CN101714635A - 用于聚合物电解质膜燃料电池的电极、膜电极组件、及其制造方法 - Google Patents

用于聚合物电解质膜燃料电池的电极、膜电极组件、及其制造方法 Download PDF

Info

Publication number
CN101714635A
CN101714635A CN200910005322A CN200910005322A CN101714635A CN 101714635 A CN101714635 A CN 101714635A CN 200910005322 A CN200910005322 A CN 200910005322A CN 200910005322 A CN200910005322 A CN 200910005322A CN 101714635 A CN101714635 A CN 101714635A
Authority
CN
China
Prior art keywords
catalyst
fuel cell
dielectric film
electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910005322A
Other languages
English (en)
Other versions
CN101714635B (zh
Inventor
权洛显
林泰源
黄仁哲
安炳琪
李在承
李起燮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of CN101714635A publication Critical patent/CN101714635A/zh
Application granted granted Critical
Publication of CN101714635B publication Critical patent/CN101714635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供一种制造膜电极组件(MEA)以及MEA用电极的方法,该MEA是车用聚合物电解质膜燃料电池的核心元件。本发明的制造MEA的方法实现了通过包括真空消泡工艺的催化剂浆制造过程来提供与常规催化剂浆相比,高浓度的、均匀分散的催化剂浆。

Description

用于聚合物电解质膜燃料电池的电极、膜电极组件、及其制造方法
相关申请的交叉引用
本申请依据35U.S.C.§119(a),要求于2008年10月6日申请的韩国专利申请第10-2008-0097559号的优先权,该申请的全部内容引入本文作为参考。
技术领域
本公开涉及用于聚合物电解质膜燃料电池的电极、包括该电极的膜电极组件(MEA)、以及它们的制造方法。本发明还涉及在车用聚合物电解质膜燃料电池(PEMFC)中使用的电极、包括该电极的膜电极组件、以及使用通过高浓度催化剂分散法制备的催化剂浆,来制造具有高性能和最优设计的用于聚合物电解质膜燃料电池的电极和膜电极组件的方法。
背景技术
本发明涉及制造膜电极组件(MEA)的方法,该MEA是车用聚合物电解质膜燃料电池的核心元件。为了制造聚合物电解质膜燃料电池的MEA催化剂电极,首先需要开发具有高度流动性的高度分散的催化剂浆。然而,还未知用于均匀地分散高浓度的纳米尺寸的催化剂颗粒的技术方法。用于分散低浓度的催化剂颗粒的技术已有报道。
根据制造电极的通用方法,由于难以分散高浓度的催化剂颗粒,适当地制备低浓度的催化剂浆并用于通过喷涂来制造电极。然而,当使用此种方法时,催化剂损失率增加,并且因此应该涂覆催化剂几次,导致加工时间增加,从而增加制造成本。
根据催化剂浆分散技术,有可能通过应用高压将催化剂颗粒中的离聚物填充进原生孔隙(primary pore)中;然而,在使用此技术的过程中,难以实施制造工艺,并且由于在原生孔隙中的空气层不完全被消除,因此可能存在许多与离聚物填充相关的限制。
用于适当地制造MEA的常规方法包括其中在聚合物电解质膜上形成电极层的催化剂涂覆膜(CCM)法、其中在气体扩散层(GDLs)上形成催化剂层的催化剂涂覆GDL(CCG)法、等等。还提到了一种贴花法(decal method),该方法是在CCM法中使用的一种间接贴花工艺;然而,上面提到的方法中没有一种非常适合应用于制造MEA。
使用贴花法(对应于CCM法),很容易控制催化剂层的厚度和面积,确保很高的大规模生产率。因此,与CCG法相比,使用贴花法有可能减少聚合物电解质膜与催化剂层之间的接触阻抗(contactresistance),并且有可能在贴花期间通过热压形成致密的催化剂层,从而改善耐用性。然而,与CCG法相比,通过贴花法形成的催化剂层可能具有较低的孔隙度,并且因此可能使初始电池性能(initial cellperformance)下降。
因此,有必要提供一种使用由高浓度催化剂分散法制备的高效的催化剂浆来制造被最优设计的膜电极组件的方法,该方法能减少催化剂损失并提高催化剂利用率。
本背景技术章节中公开的上述信息仅用于增强对本发明的背景技术的理解,并且因此可能含有不形成为本国本领域普通技术人员所公知的现有技术的信息。
发明内容
在一个方面,本发明提供用于聚合物电解质膜燃料电池的电极、包括该电极的膜电极组件、以及它们的制造方法。根据本发明的优选实施方式,与常规的催化剂浆相比,适当地提供均匀分散的高浓度催化剂浆以提高催化剂利用率,并且在催化剂浆分散中使用的溶剂的比例被优选地控制以改善电极性能,从而制造最优设计的膜电极组件。根据本发明的其他优选实施方式,本发明提供通过贴花法制造用于聚合物电解质膜燃料电池的电极和包括该电极的膜电极组件的方法,该方法可适当地防止当通过常规贴花法制造膜电极组件时所引起的燃料电池的性能下降,以确保很高的大规模生产率,减少催化剂层之间的接触阻抗,并改善膜电极组件的耐用性。
在一个优选的方面,本发明提供适当地制造用于聚合物电解质膜燃料电池的电极的方法,该方法包括:通过超声波和高速搅拌分散初始催化剂颗粒;通过真空消泡使离聚物充填并吸附进催化剂颗粒的原生孔隙中;通过珠磨分散小量的残余的大催化剂颗粒;去除制造过程期间生成的微泡;通过最终过滤形成去除了大催化剂颗粒的催化剂浆;以及将催化剂浆涂覆在离型膜的表面上,并且干燥已涂覆的催化剂浆。
在特别优选的实施方式中,当分散催化剂颗粒时,优选使用异丙醇和水的混合溶剂,并且该混合溶剂进一步包括选自但不限于以下的至少一种溶剂:用量为0.1-50%的乙氧基乙醇、丁氧基乙醇和N-甲基吡咯烷酮(NMP)。
在又一个优选的实施方式中,在干燥已涂覆的催化剂浆的步骤中,该干燥过程优选包括在70-90℃下适当地进行10小时以上的第一热处理过程和在100-120℃下适当地进行30分钟以上的第二热处理。
在另一个实施方式中,本发明提供通过上述方法之一制造的用于聚合物电解质膜燃料电池的电极。
在又一个优选的方面,本发明提供适当地制造用于聚合物电解质膜燃料电池的膜电极组件的方法,该方法优选地包括:通过超声波和高速搅拌分散初始催化剂颗粒;通过真空消泡使离聚物充填并吸附进所述催化剂颗粒的原生孔隙中;通过珠磨分散小量的残余的大催化剂颗粒;去除制造过程期间生成的微泡;通过最终过滤形成去除了大催化剂颗粒的催化剂浆;通过将催化剂浆涂覆在离型膜的表面上,并且干燥已涂覆的催化剂浆而形成催化剂层;以及通过使用热压机将已形成的催化剂层贴花在聚合物电解质膜的两侧上而形成3层膜电极组件。
在优选的实施方式中,该方法进一步包括通过在3层膜电极组件的两侧上适当地结合气体扩散层(GDL)来形成5层膜电极组件。
在另一个优选的实施方式中,当分散催化剂颗粒时,使用水与异丙醇或乙醇的混合溶剂,并且该混合溶剂进一步包括选自但不限于以下的至少一种溶剂:用量为0.1-50%的乙氧基乙醇、丁氧基乙醇和N-甲基吡咯烷酮(NMP)。
在又一优选的实施方式中,在干燥已涂覆的催化剂浆的步骤中,该干燥过程优选包括在70-90℃下适当地进行10小时以上的第一热处理过程和在100-120℃下适当地进行30分钟以上的第二热处理。
在又一个方面,本发明提供由上述方法制造的用于聚合物电解质膜燃料电池的膜电极组件。
本发明的其他方面和优选的实施方式在下文讨论。
可以理解,本文所使用的术语“车辆”或“车辆的”或其它类似术语一般包括机动车,例如载客汽车,包括运动型多功能车(SUV)、公共汽车、卡车、各种商用车,包括各种船和艇的水运工具,飞机,等等,并且包括混合动力车辆、电动车辆、***式(plug-in)混合动力电动车辆、氢动力车辆和其它替代燃料车辆(例如,来自石油之外的资源的燃料)。
如本文所述,混合动力车辆是具有两个或更多个动力源的车辆,例如既有汽油动力又有电动力的车辆。
本发明的上述特征和优点在合并于本文并形成本说明书一部分的附图和以下详细说明中将是显而易见的或者更加详细地加以阐述,附图和详细说明一起用于通过实施例来解释本发明的原理。
附图说明
本发明的上述和其它特性将参考其某些示例性的实施方式详细说明,该实施方式由附图举例说明,下文提供的附图仅仅出于举例说明的目的,因此不是对本发明的限制,其中:
图1是说明根据本发明的使用高浓度和高度分散的催化剂浆制造膜电极组件(MEA)的方法的流程图,其中(a)显示包括用于提高催化剂利用率的催化剂分散模型的催化剂分散过程,且(b)显示包括电极涂覆和贴花过程的MEA制造过程;
图2是说明制造高浓度和高度分散的催化剂浆的过程的流程图;
图3A和3B是用于根据催化剂浆制造条件比较催化剂层表面的扫描电子显微镜(SEM)图像;且
图4A和4B是通过本发明制造的MEA的场致发射扫描电子显微镜(FE-SEM)图像。
应该理解的是,附图不必然呈比例,而只是表示用于说明本发明的基本原理的各种优选特征的简化表示。包括例如特定尺寸、方向、位置和形状的本文所公开的本发明的特定设计特征,将通过特定应用和使用环境被部分地确定。
附图中,在整个附图中参照数字指代本发明的相同或等效部件。
具体实施方式
如本文所述,本发明包括制造用于聚合物电解质膜燃料电池的电极的方法,该方法包括:分散初始催化剂颗粒;使离聚物充填并吸附进催化剂颗粒的原生孔隙中;分散小量的残余的大催化剂颗粒;去除制造过程期间生成的微泡;形成催化剂浆;并且将催化剂浆涂覆在离型膜的表面上。
在一个实施方式中,初始催化剂颗粒通过超声波和高速搅拌进行分散。
在另一个实施方式中,离聚物通过真空消泡充填并吸附进催化剂颗粒的原生孔隙中。
在另一个实施方式中,小量的残余的大催化剂颗粒通过珠磨进行分散。
在相关的实施方式中,大催化剂颗粒通过最终过滤从催化剂浆中去除。
在又一相关的实施方式中,该方法进一步包括干燥已涂覆的催化剂浆的步骤。
在又进一步的实施方式中,该方法进一步包括形成3层膜电极组件的步骤。
在相关的实施方式中,形成3层膜电极组件的步骤通过使用热压机将已形成的催化剂层贴花到聚合物电解质膜的两侧上来进行。
在另一个方面,本发明的特征还在于一种机动车辆,其包括由本文的各个方面和各实施方式中所述的任意一种方法制造的用于聚合物电解质膜燃料电池的电极。
此后将对本发明的各个实施方式做出详细参考,其实施例图示在附图中并且在下面描述。尽管将结合示例性的实施方式描述本发明,但要理解的是,本说明书并非要将本发明限制于那些示例性的实施方式。相反,本发明不但要涵盖示例性的实施方式,而且要涵盖可包括在由所附的权利要求所限定的本发明的精神和范围之内的各种替代、修改、等效形式以及其他实施方式。
在优选的方面,本发明提供使用被适当地制备以提高催化剂利用率的高浓度和高度分散的催化剂浆来制造具有高性能的电极的方法,以及在最优设计的结合条件下制造具有适当地高性能的膜电极组件(MEA)的方法。
图1是说明根据本发明的优选实施方式的包括催化剂分散过程和优选的膜电极组件(MEA)制造过程的制造MEA的方法的流程图。为了实现根据本发明的某些优选实施方式的制造具有高性能的MEA的方法,适当地开发出制造用于优化MEA中使用的电极的催化剂层(CL)的高浓度和高度分散的催化剂浆(CS)的方法。
通常,为了设计催化剂层,首先必需开发具有适当高的流动性的高度分散的催化剂浆。在某些优选的实施方式中,考虑到大规模生产,为了适当地减少制造成本,优选必须通过涂覆一次催化剂浆来形成催化剂层。因此,在某些实施方式中,催化剂浆应该具有100-10,000cps的粘度,以及10%以上的浓度,以适当地确保可加工性。优选地,为了均匀地分散高浓度的纳米尺寸的催化剂颗粒,必须采用优选的方法。其某些原因如本文所述。催化剂颗粒通过空气中的静电力聚结,并且以几微米至几十微米的粒度存在。当溶剂和离聚物加入至催化剂颗粒中,并且随后通过超声波和高速搅拌分散时,粒度为0.4-2.0μm的大多数催化剂颗粒均匀地分散。然而,一部分颗粒没有被分散,而是作为具有较大粒度的大颗粒存在,例如,粒度为10μm以上的颗粒,当它们以10wt%以上的高浓度存在时,情况变得更为严重。在某些优选的实施方式中,例如,在含有大颗粒的催化剂浆涂覆在载体(例如,离型膜、MEM或GDL)上的情况下,大颗粒可生成划痕,并且导致涂层缺陷,从而使涂层质量下降。在进一步的实施方式中,含有聚结的催化剂颗粒的催化剂层适当地降低催化剂利用率,导致MEA的性能下降。
在本发明的优选方面中,在制造催化剂浆期间适当地引入真空工艺,以克服上述的问题并提高催化剂分散和催化剂利用率(见图1(a)和图2)。即,如图1(a)和图2所示,在某些优选的实施方式中,本发明引入真空消泡工艺以在分散过程期间建立真空状态,使得具有小直径并且吸附在催化剂表面上的氧气泡被适当地去除。结果,根据进一步优选的实施方式,被溶剂湿润的表面被适当地改善,并且因此暴露于溶剂的接触面积适当地增加,使催化剂颗粒在溶剂中的分散和催化剂浆的流动性得到改善。根据进一步的实施方式,离聚物可以很容易地填充进优选具有小于100nm的直径的原生孔隙中,这些孔隙是在优选具有几十纳米直径的Pt-M/C催化剂的碳载体中产生的,并且由此适当地增加了吸附率,使铂催化剂的利用率增加。
根据本发明的进一步优选的实施方式,能够在高浓度下高度分散的催化剂浆适当地通过上述方法制备,并且使用该催化剂浆来适当地制造具有高性能的膜电极组件。特别地,在用于制造高浓度和高度分散的催化剂浆的装置中,优选设置通过均匀地用水湿润催化剂粉末来延缓催化剂活化的喷雾装置,以防止例如但不限于异丙醇(IPA)的溶剂直接与铂催化剂接触并引起失火。在进一步优选的实施方式中,优选在该装置中设置超声装置、高速搅拌机和均质机以便同时用来实现高浓度的催化剂分散。根据进一步优选的实施方式,该装置被适当地设计以在分散的过程中保持真空状态,以便达到高催化剂分散和高催化剂利用率。在又一优选的实施方式中,优选地引入能够分散未分散的大催化剂颗粒的珠磨工艺以优化分散作用。
在本发明中,除了在上述装置中制造电极的过程中的催化剂分散技术以外,在催化剂浆分散中使用的溶剂的优选比例被适当地控制以确保均匀涂覆并且防止裂纹的出现,从而适当地改善电极性能。
通常,在制造催化剂浆的过程中由各个研究者使用的溶剂包括但不限于,异丙醇(或乙醇)和水,其中混合比例为40-80%的异丙醇(IPA)和20-60%的水(H2O)。
在某些示例性的实施方式中,IPA和H2O的混合溶剂对制造过程和催化剂层的特性具有相当大的影响,这将在下面进行说明。由于异丙醇(b.p.82℃,d.0.782)的沸点低于水的沸点,并且其干燥率相当快,因此在干燥过程期间仍处于液相的催化剂浆中立即生成溶剂梯度。结果,在某些示例性的实施方式中,局部异丙醇浓度高的部分完全干燥,而水浓度高的其他部分则没有干燥。在此状态下,从干燥部分发生的浓缩导致被完全干燥后催化剂层上形成裂纹。根据进一步的实施方式,由于异丙醇的迅速挥发,均匀地分布在催化剂浆溶液中的离聚物优选地同时迁移至催化剂层的表面。结果,在被完全干燥后,催化剂层中离聚物的浓度分布变得不均匀,导致MEA性能的适当下降。
为了解决上述问题,本发明检验了异丙醇(IPA)和水(H2O)以外的其他溶剂,诸如但不限于,与催化剂和离聚物具有良好的可混合性的甘油和溶纤剂(cellusolve)。如本文所述,检验溶剂的结果是,2-乙氧基乙醇(EE;b.p.134℃,d.0.931)具有合适的比重和沸点,以及与异丙醇和水的良好可混合性。为了在催化剂浆的制造过程中使用2-乙氧基乙醇,适当地检验了2-乙氧基乙醇的合适用量。因此,可见,就在催化剂浆混合中使用的溶剂的总比例而言,2-乙氧基乙醇的合适用量在O.1-50%的范围内为大约5%、10%、15%、20%、25%、30%、35%、40%、45%、50%,优选10-30%。
在某些实施方式中,作为实验例,在制备用于制造催化剂层的催化剂浆中优选使用比例为45∶55的IPA/H2O混合溶剂(图3A)和比例为45∶28∶27的IPA/H2O/EE混合溶剂(图3B),并且使用扫描电子显微镜(SEM)来适当地测量由此制造的催化剂层的表面。
如图3A和图3B中所示,与由IPA/H2O的混合溶剂形成的催化剂层(图3A)相比,由于没有出现裂纹,由加入了2-乙氧基乙醇的催化剂浆形成的催化剂层的表面状态(图3B)相当平整。基于这些结果,适当地确定在制造催化剂浆中使用的溶剂的比例。
在本发明的优选实施方式中,通过上述技术优化的电极适用于优化MEA制造过程。根据示例性的实施方式,例如如图1所示,图面(b)显示了采用由本发明提出的贴花法的MEA制造过程。优选地,在制造MEA期间,贴花法具有下列优点。在一个优选的实施方式中,由于很容易控制催化剂层的厚度和面积,有可能确保适当高的MEA的大规模生产率。在另一个实施方式中,与催化剂涂覆GDL(CCG)法相比,对应于催化剂涂覆膜(CCM)法的贴花法能够适当地降低聚合物电解质膜与催化剂层之间的接触阻抗。在另一进一步的实施方式中,有可能在贴花过程中通过热压形成致密的催化剂层,从而改善耐用性。在其他实施方式中,当使用贴花法时,催化剂层的孔隙度减小,并且因此与CCG法相比初始电池性能下降。因此,本发明提供了催化剂层的优化设计。
下面将根据本发明的优选实施方式详细地描述MEA制造过程。根据第一实施方式,已制备的催化剂浆优选地使用刮棒(或切槽模(slotdie)),适当地涂覆在离型膜(例如,PI.、PTFE、PET等)的表面上至大约20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125μm的厚度,优选30-100μm,然后在70-90℃下干燥10小时以上。如果需要,在进一步的实施方式中,在100-200℃下进行第二热处理过程几小时,由此适当地获得催化剂层。
根据本发明的优选实施方式,在催化剂层上进行热处理过程的原因是去除催化剂层中的溶剂,并且通过增加离聚物结晶来适当地改善氢离子电导率和耐用性。
在进一步优选的实施方式中,上述干燥过程包括优选地在大约80℃下进行12小时的第一热处理过程以形成电极,以及优选地在100-120℃下进行30分钟以上的第二热处理以适当地增加催化剂层的内部结合。
在其他进一步的实施方式中,作为下一步骤,使用热压机将由此获得的催化剂层适当地贴花至电解质膜的两侧上,以形成3层MEA。通过适当的试验测定,施加至贴花过程的适当压力为大约10kgf/cm2,并且最佳温度在120-160℃的范围内。根据优选的实施方式,作为最终步骤,GDL被适当地粘结在由此形成的3层MEA的两侧上,从而形成5层MEA。
在示例性的实施方式中,通过FE-SEM测量进行结构分析,以便更精密地检验由此形成的5层MEA的长期耐用性和质量,并且结果显示在图4A和4B中。从显示由此形成的5层MEA的侧面的图4A可见,催化剂层的厚度非常小,并且其结构非常致密。而且,根据进一步的实施方式,可见,催化剂层的厚度相当均匀,并且聚合物电解质膜与催化剂层之间的界面结合良好。根据进一步的实施方式,从显示MEA的表面的图4B可见,催化剂层具有相当光滑的表面,在其上适当地均匀地分布有几十至几百个孔隙。催化剂层的光滑表面适当增加了与GDL的界面结合力,并且由此降低了接触阻抗,从而改善性能。因此,在优选的实施方式中,由于直径为0.2-1μm的纳米微孔是均匀地和充分地分布的,因此使得在燃料电池工作期间燃料气体扩散或物质转移是平稳的,从而改善输出性能。结果,根据本发明的制造MEA的方法,由于缺陷率适当地较低,因此质量优异;并且由于性能变化很小,且聚合物电解质膜与电极之间的界面结合力非常好,因此适当地改善了耐用性,从而能够制造具有高性能的MEA。
如本文所述,根据本发明的制造用于聚合物电解质膜燃料电池的MEA的方法,与常规催化剂浆相比,优选地提供均匀分散的高浓度催化剂浆,以避免由于催化剂分散不均匀和装配条件所引起的性能下降,并且改善离聚物与催化剂之间的吸附不均匀性,从而提高催化剂利用率。因此,在催化剂浆分散中使用的溶剂的优选比例被适当地控制以确保均匀涂覆,并且避免裂纹出现,从而适当地改善电极性能。因此,根据如本文所述的本发明的优选实施方式,能够使用具有很高的大规模生产率的贴花法来优化制造MEA的方法,从而适当地制造具有高性能的用于聚合物电解质膜燃料电池的电极和包括该电极的MEA。
本发明参考其优选实施方式进行了详细地说明。然而,本领域技术人员能够理解,可以在不偏离本发明的原理和精神的情况下对这些实施方式进行改变,本发明的范围由所附的权利要求及其等价形式限定。

Claims (19)

1.一种制造用于聚合物电解质膜燃料电池的电极的方法,所述方法包括:
通过超声波和高速搅拌分散初始催化剂颗粒;
通过真空消泡使离聚物充填并吸附进所述催化剂颗粒的原生孔隙中;
通过珠磨分散小量的残余的大催化剂颗粒;
去除制造过程期间生成的微泡;
通过最终过滤形成去除了大催化剂颗粒的催化剂浆;以及
将所述催化剂浆涂覆在离型膜的表面上,并且干燥已涂覆的催化剂浆。
2.如权利要求1所述的方法,其中当分散所述催化剂颗粒时,使用异丙醇和水的混合溶剂,并且所述混合溶剂进一步包括用量为0.1-50%的选自乙氧基乙醇、丁氧基乙醇和N-甲基吡咯烷酮(NMP)中的至少一种溶剂。
3.如权利要求1所述的方法,其中,在干燥所述已涂覆的催化剂浆的过程中,所述干燥过程包括在70-90℃下进行10小时以上的第一热处理过程和在100-120℃下进行30分钟以上的第二热处理。
4.一种用于聚合物电解质膜燃料电池的电极,所述电极通过如权利要求1所述的方法制造。
5.一种制造用于聚合物电解质膜燃料电池的膜电极组件的方法,所述方法包括:
通过超声波和高速搅拌分散初始催化剂颗粒;
通过真空消泡使离聚物充填并吸附进所述催化剂颗粒的原生孔隙中;
通过珠磨分散小量的残余的大催化剂颗粒;
去除制造过程期间生成的微泡;
通过最终过滤形成去除了大催化剂颗粒的催化剂浆;
通过将所述催化剂浆涂覆在离型膜的表面上,并且干燥已涂覆的催化剂浆而形成催化剂层;以及
通过使用热压机将形成的催化剂层贴花到聚合物电解质膜的两侧上而形成3层膜电极组件。
6.如权利要求5所述的方法,进一步包括通过在3层膜电极组件的两侧上结合气体扩散层(GDL)来形成5层膜电极组件。
7.如权利要求5所述的方法,其中当分散所述催化剂颗粒时,使用水与异丙醇或乙醇的混合溶剂,并且所述混合溶剂进一步包括用量为0.1-50%的选自乙氧基乙醇、丁氧基乙醇和N-甲基吡咯烷酮(NMP)中的至少一种溶剂。
8.如权利要求5所述的方法,其中,在干燥所述已涂覆的催化剂浆的过程中,所述干燥过程包括在70-90℃下进行10小时以上的第一热处理过程和在100-120℃下进行30分钟以上的第二热处理。
9.一种用于聚合物电解质膜燃料电池的膜电极组件,所述膜电极组件由如权利要求5所述的方法制造。
10.一种制造用于聚合物电解质膜燃料电池的电极的方法,所述方法包括:
分散初始催化剂颗粒;
使离聚物充填并吸附进所述催化剂颗粒的原生孔隙中;
分散小量的残余的大催化剂颗粒;
去除制造过程期间生成的微泡;
形成催化剂浆;以及
将所述催化剂浆涂覆在离型膜的表面上。
11.如权利要求10所述的制造用于聚合物电解质膜燃料电池的电极的方法,其中所述初始催化剂颗粒通过超声波和高速搅拌进行分散。
12.如权利要求10所述的制造用于聚合物电解质膜燃料电池的电极的方法,其中所述离聚物通过真空消泡充填并吸附进所述催化剂颗粒的原生孔隙中。
13.如权利要求10所述的制造用于聚合物电解质膜燃料电池的电极的方法,其中所述小量的残余的大催化剂颗粒通过珠磨进行分散。
14.如权利要求10所述的制造用于聚合物电解质膜燃料电池的电极的方法,其中大催化剂颗粒通过最终过滤从所述催化剂浆中去除。
15.如权利要求10所述的制造用于聚合物电解质膜燃料电池的电极的方法,进一步包括干燥已涂覆的催化剂浆的步骤。
16.如权利要求10所述的制造用于聚合物电解质膜燃料电池的电极的方法,进一步包括形成3层膜电极组件的步骤。
17.如权利要求16所述的制造用于聚合物电解质膜燃料电池的电极的方法,其中形成3层膜电极组件的步骤通过使用热压机将形成的催化剂层贴花到聚合物电解质膜的两侧上来进行。
18.一种机动车辆,包括由如权利要求1所述的方法制造的用于聚合物电解质膜燃料电池的电极。
19.一种机动车辆,包括由如权利要求10所述的方法制造的用于聚合物电解质膜燃料电池的电极。
CN200910005322.4A 2008-10-06 2009-02-09 用于聚合物电解质膜燃料电池的电极、膜电极组件、及其制造方法 Active CN101714635B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080097559A KR101080783B1 (ko) 2008-10-06 2008-10-06 고분자전해질 연료전지용 전극 및 막전극접합체의 제조 방법
KR10-2008-0097559 2008-10-06

Publications (2)

Publication Number Publication Date
CN101714635A true CN101714635A (zh) 2010-05-26
CN101714635B CN101714635B (zh) 2014-11-19

Family

ID=41795183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910005322.4A Active CN101714635B (zh) 2008-10-06 2009-02-09 用于聚合物电解质膜燃料电池的电极、膜电极组件、及其制造方法

Country Status (4)

Country Link
US (1) US20100086821A1 (zh)
KR (1) KR101080783B1 (zh)
CN (1) CN101714635B (zh)
DE (1) DE102009000433A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352536A (zh) * 2015-11-19 2018-07-31 松下知识产权经营株式会社 燃料电池用气体扩散层及其制造方法、膜电极组件和燃料电池
CN109088073A (zh) * 2018-07-13 2018-12-25 东莞众创新能源科技有限公司 质子交换膜燃料电池ccm膜电极及其制备方法
CN111095637A (zh) * 2018-01-26 2020-05-01 株式会社Lg化学 制备催化剂层的方法、催化剂层和包括该催化剂层的膜电极组件及燃料电池
CN112599792A (zh) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 一种燃料电池膜电极催化层的制备方法
CN114391191A (zh) * 2019-12-30 2022-04-22 可隆工业株式会社 具有高耐久性的用于燃料电池的电极、该电极的制造方法和包括该电极的膜-电极组件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883654B2 (en) * 2007-06-27 2011-02-08 Atomic Energy Council-Institute Of Nuclear Energy Research Method for fabricating membrane electrode assembly
KR101228545B1 (ko) * 2010-04-14 2013-01-31 한국과학기술연구원 촉매 슬러리 조성물, 이를 사용한 연료전지용 막-전극 접합체의 제조방법 및 이로부터 제조된 연료전지용 막-전극 접합체
KR101275155B1 (ko) 2011-05-11 2013-06-17 한국화학연구원 고분자 전해질용 막-전극 어셈블리의 제조방법 및 그로부터 제조되는 막-전극 어셈블리
WO2014065807A1 (en) 2012-10-26 2014-05-01 United Technologies Corporation Fuel cell membrane electrode assembly fabrication process
KR20150045071A (ko) 2013-10-18 2015-04-28 현대자동차주식회사 막전극접합체 제조 장치
KR20180062091A (ko) * 2016-11-30 2018-06-08 주식회사 엘지화학 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
CN109890752A (zh) 2016-12-28 2019-06-14 可隆工业株式会社 电极的制备方法,由该法制备的电极,含该电极的膜电极组件及含该膜电极组件的燃料电池
KR102563577B1 (ko) * 2017-12-27 2023-08-03 현대자동차주식회사 막전극 접합체용 전극의 제조장치 및 이를 이용한 막전극 접합체용 전극의 제조방법
KR102598527B1 (ko) 2018-05-15 2023-11-03 현대자동차주식회사 전해질 막 제조장치 및 이를 이용한 변색방지 전해질 막 제조방법
KR20230021781A (ko) 2021-08-06 2023-02-14 현대자동차주식회사 막전극접합체의 열처리 방법
CN114204052B (zh) * 2021-12-03 2023-11-10 中国科学院大连化学物理研究所 一种燃料电池高均匀性ccm连续涂布工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930766A (en) * 1956-03-06 1960-03-29 Distillers Co Yeast Ltd Production of a supported catalyst
US20040117949A1 (en) * 2002-12-18 2004-06-24 Zon Monique Van Der Process for the preparation of catalyst microspheres
CN1665863A (zh) * 2002-07-08 2005-09-07 旭硝子株式会社 离子交换体聚合物分散液及其制造方法和用途
US20050266980A1 (en) * 2004-05-28 2005-12-01 Mada Kannan Arunachala N Process of producing a novel MEA with enhanced electrode/electrolyte adhesion and performancese characteristics
WO2007007770A1 (en) * 2005-07-07 2007-01-18 Fujifilm Corporation Solid electrolyte membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
US7226689B2 (en) * 2003-06-20 2007-06-05 Ballard Power Systems Inc. Method of making a membrane electrode assembly for electrochemical fuel cells
WO2007119132A1 (en) * 2006-04-14 2007-10-25 Toyota Jidosha Kabushiki Kaisha Fuel cell membrane-electrode assembly and production method therefor
US7324329B2 (en) * 2005-12-22 2008-01-29 Giner, Inc. Electrochemical-electrolytic capacitor and method of making the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074773A (en) * 1998-03-06 2000-06-13 Ballard Power Systems Inc. Impregnation of microporous electrocatalyst particles for improving performance in an electrochemical fuel cell
US8652705B2 (en) * 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US20070082253A1 (en) * 2005-10-06 2007-04-12 The Regents Of The University Of California Metal-polymer composite catalysts
KR100844110B1 (ko) * 2007-01-09 2008-07-04 한국에너지기술연구원 고분자 연료전지 막전극접합체 연속식 제조를 위한 촉매슬러리 및 그 제조 방법
KR100899027B1 (ko) 2007-05-02 2009-05-26 주식회사 삼전 점도센서

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930766A (en) * 1956-03-06 1960-03-29 Distillers Co Yeast Ltd Production of a supported catalyst
CN1665863A (zh) * 2002-07-08 2005-09-07 旭硝子株式会社 离子交换体聚合物分散液及其制造方法和用途
US20040117949A1 (en) * 2002-12-18 2004-06-24 Zon Monique Van Der Process for the preparation of catalyst microspheres
US7226689B2 (en) * 2003-06-20 2007-06-05 Ballard Power Systems Inc. Method of making a membrane electrode assembly for electrochemical fuel cells
US20050266980A1 (en) * 2004-05-28 2005-12-01 Mada Kannan Arunachala N Process of producing a novel MEA with enhanced electrode/electrolyte adhesion and performancese characteristics
WO2007007770A1 (en) * 2005-07-07 2007-01-18 Fujifilm Corporation Solid electrolyte membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
US7324329B2 (en) * 2005-12-22 2008-01-29 Giner, Inc. Electrochemical-electrolytic capacitor and method of making the same
WO2007119132A1 (en) * 2006-04-14 2007-10-25 Toyota Jidosha Kabushiki Kaisha Fuel cell membrane-electrode assembly and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352536A (zh) * 2015-11-19 2018-07-31 松下知识产权经营株式会社 燃料电池用气体扩散层及其制造方法、膜电极组件和燃料电池
CN108352536B (zh) * 2015-11-19 2021-11-19 松下知识产权经营株式会社 燃料电池用气体扩散层及其制造方法、膜电极组件和燃料电池
CN111095637A (zh) * 2018-01-26 2020-05-01 株式会社Lg化学 制备催化剂层的方法、催化剂层和包括该催化剂层的膜电极组件及燃料电池
CN109088073A (zh) * 2018-07-13 2018-12-25 东莞众创新能源科技有限公司 质子交换膜燃料电池ccm膜电极及其制备方法
CN114391191A (zh) * 2019-12-30 2022-04-22 可隆工业株式会社 具有高耐久性的用于燃料电池的电极、该电极的制造方法和包括该电极的膜-电极组件
CN112599792A (zh) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 一种燃料电池膜电极催化层的制备方法
CN112599792B (zh) * 2020-12-14 2022-07-19 中国科学院大连化学物理研究所 一种燃料电池膜电极催化层的制备方法

Also Published As

Publication number Publication date
US20100086821A1 (en) 2010-04-08
KR101080783B1 (ko) 2011-11-07
CN101714635B (zh) 2014-11-19
DE102009000433A1 (de) 2010-04-08
KR20100038543A (ko) 2010-04-15

Similar Documents

Publication Publication Date Title
CN101714635B (zh) 用于聚合物电解质膜燃料电池的电极、膜电极组件、及其制造方法
CN110247062B (zh) 一种燃料电池膜电极的制备方法
CA2561942C (en) Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same
US20100086450A1 (en) Method and apparatus for preparing catalyst slurry for fuel cells
CN101557001B (zh) 一种燃料电池膜电极及其制备方法
CN110890553A (zh) 一种质子交换膜燃料电池膜电极的制备方法
CN103534852A (zh) 燃料电池用气体扩散层及其制造方法
JPWO2012036007A1 (ja) 膜電極接合体、膜電極接合体の製造方法、及び、燃料電池
CN101617068B (zh) 制造催化层的方法
CN113839052A (zh) 一种燃料电池膜电极及其制备方法
US9520610B2 (en) Method of manufacturing 5-layer MEA having improved electrical conductivity
CN101507037A (zh) 固体聚合物燃料电池及其激活方法
US6867159B2 (en) Application of an ionomer layer to a substrate and products related thereto
CN112982023B (zh) 一种高强度薄型化炭纸及制备方法
CN1264241C (zh) 直接法合成质子交换膜燃料电池用超薄核心组件
JP7152049B2 (ja) 触媒層の製造方法、触媒層、およびそれを含む膜-電極接合体、並びに燃料電池
JP5790049B2 (ja) 膜電極接合体およびその製造方法並びに固体高分子形燃料電池
CN113871643B (zh) 一种燃料电池膜电极用催化剂浆料及其制备方法
JP2006310216A (ja) 触媒電極層形成用塗工液の製造方法
KR100774729B1 (ko) 서브레이어를 이용한 전사법으로 3-레이어 전해질막/전극접합체를 제조하는 방법
JP2018181671A (ja) 膜電極接合体の製造方法
CN118156561A (zh) 一种燃料电池膜电极及其制备方法
KR20200119203A (ko) 연료 전지용 막전극 접합체의 제조 방법
CN117810463A (zh) 催化剂浆料及其制备方法、催化层、膜电极以及燃料电池
CN117393784A (zh) 一种燃料电池的阴极有序化催化层及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant