L水溶液,其中铝离子与锌离子之间摩尔比为9∶73;将上述两溶液混合并加入适量去离子水,配成溶液的离子浓度为0.5mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为18∶9∶73;在400转/分钟的搅拌下以将上述盐溶液以50mL/min的速率与1mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在7.0~7.2之间,溶液温度为25℃,获得共沉淀产物;将沉淀物陈化10h后,用去离子水洗涤3次,再用无水乙醇洗涤2次,然后在110℃烘箱中烘干6h得到干燥的白色产物;将白色产物在500℃温度下煅烧3h,即为钛元素与铝元素的摩尔比为18∶9的共掺杂氧化锌纳米粉体。 
使用场发射扫描电子显微镜(SEM)观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径如图1所示。从图中可以看出,颗粒均匀呈近球形,粒径约为30nm。使用X-射线衍射仪(XRD)对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到图2。图2中,横坐标为2θ角,纵坐标为相对强度,从图2可以看出,该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例2: 
将四氯化钛滴加入0℃的去离子水中,配成3mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成3mol/L水溶液,其中铝离子与锌离子之间摩尔比为1∶44;将上述两溶液混合并加入适量去离子水,配成离子浓度为1mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为10∶2∶88;在500转/分钟的搅拌下以将上述盐溶液以30mL/min的速率与3mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在8.0~8.2之间,溶液温度为30℃,获得共沉淀产物;将沉淀物陈化24h后,用去离子水洗涤3次,再用无水乙醇洗涤1次,然后在100℃烘箱中烘干4h后得到干燥的白色产物;将白色产物在400℃温度下煅烧2h,即为钛元素与铝元素的摩尔比为10∶2的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形,粒径约为20nm。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例3: 
将四氯化钛滴加入0℃的去离子水中,配成5mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成6mol/L水溶液,其中铝离子与锌离子之间摩尔比为9∶82;将上述两溶液混合并加入适量去离子水,配成溶液的离子浓度为2mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为9∶9∶82;在600转/分钟的搅拌下以将上述盐溶液以40mL/min的速率与3mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在7.5~7.7之间,溶液温度为30℃,获得共沉淀产物;将沉淀物陈化12h后,用去离子水洗涤5次,再用无水乙醇洗涤2次,然后在100℃烘箱中烘干10h得到干燥的白色产物;将白色产物在300℃温度下煅烧4h,即为钛元素与铝元素的摩尔比为9∶9的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例4: 
将四氯化钛滴加入3℃的去离子水中,配成4mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成4mol/L水溶液,其中铝离子与锌离子之间摩尔比为8∶75;将上述两溶液混合并加入适量去离子水,配成溶液的离子浓度为1.5mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为17∶8∶75;在700转/分钟的搅拌下以将上述盐溶液以35mL/min的速率与2.5mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在7.4~7.6之间,溶液温度为20℃,获得共沉淀产物;将沉淀物陈化24h后,用去离子水洗涤4次,再用无水乙醇洗涤2次,然后在90℃烘箱中烘干10h得到干燥的白色产物;将白色产物在400℃温度下煅烧4h,即为钛元素与铝元素的摩尔比为17∶8的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化 锌的纤锌矿相结构,不存在第二相杂相。 
实施例5: 
将四氯化钛滴加入2℃的去离子水中,配成1mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成6mol/L水溶液,其中铝离子与锌离子之间摩尔比为3∶94;将上述两溶液混合并加入适量去离子水,配成溶液的离子浓度为3mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为3∶3∶94;在800转/分钟的搅拌下以将上述盐溶液以60mL/min的速率与3mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在8.5~8.7之间,容器中液体温度为30℃,获得共沉淀产物;将沉淀物陈化48h后,用去离子水洗涤3次,再用无水乙醇洗涤3次,然后在110℃烘箱中烘干24h得到干燥的白色产物;将白色产物在600℃温度下煅烧5h,即为钛元素与铝元素的摩尔比为3∶3的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例6: 
将四氯化钛滴加入0℃的去离子水中,配成2mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成4mol/L水溶液,其中铝离子与锌离子之间摩尔比为4∶94;将上述两者溶液混合并加入适量去离子水,配成溶液的离子浓度为2.5mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为2∶4∶94;在800转/分钟的搅拌下以将上述盐溶液以60mL/min的速率与2mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在8.4~8.6之间,溶液温度为20℃,获得共沉淀产物;将沉淀物陈化36h后,用去离子水洗涤5次,再用无水乙醇洗涤3次,然后在80℃烘箱中烘干24h得到干燥的白色产物;将白色产物在500℃温度下煅烧3h,即为钛元素与铝元素的摩尔比为2∶4的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例7: 
将四氯化钛滴加入0℃的去离子水中,配成5mol/L溶液;将硝酸锌与硝酸铝溶于 室温去离子水中,配成6mol/L水溶液,其中铝离子与锌离子之间摩尔比为1∶9;将上述两者溶液混合并加入适量去离子水,配成溶液的离子浓度为3mol/L的盐溶液,其中钛离子、铝离子、锌离子之间的摩尔比为29.7∶0.3∶70;在800转/分钟的搅拌下以将上述盐溶液以30mL/min的速率与6mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在9.8~10之间,溶液温度为60℃,获得共沉淀产物;将沉淀物陈化48h后,用去离子水洗涤5次,再用无水乙醇洗涤3次,然后在110℃烘箱中烘干24h得到干燥的白色产物;将白色产物在800℃温度下煅烧5h,即为钛元素与铝元素的摩尔比为29.7∶0.3的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例8: 
将四氯化钛滴加入0℃的去离子水中,配成0.1mol/L溶液;将硝酸锌与硝酸铝溶于室温去离子水中,配成0.5mol/L溶液,其中铝离子与锌离子之间摩尔比为0.005∶99.995;将上述两溶液混合并加入适量去离子水,配成溶液的离子浓度为0.5mol/L的盐溶液,其中钛离子与铝离子之间摩尔比为1∶100,钛、铝离子之和与锌离子之间的摩尔比为0.005∶99.995;在300转/分钟的搅拌下以将上述盐溶液以10mL/min的速率与1mol/L的氨水溶液通过不同滴加通道同时滴加到预先装有去离子水的反应容器中,滴加过程中调节氨水溶液的滴加速率、使反应容器内溶液的pH值保持在5.0~5.2之间,容器中液体温度为10℃,获得共沉淀产物;将沉淀物陈化4h后,用去离子水洗涤2次,再用无水乙醇洗涤1次,然后在80℃烘箱中烘干4h得到干燥的白色产物;将白色产物在300℃温度下煅烧1h,即为钛元素与铝元素的摩尔比为共掺杂氧化锌纳米粉体,其XRD结果与图2所示类似。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例9: 
其它条件同实施例2,所不同的是将实施例1中的将沉淀物陈化36h后,用去离子水洗涤5次,再用无水乙醇洗涤2次,然后在80℃烘箱中烘干15h得到干燥的白色产物;将白色产物在800℃温度下煅烧1h,即为钛元素与铝元素的摩尔比为10∶2的共 掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
实施例10: 
其它条件同实施例3,所不同的是将实施例1中的将沉淀物陈化24h后,用去离子水洗涤4次,再用无水乙醇洗涤3次,然后在90℃烘箱中烘干8h得到干燥的白色产物;将白色产物在400℃温度下煅烧4h,即为钛元素与铝元素的摩尔比为9∶9的共掺杂氧化锌纳米粉体。 
使用SEM观察该钛铝共掺杂氧化锌纳米粉体时,粉体的形貌与粒径与图1类似,颗粒均匀呈近球形。使用XRD对该钛铝共掺杂氧化锌纳米粉体进行物相图谱分析,判断有无第二相杂质时,得到与图2类似的结果,表明该钛铝共掺杂氧化锌纳米粉体均为氧化锌的纤锌矿相结构,不存在第二相杂相。 
上述实施实例中,硝酸铝可以为硝酸镓或硝酸铟或氯化锡所替代,沉淀剂氨水可以分别为碳酸铵、碳酸氢铵、尿素所替代,硝酸锌可以为硫酸锌、醋酸锌或氯化锌所替代,重复上述实施例1~8,同样制得共掺杂氧化锌纳米粉体,使用SEM观察该共掺杂氧化锌纳米粉体时同样得到类似图1的结果,使用XRD对该共掺杂氧化锌纳米粉体进行物相图谱分析时,同样得到类似图2的结果。 
本发明的最佳实施例已阐明,由本领域普通技术人员做出的各种变化或改型都不会脱离本发明的范围。 

Claims (6)

1.一种共掺杂的纳米氧化锌粉体,包括氧化锌和共掺杂的元素,其特征在于:共掺杂的元素包括第一金属元素和第二金属元素,第一金属元素是钛元素,第二金属元素是铝、镓、铟或锡元素;按物质的量计,第一金属元素、第二金属元素和氧化锌中锌元素的总和为100份,其中第一金属元素和第二金属元素的总和占0.005~30份,并且第一金属元素与第二金属元素的份数比范围为1∶100至100∶1。
2.一种制备权利要求1所述的一种共掺杂的纳米氧化锌粉体的方法,其特征在于:该方法包括如下步骤:
步骤1:将四氯化钛溶解到0~5℃去离子水中,形成0.1~5mol/L的水溶液;
步骤2:将包含第二金属元素的金属盐和锌盐共同溶解到常温去离子水中形成0.5~6mol/L的盐溶液,按物质的量计,其中第二金属元素离子与锌离子之间的份数比范围为0.005∶100至1∶10;
步骤3:将步骤1和步骤2中的两种水溶液混合、搅拌充分,形成0.5~3mol/L的金属盐水溶液,按物质的量计,钛离子、第二金属元素离子和锌离子的总和为100份,其中钛离子和第二金属元素离子的总和占0.005~30份,并且钛元素与第二金属元素的份数比范围为1∶100至100∶1;
步骤4:将沉淀剂溶解到去离子水中形成1~6mol/L的沉淀剂溶液;
步骤5:在转速为300~800转/分钟的搅拌条件下,将步骤3中的金属盐水溶液与步骤4中的沉淀剂溶液通过不同滴加通道同时滴入已预加去离子水的反应容器中;滴加过程中,控制金属盐水溶液和沉淀剂溶液的滴加速率,使反应容器内溶液的pH值介于5~10之间,温度介于10~60℃,获得共沉淀产物;
步骤6:将步骤5中获得的共沉淀物陈化4~48小时后,用去离子水洗涤2~5次,再用无水乙醇洗涤1~3次,然后在80~110℃烘箱中烘干4~24小时得到干燥的白色产物;
步骤7:将步骤6中的白色产物在300~800℃温度下煅烧1~5小时,即获得钛元素与第二金属元素共掺杂的纳米氧化锌粉体。
3.根据权利要求2所述的一种制备共掺杂的纳米氧化锌粉体的方法,其特征是:所述的第二金属元素离子是铝离子、镓离子、铟离子或锡离子。
4.根据权利要求2所述的一种制备共掺杂的纳米氧化锌粉体的方法,其特征是:所述的包含第二金属元素的金属盐为硝酸铝、硝酸镓、硝酸铟或氯化锡。
5.根据权利要求2所述的一种制备共掺杂的纳米氧化锌粉体的方法,其特征是:所述的锌盐为硫酸锌、硝酸锌、醋酸锌或氯化锌。
6.根据权利要求2所述的一种制备共掺杂的纳米氧化锌粉体的方法,其特征是:所述的沉淀剂为氨水、碳酸铵、碳酸氢铵或尿素。 
CN2010101354984A 2010-03-25 2010-03-25 一种共掺杂的纳米氧化锌粉体及制备方法 Active CN101811660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101354984A CN101811660B (zh) 2010-03-25 2010-03-25 一种共掺杂的纳米氧化锌粉体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101354984A CN101811660B (zh) 2010-03-25 2010-03-25 一种共掺杂的纳米氧化锌粉体及制备方法

Publications (2)

Publication Number Publication Date
CN101811660A CN101811660A (zh) 2010-08-25
CN101811660B true CN101811660B (zh) 2012-09-19

Family

ID=42619055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101354984A Active CN101811660B (zh) 2010-03-25 2010-03-25 一种共掺杂的纳米氧化锌粉体及制备方法

Country Status (1)

Country Link
CN (1) CN101811660B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154696B (zh) * 2011-03-17 2013-01-09 上海大学 镁银共掺氧化锌纳米晶体的制备方法
CN102586736B (zh) * 2012-02-23 2013-10-16 西北稀有金属材料研究院 一种掺杂氧化锌基溅射靶材及其制备方法
CN102757676B (zh) * 2012-05-10 2014-03-26 中国人民解放军总后勤部军需装备研究所 低发射率纳米涂料及其制备方法与应用
CN105197981B (zh) * 2015-09-14 2017-05-03 大连瑞源动力股份有限公司 高活性纳米氧化锌的制备
CN106676487B (zh) * 2016-10-09 2019-03-08 宁波森利电子材料有限公司 一种氧化锌基陶瓷溅射靶材及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590302A (zh) * 2003-08-29 2005-03-09 中国科学院过程工程研究所 一种制备具有高电导率的超细氧化锌粉体的共沉淀方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279525A (ja) * 1998-03-30 1999-10-12 Sakai Chem Ind Co Ltd 透明性熱線遮蔽材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590302A (zh) * 2003-08-29 2005-03-09 中国科学院过程工程研究所 一种制备具有高电导率的超细氧化锌粉体的共沉淀方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平11-279525A 1999.10.12

Also Published As

Publication number Publication date
CN101811660A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
CN106564967B (zh) 富锂锰基正极材料前驱体、正极材料及其制备方法
CN103413931B (zh) 硼掺杂的锂离子电池富锂正极材料及其制备方法
CN101811660B (zh) 一种共掺杂的纳米氧化锌粉体及制备方法
CN103794752B (zh) 一种核壳结构的高电压镍锰酸锂正极材料及其制备方法
CN101845614B (zh) 一种氧化锌基溅射靶材的制备方法
CN101844917A (zh) 一种掺杂氧化锌纳米粉体的制备方法
CN105118967A (zh) 一种金属氧化物包覆改性的掺杂三元正极材料及其制备方法
CN109713297A (zh) 一种一次颗粒定向排列的高镍正极材料及其制备方法
CN103682314A (zh) 一种包覆型球状富锂正极材料及其制备方法
CN102386391A (zh) 一种制备三元复合正极材料LiNixCoyMn1-x-yO2的方法
CN110078133B (zh) 一种铝掺杂类球形四氧化三钴及其制备方法与应用
CN102732927A (zh) 氧化锌/氧化亚铜异质结的制备方法
CN112537807B (zh) 一种高性能纳米棒状镍锰二元前驱体及其制备方法
CN106058189B (zh) 一种合成锂离子电池高容量负极材料的方法
CN107742720A (zh) 一种锂离子电池三元正极材料前驱体的制备方法
CN103811748A (zh) 一种核壳结构的锂离子电池正极材料及其制备方法
CN106953087B (zh) 钴酸锌、钴酸锌/碳布柔性复合材料的制备方法及其应用
CN102502850A (zh) 一种锰酸锂前驱体球形氢氧化锰的制备方法
CN103570056B (zh) 一种掺铝纳米氧化锌重包覆铝导电粉体的制备方法
CN105336503A (zh) 一种钴酸铜多孔微米棒/泡沫镍复合电极材料的制备方法
CN104779387B (zh) 锂离子电池LiNi1-x-yCoxAlyO2材料的制备方法
CN104022270B (zh) 一种镍锡合金/碳复合电极材料的制备方法
CN105390691A (zh) 一种液相模板法制备球形镍钴锰酸锂的方法
CN106159220B (zh) 两步法制备锂离子电池正极材料LiNi0.80Co0.15Al0.05O2的方法
CN102312231B (zh) 一种用溶胶凝胶法制备CuCrO2薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant