CN101803032A - 半导体装置及其制造方法 - Google Patents

半导体装置及其制造方法 Download PDF

Info

Publication number
CN101803032A
CN101803032A CN200880107842A CN200880107842A CN101803032A CN 101803032 A CN101803032 A CN 101803032A CN 200880107842 A CN200880107842 A CN 200880107842A CN 200880107842 A CN200880107842 A CN 200880107842A CN 101803032 A CN101803032 A CN 101803032A
Authority
CN
China
Prior art keywords
diode
groove
substrate
semiconductor device
tmbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880107842A
Other languages
English (en)
Other versions
CN101803032B (zh
Inventor
N·曲
A·格拉赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN101803032A publication Critical patent/CN101803032A/zh
Application granted granted Critical
Publication of CN101803032B publication Critical patent/CN101803032B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半导体装置,具有一个具有作为箝位元件的、集成的衬底PN二极管的沟槽式MOS势垒肖特基二极管(TMBS-Sub-PN),其特别适合作为具有约20V的击穿电压的Z功率二极管应用于机动车发电机***中,其中TMBS-Sub-PN由肖特基二极管、MOS结构以及PN二极管的一个组合组成并且衬底PN二极管的击穿电压BV_pn低于肖特基二极管的击穿电压BV_schottky并且低于MOS结构的击穿电压BV_mos。

Description

半导体装置及其制造方法
现有技术
本发明涉及一种具有作为箝位元件的、集成的衬底PN二极管的沟槽式MOS势垒肖特基二极管(Trench-MOS-Barrier-Schottky-Diode),以下简称为TMBS-Sub-PN,其特别适合作为具有约20V的击穿电压的Z功率二极管应用于机动车发电机***中。
在当今机动车中,越来越多的功能通过电部件实现。由此产生了对电功率的日益增长的需求。为了满足所述需求,必须提高机动车中的发电机***的效率。通常,在机动车发电机***中一般使用PN二极管作为Z二极管。PN二极管的优点一方面是反向电流小,另一方面是鲁棒性高。主要缺点是导通电压UF高。在室温下,电流在UF=0.7V下才开始流动。在普通运行条件中,例如在500A/cm2的电流密度下,UF上升直至超过1V,这意味着不可忽略的效率损失。
理论上,可使用肖特基二极管作为替换方案。与PN二极管相比,肖特基二极管具有显著更低的导通电压,例如在500A/cm2的高电流密度时为0.5V到0.6V。此外,作为多数载流子部件的肖特基二极管在快速开关运行时具有优势。然而,迄今在机动车发电机***中未使用肖特基二极管。这源于肖特基二极管的一些决定性缺点:1)与PN二极管相比更大的反向电流,2)反向电流对反向电压的极大依赖性,以及3)差的鲁棒性,尤其是在高温工作时。
存在改进肖特基二极管的各种建议。其中一个建议是例如在EP 0 707744 B1或者DE 694 28 996 T2中所描述的TMBS(沟槽式MOS势垒肖特基二极管)。如图1所示,TMBS由n+衬底1、n外延层2、至少两个在n外延层2中通过刻蚀实现的沟槽(Trenchs)6、芯片正面上的作为阳极电极的金属层4和芯片背面上的作为阴极电极的金属层5以及在沟槽6与金属层4之间的氧化层7组成。从电的角度来看TMBS是MOS结构(金属层4、氧化层7和n外延层2)与肖特基二极管(作为阳极的金属层4与作为阴极的n外延层2之间的肖特基势垒)的组合。
电流在流动方向上流过沟槽6之间的台型结构区域。沟槽6本身并不用于电流流动。因此,与传统的平面型肖特基二极管相比,TMBS中在流动方向上用于电流流动的有效面积更小。TMBS的优点在于反向电流的减小。在反向方向上,既在MOS结构中又在肖特基二极管中形成空间电荷区。这些空间电荷区随着电压的升高而扩展并且在小于TMBS的击穿电压的电压下在相邻沟槽6之间的区域的中心处接合。由此屏蔽了导致高的反向电流的肖特基效应并且减小了反向电流。所述屏蔽效果极大地取决于结构参数Dt(沟槽的深度)、Wm(沟槽之间的距离)、Wt(沟槽的宽度)以及To(氧化层的厚度),参见图1。
一种已知的用于制造TMBS的方式是:通过刻蚀n外延层2来实现沟槽6、生长氧化层7以及用金属来填充这些沟槽。只要沟槽的深度Dt显著大于沟槽之间的距离Wm,则空间电荷区在沟槽之间的台型结构区域中的扩展是准一维的。然而,TMBS的决定性缺点在于MOS结构的不足。在击穿时,在氧化层7内并且在n外延层2中直接在氧化层附近产生非常高的电场。反向电流主要沿着沟槽表面流过MOS结构的准反型层。因此,MOS结构可能由于“热”载流子从n外延层2注入到氧化层7中而退化并且在一定的运行条件下甚至被毁坏。因为形成反型沟道需要一定的时间(深耗尽),所以空间电荷区可以在快速开关过程开始时短时间地继续扩展并因此导致电场强度升高。这可能导致短暂的、不期望的、击穿中的运行。因此将TMBS用作Z二极管并且在击穿区域中运行TMBS是不可取的。
DE 10 2004 053 760中所建议的TMBS-PN提供了一种用于改善TMBS在击穿运行中的鲁棒性的替换方案。如图2所示,所述TMBS-PN由n+衬底1、n外延层2、至少两个刻蚀在n外延层2中的沟槽6、在芯片正面上的作为阳极电极的金属层4和在芯片背面上的作为阴极电极的金属层5以及沟槽6的侧壁与金属层4之间的氧化层7组成。沟槽8的下部区域用p掺杂的硅或多晶硅填充。特别是金属层4还可以由两个不同的、相叠放置的金属层组成或者由多晶硅与金属的组合组成。清楚起见,这未在图2中示出。
从电的角度来看,TMBS-PN是MOS结构(金属层4、氧化层7和n外延层2)、肖特基二极管(作为阳极的金属层4与作为阴极的n外延层2之间的肖特基势垒)以及PN二极管(作为阳极的p槽8与作为阴极的n外延层2之间的PN结)的组合。在TMBS-PN中,如果肖特基二极管4、2的导通电压比PN二极管的导通电压小得多,则电流在流动方向上如同在传统TMBS中那样仅仅流过肖特基二极管。
在反向方向上,在MOS结构、肖特基二极管以及PN二极管中形成空间电荷区。这些空间电荷区随着电压的升高而扩展并且在小于TMBS-PN的击穿电压的电压下在相邻沟槽6之间的区域的中心处接合。由此屏蔽了导致大的反向电流的肖特基效应并且减小了反向电流。所述屏蔽效果极大地取决于结构参数Dox(具有氧化层的沟槽部分的深度)、Wm(沟槽之间的距离)、Wt(沟槽或p槽的宽度)、Dp(具有p掺杂的硅或多晶硅的沟槽部分的深度,等于p槽的厚度)以及To(氧化层的厚度),参见图2。
TMBS-PN具有与TMBS类似的肖特基效应的屏蔽作用,但通过箝位功能附加地提供高鲁棒性。PN二极管的击穿电压BV_pn被如此设计,使得BV_pn低于肖特基二极管的击穿电压BV_schottky并且低于MOS结构的击穿电压BV_mos并且在沟槽的底部发生击穿。因此,在击穿运行中,反向电流如同TMBS中那样仅仅流过PN结而不流过MOS结构的反型层。因此TMBS-PN具有与PN二极管类似的鲁棒性。此外,在TMBS-PN中不需要担心“热”载流子的注入,因为在击穿时高场强不在MOS结构附近。因此TMBS-PN非常适合作为Z功率二极管应用于机动车发电机***中。
发明内容
本发明的核心在于具有高鲁棒性和更小导通电压的、适合作为Z功率二极管应用于机动车发电机***中的肖特基二极管以及制造这种肖特基二极管时的简单的过程控制。
根据本发明的肖特基二极管是具有作为箝位元件的、集成的衬底PN二极管的TMBS。以下将其简称为“TMBS-Sub-PN”。
现在,p槽在根据本发明的肖特基二极管中一直延伸至n+衬底。TMBS-Sub-PN的击穿电压由p槽与n+衬底之间的pn结确定。在此,如此选择p槽的设计,使得衬底PN二极管的击穿电压BV_pn低于肖特基二极管的击穿电压BV_schottky并且低于MOS结构的击穿电压BV_mos。在击穿时,氧化层中的电场比传统TMBS中的情形低得多。此外,反向电流主要流过衬底PN二极管而不是MOS结构的反型层。
根据本发明的肖特基二极管具有如下优点:与传统的TMBS相比,通过衬底PN二极管的箝位功能实现了高鲁棒性。因此,根据本发明的肖特基二极管以有利的方式适合作为Z二极管应用于机动车发电机***中,其在氧化层处具有更小的场强。与TMBS和TMBS-PN相比,根据本发明的肖特基二极管由于更薄的外延层而具有更小的导通电压并且因此具有更小的体电阻。与TMBS-PN相比,在制造根据本发明的肖特基二极管时进行有利的、更简单的过程控制。
具有替换方案的建议的结构和功能的详细描述
附图
图1和2示出已由现有技术公开的实施方式。在此,图1中示出了沟槽式MOS势垒肖特基二极管(TMBS)并且图2中示出了在沟槽的下部区域中具有p掺杂的硅或多晶硅的TMBS-PN。图3中示出了本发明的TMBS-Sub-PN的实施例。
如图3所示,本发明的TMBS-Sub-PN由n+衬底1、n外延层2、至少两个被刻蚀穿过n外延层2直至n+衬底1的沟槽6、在芯片正面上的作为阳极电极的金属层4和在芯片背面上的作为阴极电极的金属层5以及沟槽6的侧壁上的厚度为To的氧化层7组成,其中,沟槽6具有宽度Wt、深度Dt以及相邻沟槽6之间的距离Wm。用p掺杂的硅或多晶硅填充沟槽8中氧化层7之间的区域,并且在沟槽8的上部区域中具有用于与金属层4欧姆接触的、附加的、薄的p+层9。
从电的角度来看,TMBS-Sub-PN是一个MOS结构、肖特基二极管以及衬底PN二极管的组合,其中,MOS结构即金属层4结合p槽8、氧化层7和n外延层2,肖特基二极管具有作为阳极的金属层4与作为阴极的n外延层2之间的肖特基势垒,衬底PN二极管的PN结位于作为阳极的p槽8与作为阴极的n+衬底1之间。P槽8被如此设计,使得TMBS-Sub-PN的击穿电压由p槽8与n+衬底1之间的PN结确定。此外还应当避免柔滑的反向特征曲线,其方式是如此选择p槽8的掺杂和几何形状,使得空间电荷区在反向情形中不延伸至沟槽的表面。
如果TMBS-Sub-PN的导通电压大大小于衬底PN二极管的导通电压,则在TMBS-Sub-PN中电流在流动方向上仅仅流过肖特基二极管,如在传统的TMBS中或TMBS-PS中那样。在反向方向上,在MOS结构、肖特基二极管以及衬底PN二极管中形成空间电荷区。这些空间电荷区随着电压的升高既在外延层2中扩展又在p槽8中扩展,并且在小于TMBS-Sub-PN的击穿电压的电压下在相邻沟槽6之间的区域的中心处接合。由此屏蔽了导致高反向电流的肖特基效应(Barrier Lowering:势垒降低)并且减小了反向电流。此屏蔽效果主要由MOS结构决定并且极大地取决于结构参数Dt(沟槽的深度)、Wm(沟槽之间的距离)、Wt(沟槽的宽度)以及To(氧化层的厚度),参见图3。
TMBS-Sub-PN具有与TMBS类似的对肖特基效应的屏蔽作用,但附加地通过箝位功能来提供高鲁棒性。衬底PN二极管的击穿电压BV_pn被如此设计,使得BV_pn低于肖特基二极管的击穿电压BV_schottky以及MOS结构的击穿电压BV_mos并且在p槽8与n+衬底1之间的衬底PN结处发生击穿。因此,在击穿运行中,反向电流仅仅流过衬底PN结而不流过MOS结构的反型层,如同在TMBS中那样。因此,TMBS-Sub-PN具有与PN二极管类似的鲁棒性。此外,在TMBS-Sub-PN击穿时氧化层中的场强比传统的TMBS的1/3更小,如22V二极管的器件仿真所示。因此TMBS-Sub-PN良好地适合作为Z二极管应用于机动车发电机***中。
与TMBS-PN相比,本发明的TMBS-Sub-PN表现出更小导通电压,因为TMBS-Sub-PN的击穿电压不是由p槽8与n外延层2之间的pn结确定的(参见图2),而是由p槽8与n+衬底1之间的衬底PN结确定的(参见图3)。省去了在TMBS-PN中存在的、位于p区域8与n+衬底1之间的n掺杂的外延层的部分。因此,在TMBS-Sub-PN中,为了实现相同的击穿电压,总外延厚度——并且因此体电阻——更小。这有利地在前向运行时起更小的导通电压的作用。
与TMBS-PN相比,TMBS-Sub-PN的另一优点在于简单得多的过程控制。具有作为箝位元件的、集成的衬底PN二极管的TMBS-Sub-PN或者TMBS可以在用于功率MOS的标准沟槽工艺中通过较小的修改来制造。一种可能的TMBS-Sub-PN制造方法可以如下进行:
-作为原材料的n+衬底
-外延附生
-直至n+衬底的沟槽刻蚀
-沟槽表面的氧化
-在沟槽的底部处刻蚀氧化层
-用p掺杂的硅或多晶硅填充沟槽
-在沟槽的上部区域中扩散薄的p+
-正面和背面上的金属化
TMBS-Sub-PN还可以在芯片的边缘区域中具有用于减少边缘场强的附加结构。这可以例如是低掺杂的p区域、场板或者与现有技术类似的相应结构。

Claims (10)

1.具有一沟槽式MOS势垒肖特基二极管的半导体装置,所述沟槽式MOS势垒肖特基二极管包括肖特基二极管、MOS结构以及作为箝位元件的PN二极管的至少一个组合,其特征在于,所述PN二极管被构造为集成的衬底PN二极管并且所述衬底PN二极管的击穿电压(BV_pn)低于所述肖特基二极管的击穿电压(BV_schottky)并且低于所述MOS结构的击穿电压(BV_mos)。
2.根据权利要求1所述的半导体装置,其特征在于,所述装置可以在击穿中以高电流运行。
3.根据权利要求1或2所述的半导体装置,其特征在于,所述半导体装置被作为Z二极管、尤其是具有约20V的击穿电压的Z二极管应用于机动车发电机***中。
4.根据权利要求1、2或3中任一项所述的半导体装置,其特征在于,一n外延层(2)位于n+衬底(1)上并且用作阴极区,在二维示图中存在至少两个被刻蚀穿过所述n外延层(2)直至所述n+衬底(1)的沟槽(6)以及位于所述沟槽(6)的侧壁上的氧化层(7),所述沟槽(6)中的、所述氧化层(7)之间的区域(8)是用p掺杂的硅或多晶硅填充的并且用作所述衬底PN二极管的阳极区,并且薄的p+层(9)位于所述沟槽(8)的上部区域中。
5.根据权利要求1至4中任一项所述的半导体装置,其特征在于,一金属层(5)位于芯片背面上并且用作阴极电极,并且一金属层(4)位于芯片正面上,具有与p+层(9)的欧姆接触和具有与所述n外延层(2)的肖特基接触并且用作阳极电极。
6.根据以上权利要求中任一项所述的半导体装置,其特征在于,所述沟槽(6)被刻蚀穿过所述n外延层(2)直至所述n+衬底(1)并且具有一矩形形状、一U形形状或者一另外的、可预先给定的、可选择的形状。
7.根据以上权利要求中任一项所述的半导体装置,其特征在于,所述p槽(8)被如此设计,使得在所述p槽(8)与所述n+衬底(1)之间的结处不发生穿通效应而发生所述衬底PN二极管的击穿。
8.根据以上权利要求中任一项所述的半导体装置,其特征在于,金属化由两个或更多个相叠放置的金属层组成。
9.根据以上权利要求中任一项所述的半导体装置,其特征在于,所述沟槽(6)被设置在带状布局中或者被设置为岛。
10.根据权利要求9所述的半导体装置,其特征在于,所述岛被设计成圆形、六角形或者可预先给定的形状。
CN200880107842XA 2007-09-21 2008-09-15 半导体装置及其制造方法 Expired - Fee Related CN101803032B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007045185.9 2007-09-21
DE102007045185A DE102007045185A1 (de) 2007-09-21 2007-09-21 Halbleitervorrichtung und Verfahren zu deren Herstellung
PCT/EP2008/062251 WO2009040265A1 (de) 2007-09-21 2008-09-15 Halbleitervorrichtung

Publications (2)

Publication Number Publication Date
CN101803032A true CN101803032A (zh) 2010-08-11
CN101803032B CN101803032B (zh) 2013-03-27

Family

ID=40028426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880107842XA Expired - Fee Related CN101803032B (zh) 2007-09-21 2008-09-15 半导体装置及其制造方法

Country Status (5)

Country Link
US (1) US8497563B2 (zh)
JP (1) JP5453270B2 (zh)
CN (1) CN101803032B (zh)
DE (1) DE102007045185A1 (zh)
WO (1) WO2009040265A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094356A (zh) * 2011-11-04 2013-05-08 上海华虹Nec电子有限公司 功率二极管的器件结构
CN103137711A (zh) * 2011-11-21 2013-06-05 朱江 一种具有绝缘层隔离结构肖特基半导体装置及其制备方法
CN103137684A (zh) * 2011-11-21 2013-06-05 朱江 一种具有绝缘层隔离的超结结构半导体晶片及其制备方法
CN103137710A (zh) * 2011-11-21 2013-06-05 朱江 一种具有多种绝缘层隔离的沟槽肖特基半导体装置及其制备方法
CN103199119A (zh) * 2012-01-06 2013-07-10 朱江 一种具有超结结构的沟槽肖特基半导体装置及其制备方法
CN103208511A (zh) * 2012-01-13 2013-07-17 盛况 一种超结肖特基半导体装置及其制备方法
CN103208533A (zh) * 2012-01-13 2013-07-17 朱江 一种肖特基超结半导体装置及其制备方法
CN103378174A (zh) * 2012-04-29 2013-10-30 朱江 一种具有电荷补偿肖特基半导体装置及其制备方法
CN103378172A (zh) * 2012-04-28 2013-10-30 朱江 一种肖特基半导体装置及其制备方法
CN103515449A (zh) * 2012-06-14 2014-01-15 朱江 一种具有电荷补偿沟槽肖特基半导体装置及其制备方法
CN103578999A (zh) * 2012-08-01 2014-02-12 上海华虹Nec电子有限公司 一种超级结的制备工艺方法
CN103718297A (zh) * 2011-08-02 2014-04-09 罗伯特·博世有限公司 超结肖特基pin二极管
CN113193052A (zh) * 2021-04-29 2021-07-30 东莞市佳骏电子科技有限公司 一种大导通电流的碳化硅二极管

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028240A1 (de) * 2009-08-05 2011-02-10 Robert Bosch Gmbh Feldeffekttransistor mit integrierter TJBS-Diode
DE102009028252A1 (de) * 2009-08-05 2011-02-10 Robert Bosch Gmbh Halbleiteranordnung
DE102009046606A1 (de) 2009-11-11 2011-05-12 Robert Bosch Gmbh Schutzelement für elektronische Schaltungen
JP5579548B2 (ja) * 2010-09-08 2014-08-27 新電元工業株式会社 半導体装置、および、その製造方法
CN103199102A (zh) * 2012-01-06 2013-07-10 盛况 一种具有超结结构的肖特基半导体装置及其制备方法
DE102012201911B4 (de) * 2012-02-09 2022-09-22 Robert Bosch Gmbh Super-Junction-Schottky-Oxid-PiN-Diode mit dünnen p-Schichten unter dem Schottky-Kontakt
CN103378131A (zh) * 2012-04-29 2013-10-30 朱江 一种电荷补偿肖特基半导体装置及其制造方法
CN103378176B (zh) * 2012-04-30 2017-10-20 朱江 一种具有电荷补偿肖特基半导体装置及其制造方法
DE102015118165A1 (de) 2015-10-23 2017-04-27 Infineon Technologies Ag Elektrische baugruppe, umfassend eine halbleiterschaltvorrichtung und eine klemmdiode
CN114883417B (zh) * 2022-07-04 2022-10-18 深圳市威兆半导体股份有限公司 一种具有导通压降自钳位的半导体器件及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
US6252288B1 (en) * 1999-01-19 2001-06-26 Rockwell Science Center, Llc High power trench-based rectifier with improved reverse breakdown characteristic
JP3860705B2 (ja) * 2000-03-31 2006-12-20 新電元工業株式会社 半導体装置
JP4547790B2 (ja) * 2000-10-05 2010-09-22 富士電機システムズ株式会社 半導体装置
CN1179397C (zh) * 2001-09-27 2004-12-08 同济大学 一种制造含有复合缓冲层半导体器件的方法
CN1663049A (zh) * 2002-06-26 2005-08-31 剑桥半导体有限公司 横向半导体器件
JP2006100645A (ja) * 2004-09-30 2006-04-13 Furukawa Electric Co Ltd:The GaN系半導体集積回路
DE102004053760A1 (de) 2004-11-08 2006-05-11 Robert Bosch Gmbh Halbleitereinrichtung und Verfahren für deren Herstellung
DE102004053761A1 (de) 2004-11-08 2006-05-18 Robert Bosch Gmbh Halbleitereinrichtung und Verfahren für deren Herstellung
DE102004059640A1 (de) * 2004-12-10 2006-06-22 Robert Bosch Gmbh Halbleitereinrichtung und Verfahren zu deren Herstellung
JP5303819B2 (ja) 2005-08-05 2013-10-02 住友電気工業株式会社 半導体装置およびその製造方法
JP4412344B2 (ja) 2007-04-03 2010-02-10 株式会社デンソー 半導体装置およびその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718297A (zh) * 2011-08-02 2014-04-09 罗伯特·博世有限公司 超结肖特基pin二极管
CN103718297B (zh) * 2011-08-02 2018-08-14 罗伯特·博世有限公司 超结肖特基pin二极管
CN103094356A (zh) * 2011-11-04 2013-05-08 上海华虹Nec电子有限公司 功率二极管的器件结构
CN103094356B (zh) * 2011-11-04 2015-08-19 上海华虹宏力半导体制造有限公司 功率二极管的器件结构
CN103137711A (zh) * 2011-11-21 2013-06-05 朱江 一种具有绝缘层隔离结构肖特基半导体装置及其制备方法
CN103137684A (zh) * 2011-11-21 2013-06-05 朱江 一种具有绝缘层隔离的超结结构半导体晶片及其制备方法
CN103137710A (zh) * 2011-11-21 2013-06-05 朱江 一种具有多种绝缘层隔离的沟槽肖特基半导体装置及其制备方法
CN103137710B (zh) * 2011-11-21 2016-08-03 朱江 一种具有多种绝缘层隔离的沟槽肖特基半导体装置及其制备方法
CN103199119A (zh) * 2012-01-06 2013-07-10 朱江 一种具有超结结构的沟槽肖特基半导体装置及其制备方法
CN103208533A (zh) * 2012-01-13 2013-07-17 朱江 一种肖特基超结半导体装置及其制备方法
CN103208511A (zh) * 2012-01-13 2013-07-17 盛况 一种超结肖特基半导体装置及其制备方法
CN103378172A (zh) * 2012-04-28 2013-10-30 朱江 一种肖特基半导体装置及其制备方法
CN103378174A (zh) * 2012-04-29 2013-10-30 朱江 一种具有电荷补偿肖特基半导体装置及其制备方法
CN103515449A (zh) * 2012-06-14 2014-01-15 朱江 一种具有电荷补偿沟槽肖特基半导体装置及其制备方法
CN103515449B (zh) * 2012-06-14 2017-08-08 朱江 一种具有电荷补偿沟槽肖特基半导体装置及其制备方法
CN103578999A (zh) * 2012-08-01 2014-02-12 上海华虹Nec电子有限公司 一种超级结的制备工艺方法
CN113193052A (zh) * 2021-04-29 2021-07-30 东莞市佳骏电子科技有限公司 一种大导通电流的碳化硅二极管
CN113193052B (zh) * 2021-04-29 2023-02-14 东莞市佳骏电子科技有限公司 一种大导通电流的碳化硅二极管

Also Published As

Publication number Publication date
US20100237456A1 (en) 2010-09-23
JP5453270B2 (ja) 2014-03-26
DE102007045185A1 (de) 2009-04-02
JP2010539719A (ja) 2010-12-16
US8497563B2 (en) 2013-07-30
CN101803032B (zh) 2013-03-27
WO2009040265A1 (de) 2009-04-02

Similar Documents

Publication Publication Date Title
CN101803032B (zh) 半导体装置及其制造方法
CN100557823C (zh) 半导体装置及用于其制造的方法
CN102473738B (zh) 半导体装置
CN1812121B (zh) 绝缘栅半导体器件及其制造方法
US20160197143A1 (en) Semiconductor device and method for manufacturing the semiconductor device
KR20070084016A (ko) 반도체 장치 및 반도체 장치의 제조 방법
US9263599B2 (en) Semiconductor system and method for manufacturing same
CN105957864A (zh) 具有沟槽型mos势垒肖特基二极管的半导体装置
US9806152B2 (en) Vertical insulated gate turn-off thyristor with intermediate p+ layer in p-base
TW201340336A (zh) 高壓渠溝接合屏障肖特基二極體
JP5726314B2 (ja) ショットキーダイオードを備えた半導体装置
JP2024045595A (ja) 半導体素子、半導体装置
CN113451397A (zh) 一种rc-igbt器件及其制备方法
CN102157377B (zh) 超结vdmos器件及其制造方法
CN116404039B (zh) 一种功率半导体器件及其制造方法
TW201125129A (en) Schottkydiode
CN105957901B (zh) 具有沟槽-肖特基-势垒-肖特基-二极管的半导体装置
US20120187521A1 (en) Schottky diode having a substrate p-n diode
CN107195691B (zh) 半导体设备以及其制造方法
CN117855290A (zh) 快恢复二极管器件及其制作方法
CN106033781A (zh) 肖特基势垒二极管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130327

Termination date: 20200915

CF01 Termination of patent right due to non-payment of annual fee