CN101693515A - 用于mems领域的可图形化聚合物薄膜的制备方法 - Google Patents

用于mems领域的可图形化聚合物薄膜的制备方法 Download PDF

Info

Publication number
CN101693515A
CN101693515A CN200910309152A CN200910309152A CN101693515A CN 101693515 A CN101693515 A CN 101693515A CN 200910309152 A CN200910309152 A CN 200910309152A CN 200910309152 A CN200910309152 A CN 200910309152A CN 101693515 A CN101693515 A CN 101693515A
Authority
CN
China
Prior art keywords
polymer film
seed layer
preparation
metal
graphically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910309152A
Other languages
English (en)
Other versions
CN101693515B (zh
Inventor
汪红
程吉凤
吴义伯
毛胜平
吴日新
丁桂甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2009103091529A priority Critical patent/CN101693515B/zh
Publication of CN101693515A publication Critical patent/CN101693515A/zh
Application granted granted Critical
Publication of CN101693515B publication Critical patent/CN101693515B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种用于MEMS领域的可图形化聚合物薄膜的制备方法,包括:在基底和任何已图形化结构上依次溅射粘结层和金属种子层;通过甩光刻胶并光刻图形化,显影处理后留下了图形化的金属种子层;然后以金属种子层为阴极,惰性金属为阳极进行电泳处理,制成柔性聚合物薄膜;初步固化处理后去除光刻胶掩膜层,最后将带有柔性聚合物薄膜的基底再次置于烘箱中进行二次固化处理,得到固化的聚合物薄膜结构。本发明制备的可图形化聚合物薄膜材料一次图形化成型,工艺简单,操作方便,且与衬底或金属的结合力较好,成本低廉,适合批量集成制造。

Description

用于MEMS领域的可图形化聚合物薄膜的制备方法
技术领域
本发明涉及的是一种微机电***技术领域的制备方法,具体是一种用于MEMS领域的可图形化聚合物薄膜的制备方法。
背景技术
微机械***(MEMS)加工是制造微传感器、微执行器、微结构和***的手段,MEMS中的平面工艺可以说是薄膜制备技术和光刻、刻蚀技术的组合。表面微机械加工通常包括在基片的顶部上淀积大量的不同薄膜,依次进行淀积、蚀刻和布图工序,以得到期望的微型结构,这些薄膜通常作为掩膜层、结构层或者牺牲层。薄膜制备技术在MEMS加工工艺中占有重要地位,掩膜层、结构层或牺牲层都离不开薄膜结构。MEMS中使用的传统薄膜制备主要为:(1)机械旋涂法(Spin coating),工作原理是高速旋转基片,利用离心力使滴在基片上的胶液均匀的涂在基片上,常用于各种溶胶凝胶(Sol-Gel)实验中的薄膜制作;(2)真空薄膜制备技术,主要包括:Physical Vapor Deposition(PVD,物理气相沉积)和ChemicalVapor Deposition(CVD,化学气相沉积),即通过物理或化学反应在衬底上形成薄膜;(3)磁控溅射法;(4)热氧化法。
在MEMS器件中,薄膜制备是器件加工的一道关键工艺。但是传统的薄膜制备方法,或多或少地存在自身的缺点和局限性。首先,薄膜生长速度缓慢,而且淀积的厚度有限,很难得到理想厚度的薄膜,如化学气相沉积和溅射法。其次,即使可以做到厚度较好的控制,但其与基底的结合力却很差,如旋涂法制备出的负性SU-8光刻胶,其结合力一直是制约SU-8光刻胶应用的主要瓶颈之一。再次,很多薄膜通常都是在高温下进行淀积或生长,因此薄膜中存在的残余应力使得结构在最后释放悬空的时候出现了变形翘曲,不能保持悬臂结构的平直,直接影响着器件特性,如真空薄膜制备技术及热氧化法,而且这些设备价格昂贵,制备成本较高。最后,这些薄膜制备方法都不能直接实现器件结构的图形化,需要额外的掩膜刻蚀技术实现图形化,如反应离子刻蚀(RIE),等离子体刻蚀,离子束刻蚀等等,这些掩膜刻蚀技术不仅需要选择性较好的掩膜材料,而且刻蚀工艺复杂,设备昂贵,图形侧壁钻蚀现象较为严重。
经对现有技术的文献检索发现,申请号200710039997.1的中国发明专利申请,提出采用SU-8胶薄膜包裹镍电阻条构成的三明治结构,以制得微驱动器的运用结构。这种方法只能大面积涂膜,然后反面湿法刻蚀,选择性差,去除困难;且SU-8胶薄膜和基底结合力差,很容易脱落。
电泳沉积(electrophoresis-coating)是利用外加电场使悬浮于电泳液中的带电微粒定向迁移并沉积于电极之一的基底表面的方法。电泳沉积法是近30年来发展起来的一种特殊涂膜成型方法,是对水性聚合物最具实际意义的施工工艺。采用直流电源,金属工件浸于电泳液中,通电后,阳离子聚合物粒子向阴极工件移动,阴离子涂料粒子向阳极工件移动,继而沉积在工件上,在工件表面形成均匀、连续的涂膜。当涂膜达到一定厚度(漆膜电阻大到一定程度),工件表面形成绝缘层,“异极相吸”停止,电泳沉积过程结束。
发明内容
本发明针对现有技术存在的上述不足,提供一种用于MEMS领域的可图形化聚合物薄膜的制备方法,直接制备出图形化的聚合物薄膜材料,一次成型,不需要额外的掩膜刻蚀等图形化处理,与MEMS技术兼容。同时,本方法制备的电泳聚合物,相比旋涂聚合物SU-8光刻胶和CVD聚合物Parylene等聚合物材料,其与基底基底或金属的结合力要比后两者提高很多,这样可以制备各种各样结合力较好的多元材料兼容的MEMS器件。且本发明制备的聚合物薄膜材料操作方便,工艺简单,成本低廉,适合批量集成制造。
本发明是通过以下技术方案实现的,本发明包括以下步骤:
步骤一、在干净基底上或已图形化结构上依次溅射粘结层和金属种子层;
所述的基底采用玻璃片、硅片、氧化铝或陶瓷制成。所述依次溅射粘结层和种子层是指:设置本底真空压力为2×10-4Pa、工作压力为8×10-1Pa、溅射功率600W以及溅射时间30~60min,依次溅射Cr作为粘结层、Cu作为金属种子层。
所述的粘结层为Cr,其厚度为600~800?;
所述的金属种子层为Cu,其厚度为800~1000?;
步骤二、通过甩光刻胶并光刻图形化,然后通过显影处理后留下了图形化的金属种子层;
所述的甩光刻胶是指:以1000~3000rpm/min的转速在金属种子层上旋涂光刻胶;
所述的光刻胶是指正性光刻胶或负性光刻胶。
步骤三、将带有金属种子层的基底和惰性金属浸入阴极电泳液中以金属种子层为阴极,惰性金属为阳极,进行电泳处理,制成柔性聚合物薄膜;
所述的阴极电泳液是指质量百分比浓度为10%~70%的阴极电泳漆,该阴极电泳漆包括:环氧聚酯型、丙烯酸型和纯聚酯型。
所述的电泳处理是指:采用直流电源,施加50~100V电压,通电15~60s后,电泳液中的聚合物在电流作用下吸附到导电基底表面,形成柔性聚合物薄膜;
所述的柔性薄膜的厚度为5~50μm;
步骤四、将带有图形化柔性薄膜的基底置于烘箱进行初步固化处理,然后通过湿法刻蚀法去除光刻胶掩膜层,最后将带有柔性薄膜的基底再次置于烘箱中进行二次固化处理,得到固化的聚合物薄膜结构。
所述的初步固化处理是指:将烘箱设置于120℃的环境下进行固化20~40min;
所述的二次固化处理是指:将烘箱设置于200℃的环境下进行固化20~40min。
本发明以微机电***加工技术为基础,采用室温下图形化导电种子层以及电泳技术来实现可图形化聚合物薄膜的制作。与现有薄膜制备技术相比本发明具有以下优点:
(1)本方法可直接制备出图形化的聚合物薄膜材料,一次成型,不需要额外的掩膜刻蚀等图形化处理,且厚度可控,与MEMS技术兼容。
(2)本方法制备的电泳聚合物与基底结合力好。测试表明,电泳聚合物与基底或金属材料的结合力为2.5MPa~3.2MPa,而采用机械旋涂的聚合物如负性SU-8光刻胶的结合力为0.3MPa~0.5MPa,采用CVD技术成型的聚合物如Parylene薄膜的结合力为0.67MPa~0.8MPa。可以看出,电泳聚合物薄膜与基底或金属的结合力相比旋涂聚合物SU-8光刻胶和CVD聚合物Parylene要大4~8倍。
(3)本发明制备的可图形化聚合物薄膜材料操作方便,工艺简单,成本低廉,适合批量集成制造。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:通用可图形化聚合物薄膜制作方法
本实施例包括如下步骤:
步骤一、将准备好的基底清洗干净后,在基底上依次溅射粘结层和种子层;
所述的溅射的具体操作参数为:本底真空2×10-4Pa;工作压力:8×10-1Pa,功率600W,时间45min;
所述的粘结层为Cr,其厚度为700?;
所述的种子层为Cu,其厚度为900?;
步骤二、通过甩光刻胶并用金属结构掩膜版光刻图形化,然后通过显影处理后留下了图形化的种子层;
所述的甩光刻胶的具体操作参数为:2000rpm/min;
所述的光刻胶厚度为20μm。
步骤三、在种子层上进行电镀处理,制成10μm高的金属结构;
所述的电镀处理的具体操作参数为:电流密度10mA/cm2,时间30min;
所述的金属结构的厚度为10μm,由Cu制成;
步骤四、将带有金属结构的基底和惰性金属浸入阴极电泳液中进行电泳处理,以金属结构为阴极,惰性金属为阳极,制成柔性聚合物薄膜;
所述的阴极电泳液的组分及其含量为:环氧聚酯型阴极电泳漆,质量浓度为30%;
所述的电泳处理是指:采用直流电源,施加70V电压,通电60s后,电泳液中的聚合物在电流作用下吸附到导电金属结构表面,形成图形化的柔性聚合物薄膜;
所述的柔性聚合物薄膜的厚度为10μm;
步骤五、将表面带有柔性聚合物薄膜的金属结构置于烘箱进行初步固化处理,然后去除光刻胶掩膜层,得到柔性聚合物薄膜悬臂梁结构,最后将带有柔性纳米薄膜悬臂梁的基底再次置于烘箱中进行二次固化处理,得到固化的聚合物悬臂梁结构。
所述的初步固化处理是指:将烘箱设置于120℃的环境下进行固化20min;
所述的二次固化处理是指:将烘箱设置于200℃的环境下进行固化30min。
实施例2:金属/聚合物复合悬臂梁制作方法
本实施例包括如下步骤:
步骤一、将准备好的基底清洗干净后,在基底上依次溅射粘结层和种子层;
所述的溅射的具体操作参数为:本底真空2×10-4Pa;工作压力:8×10-1Pa,功率600W,时间30min;
所述的粘结层为Cr,其厚度为600?;
所述的种子层为Cu,其厚度为800?。
步骤二、通过甩光刻胶并用基座掩膜版光刻图形化,然后通过显影处理后留下了图形化的种子层;
所述的甩光刻胶的具体操作参数为:1000rpm/min;
所述的光刻胶厚度为30μm。
步骤三、在种子层上进行电镀处理,制成金属基座;
所述的电镀处理的具体操作参数为:电流密度10mA/cm2,时间60min;
所述的金属基座的厚度为30μm,由Ni制成。
步骤四、在基座上再依次溅射粘结层和种子层;
所述的溅射的具体操作参数为:本底真空2×10-4Pa;工作压力:8×10-1Pa,功率600W,时间30min;
所述的粘结层为Cr,其厚度为600?;
所述的种子层为Cu,其厚度为800?。
步骤五、通过甩光刻胶并用金属梁掩膜版光刻图形化,然后通过显影处理后留下了图形化的种子层;
所述的甩光刻胶的具体操作参数为:3000rpm/min;
所述的光刻胶厚度为10μm。
步骤五、在第二层种子层上进行电镀处理,制成金属悬臂梁;
所述的电镀处理的具体操作参数为:电流密度10mA/cm2,时间25min;;
所述的金属基座的厚度为5μm,由Ni制成;
步骤六、将带有金属梁的基底和惰性金属浸入阴极电泳液中进行电泳处理,以金属悬臂梁为阴极,惰性金属为阳极,制成柔性悬臂梁聚合物薄膜;
所述的阴极电泳液的组分及其含量为:丙烯酸型阴极电泳漆,质量浓度为10%;
所述的电泳处理是指:采用直流电源,施加50V电压,通电30s后,电泳液中的聚合物在电流作用下吸附到金属悬臂梁表面,形成柔性聚合物悬臂梁结构;
所述的柔性聚合物薄膜的厚度为5μm;
步骤七、将带有柔性聚合物悬臂梁薄膜的复合悬臂梁结构置于烘箱进行初步固化处理,然后去除光刻胶掩膜层,得到金属和柔性聚合物薄膜的复合悬臂梁结构,最后将带有柔性聚合物悬臂梁薄膜的基底再次置于烘箱中进行二次固化处理,得到固化后的金属/聚合物复合悬臂梁薄膜结构。
所述的初步固化处理是指:将烘箱设置于120℃的环境下进行固化40min;
所述的二次固化处理是指:将烘箱设置于200℃的环境下进行固化20min。

Claims (7)

1.一种用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征在于,包括以下步骤:
步骤一、在干净基底或任何已图形化结构上依次溅射粘结层和金属种子层;
步骤二、通过甩光刻胶并光刻图形化,然后通过显影处理后留下了图形化的金属种子层;
步骤三、将带有金属种子层的基底和惰性金属浸入阴极电泳液中进行电泳处理,以金属种子层为阴极,惰性金属为阳极,制成柔性聚合物薄膜;
步骤四、将带有柔性聚合物薄膜的基底置于烘箱进行初步固化处理,然后去除光刻胶掩膜层,最后将带有柔性聚合物薄膜的基底再次置于烘箱中进行二次固化处理,得到固化的聚合物薄膜结构。
2.根据权利要求1所述的用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征是,所述依次溅射粘结层和种子层是指:设置本底真空压力为2×10-4Pa、工作压力为8×10-1Pa、溅射功率600W以及溅射时间30~60min,依次溅射Cr作为粘结层、Cu作为金属种子层。
3.根据权利要求1所述的用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征是,所述的阴极电泳液是指质量百分比浓度为10%~70%的阴极电泳漆。
4.根据权利要求4所述的用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征是,所述的阴极电泳漆包括:环氧聚酯型、丙烯酸型和纯聚酯型。
5.根据权利要求1所述的用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征是,所述的电泳处理是指:采用直流电源,施加50~100V电压,通电15~60s后,电泳液中的聚合物在电流作用下吸附到导电基底表面形成柔性聚合物薄膜。
6.根据权利要求1所述的用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征是,所述的初步固化处理是指:将烘箱设置于120℃的环境下进行固化20~40min。
7.根据权利要求1所述的用于MEMS领域的可图形化聚合物薄膜的制备方法,其特征是,所述的二次固化处理是指:将烘箱设置于200℃的环境下进行固化20~40min。
CN2009103091529A 2009-10-30 2009-10-30 用于mems领域的可图形化聚合物薄膜的制备方法 Expired - Fee Related CN101693515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009103091529A CN101693515B (zh) 2009-10-30 2009-10-30 用于mems领域的可图形化聚合物薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009103091529A CN101693515B (zh) 2009-10-30 2009-10-30 用于mems领域的可图形化聚合物薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN101693515A true CN101693515A (zh) 2010-04-14
CN101693515B CN101693515B (zh) 2012-04-25

Family

ID=42092531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009103091529A Expired - Fee Related CN101693515B (zh) 2009-10-30 2009-10-30 用于mems领域的可图形化聚合物薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN101693515B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043599A (zh) * 2012-12-07 2013-04-17 北京大学 一种基于柔性聚合物衬底的螺旋电感的制备方法
CN105259733A (zh) * 2015-10-30 2016-01-20 上海交通大学 一种用于曲面图形化的柔性掩膜板制备方法
CN105578738A (zh) * 2015-12-21 2016-05-11 上海交通大学 基于弹性衬底的可拉伸电路板的制备方法及可拉伸电路板
CN105743191A (zh) * 2016-03-24 2016-07-06 上海交通大学 基于mems微加工平面线圈的无线充电装置及其制备方法
WO2017024444A1 (en) * 2015-08-07 2017-02-16 Hewlett-Packard Development Company, L.P. Coating conductive components

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592816A (en) * 1984-09-26 1986-06-03 Rohm And Haas Company Electrophoretic deposition process
US6875318B1 (en) * 2000-04-11 2005-04-05 Metalbond Technologies, Llc Method for leveling and coating a substrate and an article formed thereby

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043599A (zh) * 2012-12-07 2013-04-17 北京大学 一种基于柔性聚合物衬底的螺旋电感的制备方法
CN103043599B (zh) * 2012-12-07 2015-10-28 北京大学 一种基于柔性聚合物衬底的螺旋电感的制备方法
WO2017024444A1 (en) * 2015-08-07 2017-02-16 Hewlett-Packard Development Company, L.P. Coating conductive components
CN105259733A (zh) * 2015-10-30 2016-01-20 上海交通大学 一种用于曲面图形化的柔性掩膜板制备方法
CN105578738A (zh) * 2015-12-21 2016-05-11 上海交通大学 基于弹性衬底的可拉伸电路板的制备方法及可拉伸电路板
CN105578738B (zh) * 2015-12-21 2019-01-25 上海交通大学 基于弹性衬底的可拉伸电路板的制备方法及可拉伸电路板
CN105743191A (zh) * 2016-03-24 2016-07-06 上海交通大学 基于mems微加工平面线圈的无线充电装置及其制备方法
CN105743191B (zh) * 2016-03-24 2018-12-18 上海交通大学 基于mems微加工平面线圈的无线充电装置及其制备方法

Also Published As

Publication number Publication date
CN101693515B (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
CN101693515B (zh) 用于mems领域的可图形化聚合物薄膜的制备方法
US10167410B2 (en) Using chemical vapor deposited films to control domain orientation in block copolymer thin films
US8377243B2 (en) Method for transferring a nanolayer
KR102018932B1 (ko) 박막 블록 공중합체의 배향 조절을 위한 무수물 공중합체 톱 코트
CN107416762B (zh) 一种硅纳米孔结构及其制作方法
CN101143699A (zh) 通用性薄膜材料图形化方法
US20130059438A1 (en) Method for forming pattern and mask pattern, and method for manufacturing semiconductor device
CN105259733B (zh) 一种用于曲面图形化的柔性掩膜板制备方法
KR100995541B1 (ko) 마이크로 전자기계 시스템 소자의 패키징 방법 및 그패키지
US11926524B1 (en) Methods, apparatus, and systems for fabricating solution-based conductive 2D and 3D electronic circuits
CN110950301B (zh) 一种基于纳米线材料的柔性电极复杂图案的制备方法
CN109300774B (zh) 一种微米级含有金属电极的石墨烯层的加工和转移的方法
CN103991837A (zh) 一种基于压电基底薄片的微纳米有序通孔阵列金属薄膜传感器及其制造方法
CN106006546A (zh) 一种转移和控制纳米结构的方法
CN103715070B (zh) 一种带胶磁控溅射厚膜的方法
CN109292732B (zh) 一种具有等离子体聚焦性能的折线型纳米间隙及其制备方法
CN104404475B (zh) 增强聚对二甲苯薄膜与金属层粘附性的方法
CN101566799B (zh) 一种制备镂空的聚酰亚胺蒸发掩模漏版的方法
CN101837950A (zh) 两嵌段共聚物直接组装纳米结构的装置和方法
CN109795975A (zh) 一种金属微/纳米线阵列及其制备方法
KR20150111967A (ko) 자기 조립 폴리머 나노마스크를 이용한 표면 나노제조 방법
CN101654217B (zh) 一种制作微元件的方法
Hemanth et al. Pyrolytic 3D carbon microelectrodes for electrochemistry
CN111115564B (zh) 一种干法转印光刻胶制备微纳结构的方法
CN110797457B (zh) 一种多层存储结构透射电子显微镜原位电学测试单元制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20141030

EXPY Termination of patent right or utility model