CN101626639B - 面热源 - Google Patents

面热源 Download PDF

Info

Publication number
CN101626639B
CN101626639B CN200810068459XA CN200810068459A CN101626639B CN 101626639 B CN101626639 B CN 101626639B CN 200810068459X A CN200810068459X A CN 200810068459XA CN 200810068459 A CN200810068459 A CN 200810068459A CN 101626639 B CN101626639 B CN 101626639B
Authority
CN
China
Prior art keywords
heat source
plane heat
carbon nano
heating
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200810068459XA
Other languages
English (en)
Other versions
CN101626639A (zh
Inventor
冯辰
刘锴
姜开利
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN200810068459XA priority Critical patent/CN101626639B/zh
Priority to EP08253151A priority patent/EP2043406B1/en
Priority to KR1020080094915A priority patent/KR20090033138A/ko
Priority to ES08253151T priority patent/ES2386584T3/es
Priority to US12/456,071 priority patent/US20100126985A1/en
Priority to JP2009164974A priority patent/JP2010018515A/ja
Priority to US12/460,855 priority patent/US20100000987A1/en
Priority to US12/460,848 priority patent/US20100000985A1/en
Priority to US12/460,858 priority patent/US20100000988A1/en
Priority to US12/460,849 priority patent/US20100000986A1/en
Priority to US12/460,817 priority patent/US20100108664A1/en
Priority to US12/460,853 priority patent/US20090321419A1/en
Priority to US12/460,859 priority patent/US20100000989A1/en
Priority to US12/460,854 priority patent/US20090321420A1/en
Priority to US12/460,869 priority patent/US20100139845A1/en
Priority to US12/460,867 priority patent/US20090314765A1/en
Priority to US12/460,868 priority patent/US20090321421A1/en
Priority to US12/460,870 priority patent/US20100000990A1/en
Priority to US12/460,852 priority patent/US20100140258A1/en
Priority to US12/460,871 priority patent/US20100230400A1/en
Priority to US12/460,850 priority patent/US20100140257A1/en
Priority to US12/460,851 priority patent/US20090321418A1/en
Priority to US12/462,188 priority patent/US20100139851A1/en
Priority to US12/462,155 priority patent/US20100140259A1/en
Priority to US12/462,153 priority patent/US20100000669A1/en
Priority to US12/655,507 priority patent/US20100122980A1/en
Publication of CN101626639A publication Critical patent/CN101626639A/zh
Priority to US12/658,182 priority patent/US20100147827A1/en
Priority to US12/658,184 priority patent/US20100147828A1/en
Priority to US12/658,237 priority patent/US20100154975A1/en
Priority to US12/658,198 priority patent/US20100147830A1/en
Priority to US12/658,193 priority patent/US20100147829A1/en
Priority to US12/660,356 priority patent/US20110024410A1/en
Priority to US12/660,820 priority patent/US20100163547A1/en
Priority to US12/661,150 priority patent/US20100170890A1/en
Priority to US12/661,165 priority patent/US20100170891A1/en
Priority to US12/661,115 priority patent/US20100200567A1/en
Priority to US12/661,133 priority patent/US20100200568A1/en
Priority to US12/661,110 priority patent/US20100218367A1/en
Priority to US12/661,926 priority patent/US20100187221A1/en
Priority to US12/750,186 priority patent/US20100180429A1/en
Application granted granted Critical
Publication of CN101626639B publication Critical patent/CN101626639B/zh
Priority to JP2013018269A priority patent/JP5746235B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种面热源,该面热源包括至少两个电极和一加热层。所述至少两个电极间隔设置于该加热层上,并与该加热层电接触。该加热层包括多个线状碳纳米管结构。

Description

面热源
技术领域
本发明涉及一种面热源,尤其涉及一种基于碳纳米管的面热源。
背景技术
热源在人们的生产、生活、科研中起着重要的作用。面热源是热源的一种,其特点为面热源具有一平面结构,将待加热物体置于该平面结构的上方对物体进行加热,因此,面热源可对待加热物体的各个部位同时加热,加热面广、加热均匀且效率较高。面热源已成功用于工业领域、科研领域或生活领域等,如电加热器、红外治疗仪、电暖器等。
现有面热源一般包括一加热层和至少两个电极,该至少两个电极设置于该加热层的表面,并与该加热层的表面电连接。当连接加热层上的电极通入低电压电流时,热量立刻从加热层释放出来。现在市售的面热源通常采用金属制成的电热丝作为加热层进行电热转换。然而,电热丝的强度不高易于折断,特别是弯曲或绕折成一定角度时,因此应用受到限制。另外,以金属制成的电热丝所产生的热量是以普通波长向外辐射的,其电热转换效率不高不利于节省能源。
非金属碳纤维导电材料的发明为面热源的发展带来了突破。采用碳纤维的加热层通常在碳纤维外部涂覆一层防水的绝缘层用作电热转换的元件以代替金属电热丝。由于与金属相比,碳纤维具有较好的韧性,这在一定程度上解决了电热丝强度不高易折断的缺点。然而,由于碳纤维仍是以普通波长向外散热,故并未解决电热转换率低的问题。为了解决上述问题,采用碳纤维的加热层一般包括多根碳纤维热源线铺设而成。该碳纤维热源线为一外表包裹有化纤或者棉线的导电芯线。该化纤或者棉线的外面浸涂一层防水阻燃绝缘材料。所述导电芯线由多根碳纤维与多根表面粘涂有远红外涂料的棉线缠绕而成。导电芯线中加入粘涂有远红外涂料的棉线,一来可增强芯线的强度,二来可使通电后碳导纤维发出的热量能以红外波长向外辐射。
然而,采用碳纤维纸作为加热层具有以下缺点:第一,碳纤维强度不够大,容易破裂,需要加入棉线提高碳纤维的强度,限制了其应用范围;第二,碳纤维本身的电热转换效率较低,需加入粘涂有远红外涂料的棉线提高电热转换效率,不利于节能环保;第三,需先制成碳纤维热源线再制成加热层,不利于大面积制作,不利于均匀性的要求,同时,不利于微型面热源的制作。
有鉴于此,确有必要提供一种面热源,该面热源强度大,电热转换效率较高,有利于节省能源且发热均匀,面热源的大小可控,可制成大面积面热源或者微型面热源。
发明内容
一种面热源,该面热源包括一第一电极、一第二电极和一加热层。所述第一电极和第二电极间隔设置于该加热层上,并与该加热层电接触。该加热层包括多个线状碳纳米管结构。
与现有技术相比较,所述的面热源具有以下优点:第一,由于碳纳米管具有较好的强度及韧性,线状碳纳米管结构的强度较大,柔性较好,不易破裂,使其具有较长的使用寿命。第二,线状碳纳米管结构中的碳纳米管均匀分布,因此具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有升温迅速、热滞后小、热交换速度快的特点。第三,碳纳米管的直径较小,使得线状碳纳米管结构具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。
附图说明
图1是本技术方案实施例的面热源的结构示意图。
图2是图1的II-II剖面示意图。
图3是本技术方案实施例束状结构的线状碳纳米管结构的结构示意图。
图4是本技术方案实施例绞线状结构的线状碳纳米管结构的结构示意图。
图5是本技术方案实施例束状结构的碳纳米管长线的扫描电镜照片。
图6是本技术方案实施例绞线状结构的碳纳米管长线的扫描电镜照片。
具体实施方式
以下将结合附图详细说明本技术方案面热源。
请参阅图1及图2,本技术方案实施例提供一种面热源10,该面热源10包括一基底18、一反射层17、一加热层16、一第一电极12、一第二电极14和一绝缘保护层15。所述反射层17设置于基底18的表面。所述加热层16设置于所述反射层17的表面。所述第一电极12和第二电极14间隔设置于所述加热层16的表面,并与该加热层16电接触,用于使所述加热层16中流过电流。所述绝缘保护层15设置于所述加热层16的表面,并将所述第一电极12和第二电极14覆盖,用于避免所述加热层16吸附外界杂质。
所述基底18形状不限,其具有一表面用于支撑加热层16或者反射层17。优选地,所述基底18为一板状基底,其材料可为硬性材料,如:陶瓷、玻璃、树脂、石英等,亦可以选择柔性材料,如:塑料或柔性纤维等。当为柔性材料时,该面热源10在使用时可根据需要弯折成任意形状。其中,基底18的大小不限,可依据实际需要进行改变。本实施例优选的基底18为一陶瓷基板。另外,当加热层16具有一定的自支撑性及稳定性时,所述面热源10中的基底18为一可选择的结构。
所述反射层17的设置用来反射加热层16所发的热量,从而控制加热的方向,用于单面加热,并进一步提高加热的效率。所述反射层17的材料为一白色绝缘材料,如:金属氧化物、金属盐或陶瓷等。本实施例中,反射层17为三氧化二铝层,其厚度为100微米~0.5毫米。该反射层17可通过溅射或其他方法形成于该基底18表面。可以理解,所述反射层17也可设置在基底18远离加热层16的表面,即所述基底18设置于所述加热层16和所述反射层17之间,进一步加强反射层17反射热量的作用。所述反射层17为一可选择的结构。所述加热层16可直接设置在基底18的表面,此时面热源10的加热方向不限,可用于双面加热。
所述加热层16包括多个线状碳纳米管结构160。所述多个线状碳纳米管结构160平行铺设,或者交叉铺设于所述支撑体18表面。其中,线状碳纳米管结构160之间交叉的角度不限。所述相邻两个平行的线状碳纳米管结构160之间的距离为0微米~30微米。本实施例中,优选相邻两个平行的线状碳纳米管结构160间隔的距离为20微米。可以理解,所述多个线状碳纳米管结构160排列或者铺设的方式不限,只需确保形成一均匀的加热层16即可。进一步地,所述加热层16中至少部分线状碳纳米管结构160沿从所述第一电极22向第二电极24延伸的方向铺设于所述支撑体18表面,以确保流经线状碳纳米管结构160的电流最大。所述交叉铺设的线状碳纳米管结构160具有很好的韧性与自支撑性,无需基底18。当面热源10不包括基底18时,所述反射层17可直接设置于所述加热层16的表面。所述加热层16的厚度为3毫米~25毫米。
所述线状碳纳米管结构160包括至少一根碳纳米管长线161。请参阅图3及图4,优选地所述线状碳纳米管结构160是由多根碳纳米管长线161组成的束状结构或者由多根碳纳米管长线161组成的绞线结构。所述线状碳纳米管结构160的直径为20微米~2毫米,其大小由碳纳米管长线161的根数及直径大小决定,碳纳米管长线161的直径越大,根数越多,线状碳纳米管结构160的直径越大,反之,线状碳纳米管结构160的直径越小。所述线状碳纳米管结构160的长度大小由碳纳米管长线161的长度大小决定。本实施例中所述线状碳纳米管结构160是由多根碳纳米管长线161组成的束状结构,直径为50微米。
请参阅图5及图6,所述碳纳米管长线161是由多个首尾相连的碳纳米管束组成的束状结构或者绞线结构。所述碳纳米管长线包括沿碳纳米管长线161的轴向方向择优取向排列的碳纳米管。具体地,所述束状结构的碳纳米管长线161可通过有机溶剂处理所述碳纳米管薄膜,或者通过直接拉取较窄宽度的碳纳米管阵列获得。该碳纳米管长线161中碳纳米管沿碳纳米管长线的轴向方向平行排列。所述绞线结构碳纳米管长线161可通过对束状结构的碳纳米管长线161施加机械外力扭转获得。扭转后该碳纳米管长线161中碳纳米管沿碳纳米管长线的轴向方向螺旋排列。
所述碳纳米管长线161的直径与长度和碳纳米管阵列所生长的基底的尺寸有关。可根据实际需求制得。本实施例中,采用气相沉积法在4英寸的基底生长超顺排碳纳米管阵列。所述碳纳米管长线161的直径为1微米~100微米,长度为50毫米~100毫米。
所述线状碳纳米管结构160中的碳纳米管为单壁碳纳米管、双壁碳纳米管或者多壁碳纳米管。当所述线状碳纳米管结构160中的碳纳米管为单壁碳纳米管时,该单壁碳纳米管的直径为0.5纳米~50纳米。当所述线状碳纳米管结构160中的碳纳米管为双壁碳纳米管时,该双壁碳纳米管的直径为1.0纳米~50纳米。当所述线状碳纳米管结构160中的碳纳米管为多壁碳纳米管时,该多壁碳纳米管的直径为1.5纳米~50纳米。
所述第一电极12和第二电极14由导电材料组成,该第一电极12和第二电极14的形状不限,可为导电薄膜、金属片或者金属引线。优选地,第一电极12和第二电极14均为一层导电薄膜。该导电薄膜的厚度为0.5纳米~100微米。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物或导电性碳纳米管等。该金属或合金材料可以为铝、铜、钨、钼、金、钛、钕、钯、铯或其任意组合的合金。本实施例中,所述第一电极12和第二电极14的材料为金属钯膜,厚度为5纳米。所述金属钯与碳纳米管具有较好的润湿效果,有利于所述第一电极12及第二电极14与所述加热层16之间形成良好的电接触,减少欧姆接触电阻。
所述的第一电极12和第二电极14可以设置在加热层16的同一表面上也可以设置在加热层16的不同表面上。其中,第一电极12和第二电极14间隔设置,以使加热层16应用于面热源10时接入一定的阻值避免短路现象产生。所述第一电极12和第二电极14的设置位置与线状碳纳米管结构160的排列相关,至少部分线状碳纳米管结构160的两端分别与所述第一电极12和第二电极14电连接。
另外,所述的第一电极12和第二电极14也可通过一导电粘结剂(图未示)设置于该加热层16的表面上,导电粘结剂在实现第一电极12和第二电极14与加热层16电接触的同时,还可以将所述第一电极12和第二电极14更好地固定于加热层16的表面上。本实施例优选的导电粘结剂为银胶。
可以理解,第一电极12和第二电极14的结构和材料均不限,其设置目的是为了使所述加热层16中流过电流。因此,所述第一电极12和第二电极14只需要导电,并与所述加热层16之间形成电接触都在本发明的保护范围内。
所述绝缘保护层15为一可选择结构,其材料为一绝缘材料,如:橡胶、树脂等。所述绝缘保护层15厚度不限,可以根据实际情况选择。所述绝缘保护层15覆盖于所述第一电极12、第二电极14和加热层16之上,可以使该面热源10在绝缘状态下使用,同时还可以避免所述加热层16中的碳纳米管吸附外界杂质。本实施例中,该绝缘保护层15的材料为橡胶,其厚度为0.5~2毫米。
本技术方案实施例的面热源10在使用时,可先将面热源10的第一电极12和第二电极14连接导线后接入电源。在接入电源后热源10中的线状碳纳米管结构160即可辐射出一定波长范围的电磁波。所述面热源20可以与待加热物体的表面直接接触。或者,由于本实施例中作为加热层16的线状碳纳米管结构160中的碳纳米管具有良好的导电性能,且该线状碳纳米管结构160本身已经具有一定的自支撑性及稳定性,所述面热源20可以与待加热物体相隔一定的距离设置。
本技术方案实施例中的面热源10在线状碳纳米管结构160的面积大小一定时,可以通过调节电源电压大小和加热层16的厚度,可以辐射出不同波长范围的电磁波。电源电压的大小一定时,加热层16的厚度和面热源10辐出电磁波的波长的变化趋势相反。即当电源电压大小一定时,加热层16的厚度越厚,面热源10辐出电磁波的波长越短,该面热源10可以产生一可见光热辐射;加热层16的厚度越薄,面热源10辐出电磁波的波长越长,该面热源10可以产生一红外线热辐射。加热层16的厚度一定时,电源电压的大小和面热源10辐出电磁波的波长成反比。即当加热层16的厚度一定时,电源电压越大,面热源10辐出电磁波的波长越短,该面热源10可以产生一可见光热辐射;电源电压越小,面热源10辐出电磁波的波长越长,该面热源10可以产生一红外热辐射。
碳纳米管具有良好的导电性能以及热稳定性,且作为一理想的黑体结构,具有比较高的热辐射效率。将该面热源10暴露在氧化性气体或者大气的环境中,其中线状碳纳米管结构的厚度为5毫米,通过在10伏~30伏调节电源电压,该面热源10可以辐射出波长较长的电磁波。通过温度测量仪发现该面热源10的温度为50℃~500℃。对于具有黑体结构的物体来说,其所对应的温度为200℃~450℃时就能发出人眼看不见的热辐射(红外线),此时的热辐射最稳定、效率最高。应用该线状碳纳米管结构制成的发热元件,可应用于电加热器、红外治疗仪、电暖器等领域。
进一步地,将本技术方案实施例中的面热源10放入一真空装置中,通过在80伏~150伏调节电源电压,该面热源10可以辐射出波长较短的电磁波。当电源电压大于150伏时,该面热源10陆续会发出红光、黄光等可见光。通过温度测量仪发现该面热源10的温度可达到1500℃以上,此时会产生一普通热辐射。随着电源电压的进一步增大,该面热源10还能产生杀死细菌的人眼看不见的射线(紫外光),可应用于光源、显示器件等领域。
所述的面热源具有以下优点:第一,由于碳纳米管具有较好的强度及韧性,线状碳纳米管结构的强度较大,柔性较好,不易破裂,使其具有较长的使用寿命。第二,线状碳纳米管结构中的碳纳米管均匀分布,因此具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有升温迅速、热滞后小、热交换速度快、辐射效率高的特点。第三,碳纳米管的直径较小,使得线状碳纳米管结构具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。第四,多个线状碳纳米管结构交叉形成一多层结构以提供一定的支撑作用,使碳纳米管复合结构具有更好的韧性。第五,线状碳纳米管结构可通过从碳纳米管阵列中拉取后作进一步处理得到,方法简单且有利于大面积面热源的制作。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (18)

1.一种面热源,包括一加热层,至少两电极间隔设置于该加热层表面并与该加热层电接触,其特征在于,所述加热层包括多个线状碳纳米管结构,所述碳纳米管线状结构包括至少一碳纳米管长线,该碳纳米管长线由多个首尾相连的碳纳米管组成。
2.如权利要求1所述的面热源,其特征在于,所述多个线状碳纳米管结构平行设置形成一单层结构。
3.如权利要求2所述的面热源,其特征在于,相邻两个线状碳纳米管结构之间的距离小于30微米。
4.如权利要求1所述的面热源,其特征在于,所述多个线状碳纳米管结构交叉设置形成一多层结构。
5.如权利要求1所述的面热源,其特征在于,所述线状碳纳米管结构为由多根碳纳米管长线组成的束状结构或者绞线结构。
6.如权利要求1所述的面热源,其特征在于,所述碳纳米管长线中的碳纳米管的沿碳纳米管长线的轴向方向择优取向排列。
7.如权利要求1所述的面热源,其特征在于,所述碳纳米管长线为一束状结构,该束状结构的碳纳米管长线中的碳纳米管沿碳纳米管长线的轴向方向平行排列。
8.如权利要求1所运的面热源,其特征在于,所述碳纳米管长线为一绞线结构,该绞线结构的碳纳米管长线中的碳纳米管沿碳纳米管长线的轴向方向螺旋排列。
9.如权利要求1所述的面热源,其特征在于,所述至少两电极的材料为金属、合金、铟锡氧化物、锑锡氧化物、导电银胶、导电聚合物或导电性碳纳米管。
10.如权利要求1所述的面热源,其特征在于,所述至少两电极设置在线状碳纳米管结构的同一表面或者不同表面。
11.如权利要求1所述的面热源,其特征在于,进一步包括一导电粘结剂设置在所述的至少两电极和线状碳纳米管结构之间。
12.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一板状基底,所述线状碳纳米管结构设置在该板状基底表面。
13.如权利要求12所述的面热源,其特征在于,所述基底的材料为柔性材料或硬性材料,且所述柔性材料为塑料或柔性纤维,所述硬性材料为陶瓷、玻璃、树脂或石英。
14.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一反射层,该反射层设置于加热层表面。
15.如权利要求14所述的面热源,其特征在于,所述反射层设置在所述加热层与基底之间或者设置在所述基底远离加热层的表面。
16.如权利要求14所述的面热源,其特征在于,所述反射层的材料为金属氧化物、金属盐或陶瓷,厚度为100微米~0.5毫米。
17.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一绝缘保护层设置于所述加热层表面。
18.如权利要求1所述的面热源,其特征在于,所述加热层中至少部分线状碳纳米管结构沿从一第一电极向一第二电极延伸的方向铺设。
CN200810068459XA 2007-09-28 2008-07-11 面热源 Active CN101626639B (zh)

Priority Applications (41)

Application Number Priority Date Filing Date Title
CN200810068459XA CN101626639B (zh) 2008-07-11 2008-07-11 面热源
EP08253151A EP2043406B1 (en) 2007-09-28 2008-09-26 Plane heat source
KR1020080094915A KR20090033138A (ko) 2007-09-28 2008-09-26 면가열원
ES08253151T ES2386584T3 (es) 2007-09-28 2008-09-26 Fuente térmica plana
US12/456,071 US20100126985A1 (en) 2008-06-13 2009-06-11 Carbon nanotube heater
JP2009164974A JP2010018515A (ja) 2008-07-11 2009-07-13 面熱源
US12/460,851 US20090321418A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,858 US20100000988A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,849 US20100000986A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,817 US20100108664A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,853 US20090321419A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,859 US20100000989A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,854 US20090321420A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,869 US20100139845A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,867 US20090314765A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,868 US20090321421A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,870 US20100000990A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,852 US20100140258A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,871 US20100230400A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,850 US20100140257A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,855 US20100000987A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,848 US20100000985A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/462,155 US20100140259A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/462,153 US20100000669A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/462,188 US20100139851A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/655,507 US20100122980A1 (en) 2008-06-13 2009-12-31 Carbon nanotube heater
US12/658,182 US20100147827A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,184 US20100147828A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,237 US20100154975A1 (en) 2008-06-13 2010-02-04 Carbon Nanotube heater
US12/658,198 US20100147830A1 (en) 2008-06-07 2010-02-04 Carbon nanotube heater
US12/658,193 US20100147829A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/660,356 US20110024410A1 (en) 2008-06-13 2010-02-25 Carbon nanotube heater
US12/660,820 US20100163547A1 (en) 2008-06-13 2010-03-04 Carbon nanotube heater
US12/661,150 US20100170890A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,165 US20100170891A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,115 US20100200567A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,133 US20100200568A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,110 US20100218367A1 (en) 2008-06-13 2010-03-11 Method for making carbon nanotube heater
US12/661,926 US20100187221A1 (en) 2008-06-13 2010-03-25 Carbon nanotube hearter
US12/750,186 US20100180429A1 (en) 2008-06-13 2010-03-30 Carbon nanotube heater
JP2013018269A JP5746235B2 (ja) 2008-07-11 2013-02-01 面熱源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810068459XA CN101626639B (zh) 2008-07-11 2008-07-11 面热源

Publications (2)

Publication Number Publication Date
CN101626639A CN101626639A (zh) 2010-01-13
CN101626639B true CN101626639B (zh) 2011-07-27

Family

ID=41522248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810068459XA Active CN101626639B (zh) 2007-09-28 2008-07-11 面热源

Country Status (2)

Country Link
JP (2) JP2010018515A (zh)
CN (1) CN101626639B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101636005B (zh) * 2008-07-25 2012-07-18 清华大学 面热源
JP6903959B2 (ja) * 2017-03-10 2021-07-14 富士フイルムビジネスイノベーション株式会社 発熱部材、加熱装置、定着装置及び画像形成装置
US11856660B2 (en) * 2017-06-27 2023-12-26 Elringklinger Ag Heating system and process for manufacturing same
CN109955785A (zh) * 2017-12-26 2019-07-02 清华大学 疏水镜子以及使用该疏水镜子的汽车
CN112642051A (zh) * 2019-10-11 2021-04-13 北京富纳特创新科技有限公司 面膜式美容仪
CN112657056A (zh) * 2019-10-15 2021-04-16 北京富纳特创新科技有限公司 面膜式美容仪
CN112642053A (zh) 2019-10-11 2021-04-13 北京富纳特创新科技有限公司 面膜式美容仪的使用方法
CN112642052A (zh) 2019-10-11 2021-04-13 北京富纳特创新科技有限公司 面膜式美容仪的使用方法
CN112642055A (zh) * 2019-10-11 2021-04-13 北京富纳特创新科技有限公司 面膜式美容仪
CN112642054A (zh) 2019-10-11 2021-04-13 北京富纳特创新科技有限公司 贴敷式理疗仪及其使用方法
CN114258167A (zh) * 2020-09-23 2022-03-29 天津工业大学 一种碳纳米管/玻璃纤维布柔性薄膜加热器的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803594A (zh) * 2005-11-25 2006-07-19 清华大学 一种大面积的超薄碳纳米管膜及其制备工艺
CN1917135A (zh) * 2006-09-07 2007-02-21 深圳大学 一种新型x射线管及其制作方法
CN200994196Y (zh) * 2006-12-19 2007-12-19 深圳市宝安唐锋电器厂 一种新型电热膜加热装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785954A (ja) * 1993-09-16 1995-03-31 Jamco Corp 遠赤外線放射発熱体
JPH09161959A (ja) * 1995-12-12 1997-06-20 Matsushita Electric Ind Co Ltd 面状発熱体
JPH11141900A (ja) * 1997-11-11 1999-05-28 Sekisui Chem Co Ltd 床暖房パネルならびにその製造方法
JP2000077167A (ja) * 1998-08-31 2000-03-14 Kyocera Corp 面状発熱体
JP3354105B2 (ja) * 1998-10-16 2002-12-09 シャープ株式会社 面状発熱体
WO2002059936A2 (en) * 2000-11-29 2002-08-01 Thermoceramix, Inc. Resistive heaters and uses thereof
JP2002352940A (ja) * 2001-05-25 2002-12-06 Misawa Shokai:Kk 面状発熱装置
JP3882126B2 (ja) * 2002-02-28 2007-02-14 幸夫 城尾 面状発熱体
JP5013680B2 (ja) * 2004-04-28 2012-08-29 昭和電工株式会社 硬化性組成物、その硬化物およびその成形体
CN105696138B (zh) * 2004-11-09 2019-02-01 得克萨斯大学体系董事会 纳米纤维纱线、带和板的制造和应用
CN100500556C (zh) * 2005-12-16 2009-06-17 清华大学 碳纳米管丝及其制作方法
KR100749886B1 (ko) * 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803594A (zh) * 2005-11-25 2006-07-19 清华大学 一种大面积的超薄碳纳米管膜及其制备工艺
CN1917135A (zh) * 2006-09-07 2007-02-21 深圳大学 一种新型x射线管及其制作方法
CN200994196Y (zh) * 2006-12-19 2007-12-19 深圳市宝安唐锋电器厂 一种新型电热膜加热装置

Also Published As

Publication number Publication date
CN101626639A (zh) 2010-01-13
JP5746235B2 (ja) 2015-07-08
JP2010018515A (ja) 2010-01-28
JP2013084627A (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
CN101626639B (zh) 面热源
CN101605409B (zh) 面热源
CN102056353A (zh) 加热器件及其制备方法
TWI420954B (zh) 加熱器件及其製備方法
CN101636005B (zh) 面热源
CN101610613B (zh) 线热源
CN101616515B (zh) 线热源
CN101616513B (zh) 线热源
CN101636004B (zh) 面热源
CN101636001B (zh) 立体热源
CN101636007B (zh) 面热源
CN101636008B (zh) 面热源
CN101636006B (zh) 面热源
CN101616514B (zh) 线热源
CN101616516B (zh) 线热源
TWI462628B (zh) 面熱源
CN101626641B (zh) 空心热源
TWI462630B (zh) 面熱源
CN101626642B (zh) 空心热源
TWI380733B (en) Planar heating source
TWI360521B (en) Planar heat source
TWI427027B (zh) 空心熱源
CN101616512A (zh) 线热源
CN101636011B (zh) 空心热源
TWI448417B (zh) 線熱源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant