CN101575204B - 堇青石成形体和制备所述成形体的方法 - Google Patents

堇青石成形体和制备所述成形体的方法 Download PDF

Info

Publication number
CN101575204B
CN101575204B CN200910127703XA CN200910127703A CN101575204B CN 101575204 B CN101575204 B CN 101575204B CN 200910127703X A CN200910127703X A CN 200910127703XA CN 200910127703 A CN200910127703 A CN 200910127703A CN 101575204 B CN101575204 B CN 101575204B
Authority
CN
China
Prior art keywords
trichroite
molding
raw material
lattice plane
talcum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910127703XA
Other languages
English (en)
Other versions
CN101575204A (zh
Inventor
牧野健太郎
内山和重
濑川佳秀
中西友彦
小林雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Publication of CN101575204A publication Critical patent/CN101575204A/zh
Application granted granted Critical
Publication of CN101575204B publication Critical patent/CN101575204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0037Materials containing oriented fillers or elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本申请公开了由堇青石制成的堇青石成形体。所述堇青石具有多个域,和位于各个域中的多个晶粒,以形成域结构。各个域中的晶粒基本沿相同方向取向,并且所述域的平均尺寸在40μm到150μm的范围内。所述堇青石成形体形成蜂窝结构,该蜂窝结构具有多个呈蜂窝状排列的单元壁,并形成多个由所述单元壁分隔的单元。所述堇青石成形体的孔隙率在36%到38%的范围内,线性热膨胀系数等于或低于0.2×10-6/K,机械强度等于或高于60×106Pa。

Description

堇青石成形体和制备所述成形体的方法
技术领域
本发明涉及以堇青石作为主要组分的成形体和制备所述成形体的方法。
背景技术
对于以堇青石作为主要组分的成形体,已知形成蜂窝结构的堇青石的成形体(堇青石成形体)。该堇青石成形体例如用作支持颗粒过滤器中的催化剂的催化载体,所述颗粒过滤器用于纯化车辆中内燃机的废气。该催化载体要求重量轻,并具有对所述废气产生低压力损失的特性。因此,近来研究形成蜂窝结构的催化载体的更薄的单元壁。
然而,由于催化载体的壁厚降低,蜂窝结构的机械强度也降低。因此,要求堇青石成形体具有高机械强度。已公开的日本专利No.H11-309380公开了形成蜂窝结构的堇青石成形体,以得到高机械强度的方法。在该形成方法中,在非晶相中形成的堇青石中,抑制了孔隙(或凹点)的产生。因此,堇青石的密度提高,且堇青石成形体的机械强度提高。
然而,在该方法中,堇青石成形体的孔隙率降至20%或更小以提高机械强度。因此,当所述堇青石成形体用作接收发动机废气的催化载体时,所述催化载体纯化废气的性能差。此外,随着孔隙率的降低,堇青石成形体中的热膨胀增大。当具有高热膨胀的堇青石成形体用作催化载体且在发动机运行期间催化载体的温度显著变化时,在催化载体中产生大的热应力。在这种情况下,在催化载体中有时产生裂纹,或者催化载体有时破裂。
此外,由于堇青石成形体中的机械强度增大,堇青石成形体可更稳定地用作催化载体。
因此,堇青石成形体要求具有低热膨胀,较高的机械强度,以及足够的孔隙率。
发明内容
本发明的目的是在适当考虑常规堇青石结构的缺陷的情况下,提供具有低热膨胀系数和高机械强度的堇青石成形体。
根据本发明的一方面,所述目的通过提供下述堇青石成形体而实现,所述堇青石包含多个域,和位于各个域中的多个晶粒,以形成域结构。各个域中的晶粒基本沿相同方向取向,并且所述域的平均尺寸在40μm到150μm的范围内。
对于所述堇青石成形体的这种结构,因为所述域结构的平均尺寸等于或大于40μm,在所述堇青石成形体内产生许多微裂纹。这些微裂纹降低所述堇青石成形体中的热膨胀系数。
此外,因为所述域结构的平均尺寸等于或小于150μm,所述堇青石成形体具有高机械强度。
因此,所述堇青石成形体可兼具低热膨胀系数和高机械强度。
根据本发明的另一方面,所述目的通过提供的制造堇青石成形体的方法而实现,其包括下列步骤:制备含有滑石的堇青石原料,以预定的形式模塑所述原料,干燥所述以预定的形式模塑的原料,并烧结所述干燥的原料以获得堇青石成形体。所述堇青石具有多个域,和位于各个域中的多个晶粒,以形成域结构。各个域中的晶粒基本沿相同方向取向,并且所述域的平均尺寸在40μm到150μm的范围内。所述滑石由粗晶滑石形成。在X射线衍射中,该粗晶滑石在(006)晶格面、(111)晶格面和(132)晶格面具有多个衍射峰。(111)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的第一比值小于0.1。(132)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的第二比值小于0.1。
对于该方法,因为所述比值低于0.1,滑石的扁平颗粒成层以形成多层结构。因此,所述原料的晶粒容易在多层结构中取向。此外,当所述多晶滑石与其它组分化学反应以形成堇青石时,产生水。因此,堇青石在液相中形成。当堇青石在液相中结晶和生长时,堇青石的晶粒容易在液相中移动,并容易以相同的方向取向。
因此,所述堇青石具有多个域,和位于各个域中的多个晶粒,以形成域结构,各个域中的晶粒基本沿相同方向取向,并且所述域的平均尺寸在40μm到150μm的范围内。
因此,按此方法制造的堇青石成形体可兼具低热膨胀系数和高机械强度。
附图说明
图1是根据本发明第一实施方案的堇青石成形体的侧面透视图和所述堇青石成形体的部分放大图;
图2是在堇青石成形体中形成的堇青石晶粒的模型图;
图3的流程图显示了根据第一实施方案制造堇青石成形体的方法;
图4是显示粗晶(macro-crystal)滑石的衍射图样的视图;
图5是压缩堇青石成形体的自动压缩单元的侧视图;
图6是显示测量堇青石成形体中的孔隙的物理形状的说明图;
图7是显示根据本发明第二实施方案的堇青石成形体的域结构的平均尺寸和机械强度之间的关系的说明图;且
图8是显示根据本发明第三实施方案的堇青石成形体的域结构的平均尺寸和平均线性热膨胀系数之间的关系的说明图。
具体实施方式
下面参考附图描述本发明的实施方案。
第一实施方案
图1是根据第一实施方案的堇青石成形体的侧面透视图和所述堇青石成形体的部分放大图。
如图1所示,堇青石的成形体(堇青石成形体)1例如形成蜂窝结构。更具体地说,所述堇青石成形体1具有呈蜂窝状排列的多个单元壁11。各个单元壁11的厚度在50μm到70μm的范围内。因此,在所述堇青石成形体1中形成由单元壁11分隔的大量单元12。该堇青石成形体1用作支持颗粒过滤器中的催化剂的催化载体,所述颗粒过滤器用于纯化车辆内燃机废气。
所述堇青石成形体1具有多个域结构(即,域)4和位于各个域结构4中的多个晶粒3。各个域结构4中的晶粒3基本沿相同方向取向,并且所述域结构4的平均尺寸在40μm到150μm的范围内。
更具体地说,所述堇青石成形体1具有多个微裂纹5以形成由所述微裂纹5分隔的多个微结构2,且在所述成形体1的微结构中形成大量晶粒3。所述晶粒3成组(in groups)。在各个组中的晶粒3彼此接近且基本上沿着相同的方向取向。至少一组晶粒3位于各个微结构2内。沿着相同的方向取向的各组晶粒3形成三维域结构4。在所述域结构4中的晶粒3的取向方向彼此不同,从而所述堇青石成形体1整体上基本没有取向。
图2是在堇青石成形体1中形成的堇青石的晶粒3的模型图。
如图2所示,各个晶粒3的直径尺寸在几μm到数十μm的范围内。各个晶粒3具有三个晶轴(a轴、b轴和c轴)。图2中未显示b轴。各个晶粒3沿着所述三个晶轴结晶和生长,并在这些晶轴上具有三个长度。在各个域结构4中的晶粒3基本上沿着c轴方向取向。在沿着这些晶轴方向的热膨胀系数中,晶粒3中沿着c轴方向的热膨胀系数最小。
当所述堇青石成形体1用作催化载体时,在36到38%的范围内的足够的孔隙率下,要求堇青石成形体1具有0.2×10-6/K(K;开尔文)(即,0.2×10-6/℃)或更小的低线性热膨胀系数和60×106Pa(Pa=Nm-2)或更大的高机械强度。本申请的发明人发现,当域结构4的平均尺寸是直径40μm或更大时,堇青石成形体1中的线性热膨胀系数为0.2×10-6/K或更小。此外,发明人发现,当域结构4的平均尺寸是直径150μm或更小且孔隙率在36到38%的范围内时,堇青石成形体1的机械强度为60×106Pa或更大。
因此,制备了孔隙率在36到38%的范围内的堇青石成形体1,域结构4的平均尺寸在40μm到150μm的范围内。在该情况下,所述堇青石成形体1在40℃到800℃的温度范围内具有低热膨胀。在该温度范围内的平均线性热膨胀系数是0.2×10-6/K或更小。此外,堇青石成形体1具有60×106Pa或更大的高机械强度。
下面将详细描述域结构4的平均尺寸在40μm到150μm的范围内的堇青石成形体1具有低热膨胀和高机械强度的原因。
图2显示的堇青石的晶粒3沿着a轴和b轴均具有正的热膨胀系数,而沿着c轴具有负的热膨胀系数。因此,在沿着晶轴的热膨胀系数中,沿着c轴的热膨胀系数最小。由于晶粒3的这一热膨胀各向异性,当用作堇青石原料的高岭土取向并结晶时,使晶粒3沿着c轴取向,众所周知由堇青石制成的陶瓷具有相当低的热膨胀。
此外,本发明人对堇青石作了如下热膨胀分析。即,根据溶胶混合法将堇青石的原材料彼此混合,将所述混合物烧结以制备烧结的堇青石。该烧结的堇青石基本上没有取向但具有高密度。本发明人发现这种没有取向但具有高密度的烧结的堇青石具有低热膨胀。结晶材料的热膨胀系数通常由可通过热膨胀移动的材料的晶格运动而估算。然而,该烧结的堇青石的热膨胀系数明显低于估算的热膨胀系数。为了确定该烧结的堇青石具有低热膨胀系数的原因,发明人借助于偏光显微镜同时使用堇青石的双折射率分析了所述烧结的堇青石的微结构。通过该分析,发明人发现下述信息。在所述烧结的堇青石中形成了多个大的域结构4,且堇青石沿着相同的方向取向的多个初级微颗粒3形成各个域结构4(参见图1)。所述域结构4影响在堇青石中形成的晶格的移动,以降低热膨胀。
为了研究在烧结的堇青石中域结构4的平均尺寸和热膨胀之间的关系,本发明人制备了许多烧结温度不同的烧结的堇青石样品。作为研究的结果,本发明人发现下述信息。当烧结的堇青石中的域结构4的平均尺寸小时,烧结的堇青石的热膨胀系数与从烧结的堇青石的晶格的移动估算的热膨胀系数一致。相反,当烧结的堇青石中域结构4的平均尺寸变大时,烧结的堇青石的热膨胀系数降低,偏离估算的热膨胀系数。
此外,本发明人发现在具有大的域结构4的烧结的堇青石中,存在微裂纹。因此,本发明人认为烧结的堇青石中的这些微裂纹降低了烧结的堇青石的热膨胀系数。当堇青石热膨胀时,微裂纹之间的距离减小,从而降低了热膨胀系数。
根据研究得到的域结构4的平均尺寸和热膨胀之间的关系,当域结构4的平均尺寸为40μm或更大时,线性热膨胀系数变为0.2×10-6/K或更小。
尽管当域结构4的平均尺寸增大时,热膨胀系数减小,但当域结构4的平均尺寸增大时,烧结的堇青石成形体的机械强度却不理想地减小。对于域结构4的平均尺寸和机械强度之间的该关系,当域结构4的平均尺寸为150μm或更小时,本发明人发现孔隙率(堇青石中孔隙的体积比)在36到38%的范围内的烧结的堇青石的机械强度为60×106Pa或更大。
因此,为了使堇青石成形体1具有低热膨胀和高机械强度,堇青石成形体1中域结构4的平均尺寸在40μm到150μm的范围内。
下面将描述堇青石成形体1中的域结构4的平均尺寸的计算。
为了获得域结构4的直径分布,将各个三维域结构4的多种直径分成多个具有相同的直径的宽度Wd的分区DVi(i=1,2,...,MAX,MAX是等于或大于2的整数)。各个分区DVi在Di-Wd/2到Di+Wd/2的范围内,各个分区DVi中域结构4的直径由直径Di表示。各个分区DVi中域结构4的数目由Ni表示。假定各个域结构4是球形且在二维呈圆形,从而在各个分区DVi中域结构4的面积在二维中由Si(Si=π/4×Di2)表示。
在分区DVi(i=1,2,...,j)中域结构4的总面积St(j)由下面等式表示。
St ( j ) = Σ i = 1 j Si × Ni
数字n在当面积St(n)和总面积St(MAX)的比值Ra(n)约等于0.5的条件下确定。
Ra ( n ) = Σ i = 1 n Si × Ni Σ i = 1 MAX Si × Ni = S 1 N 1 + S 2 N 2 + . . . + S n N n S 1 N 1 + S 2 N 2 + . . . + S MAX N MAX
直径Dn表示如下。
Dn = 2 × S n π
该直径Dn作为在堇青石成形体1中形成的三维域结构4的平均尺寸。
下面将描述用于制备形成蜂窝结构的堇青石成形体1的方法。
图3的流程图显示了用于制备堇青石成形体1的方法。如图3所示,在步骤S11中,将含有滑石的堇青石原料彼此混合,以制备堇青石原料(原料制备步骤)。在步骤S12中,将堇青石原料以所需的形式(比如蜂窝型)模塑(原料模塑步骤)。在步骤S13中,将模塑的堇青石原料干燥(原料干燥步骤)。在步骤S14中,将干燥的堇青石原料烧结或烧制,以制备堇青石成形体1(原料烧结步骤)。
在制备步骤S11,将滑石、高岭土、氧化铝和氢氧化铝彼此混合以制备堇青石原料。对于滑石,使用粗晶滑石。该粗晶滑石由扁平颗粒组成并具有特定的晶体结构。
在模塑步骤S12中,如图1所示,将堇青石原料变薄并模塑成蜂窝结构,以获得50到70μm的小的厚度。将所述堇青石原料根据例如挤塑法而模塑。在所述堇青石原料以蜂窝状挤出后,将堇青石原料切割以获得具有所需长度的蜂窝结构。因此,可容易地获得预定尺寸的形成蜂窝结构的堇青石成形体1。此外,在该挤塑法中,可连续获得模塑成蜂窝结构的堇青石原料。此外,当堇青石原料变薄后,对于干燥步骤S13中的各个域结构4,堇青石的晶粒3可容易地沿着相同的方向取向。
在干燥步骤S13中,将模塑的堇青石原料在80℃到120℃的温度范围内加热,以蒸发由原料中的化学反应产生的水。干燥时间根据原料的尺寸而适当设置。例如,将模塑的堇青石原料在110℃的温度加热一小时。该加热通过热空气干燥、微波干燥、高频干燥、降压干燥、真空干燥、冷冻干燥等方式进行。特别地,当组合热空气干燥和微波干燥或组合热空气干燥和高频干燥时,可将模塑的原料快速且均匀地干燥。
在烧结步骤S14中,将干燥的堇青石原料在1380℃到1425℃的温度范围内烧结或烧制四到十小时,从而获得形成蜂窝结构的堇青石的成形体1。该烧结温度和时间根据堇青石原料的尺寸适当设置。例如,将干燥的堇青石原料在1420℃的温度下烧结八小时。获得的堇青石成形体1(参见图1)的直径为25.4mm,长度为25.4mm。
干燥步骤S13和烧结步骤S14可连续进行。在这种情况下,将干燥温度连续转化为烧结温度。
下面将描述在堇青石成形体1中取向的晶粒3的形成。在制备和模塑步骤中,将滑石的扁平颗粒分层以形成多层结构。因此,含有粗晶滑石的堇青石的原料的晶粒容易在多层结构中取向。此外,当所述多晶滑石与混合物的其它组分化学反应以将混合物变为堇青石时,产生水。因此,堇青石在液相中形成。当堇青石在液相中结晶和生长时,堇青石的晶粒容易在液相中移动,并容易在各个微结构中以相同的方向取向,以形成平均尺寸在40到150μm范围内的域4(见图1)。
因此,当烧结干燥的堇青石原料时,制备的堇青石的成形体1的微结构中的域结构4的平均尺寸在40到150μm的范围内,且在各个域结构4中,晶粒3基本沿相同的方向取向。
下面将参考图4描述用于堇青石成形体1的粗晶滑石。图4是显示所述粗晶滑石的衍射图样的视图。
如图4所示,当X射线从垂直于滑石晶面的方向照射粗晶滑石时,基于X射线衍射获得多个衍射峰。这些晶面由Miller指数表示。(006)晶格面的衍射峰的强度最大。在用作堇青石成形体1的原料的粗晶滑石中,(111)晶格面(未显示)的衍射峰的强度与(006)晶格面的衍射峰的强度的比值(111)/(006)小于0.1,且(132)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的比值(132)/(006)小于0.1。(111)晶格面的衍射峰相当低,因此该峰在图4中未显示。
假定在粗晶滑石中至少(111)/(006)比值或(132)/(006)比值等于或大于0.1,则不能充分地形成滑石的多层结构,使得滑石的层不能充分地彼此脱离。在此情况下,滑石的微结构小。当粗晶滑石在液相中变成堇青石并形成域结构4时,域结构4的尺寸变小。因此,堇青石成形体1的热膨胀不理想地变大。
由平均尺寸等于或小于30μm,并具有等于或小于0.1重量%的氧化钙(CaO)的滑石颗粒组成的粗晶滑石可用于堇青石成形体1。滑石颗粒的平均尺寸根据激光型粒径分布分析仪测量。滑石的组成通过荧光X射线分析仪测量。滑石的平均尺寸等于或小于30μm,而粗晶滑石的滑石颗粒的BET(Brunauer,Emmett,Teller)比表面积等于或小于4.0m2/g。
为了计算堇青石成形体1中域4的平均尺寸,按照下述方式获得域4的照片。例如,切断堇青石成形体1或切片以获得薄样品。该样品的厚度约等于或小于50μm,面积约等于或大于25mm2。然后,将样品置于成形体片或玻璃片上,以通过有机粘合剂与所述成形体片或玻璃片结合。然后,通过正交尼科耳偏光显微镜观察样品中形成的域结构4,并获得域结构4的照片。对于光源,使用卤钨灯。然后,将域结构4的照片显示于个人电脑的显示屏上。对于该显示,使用VIX 2.21V/2.21.148.0计算机软件程序。然后,测量各个域结构4的直径以获得域结构4的直径分布,并计算域结构4的平均尺寸Dn。
通过上述计算,发明人得到所述域结构4的平均尺寸Dn约为96.6μm。
下面将描述堇青石成形体1的机械强度的测量。
堇青石成形体的机械强度通常通过三点弯曲试验或四点弯曲试验测量。然而,在本实施方案中,形成蜂窝结构的堇青石成形体1的单元壁11显著变薄,其厚度在50到70μm的范围内。因此,在颗粒1的制备或测量期间,堇青石成形体1容易因为小的震动而破裂,因此,难以正确地测量堇青石成形体1的机械强度。
为了正确的测量机械强度,在本实施方案中采用压缩法。图5是压缩堇青石成形体1的自动压缩单元的侧视图。如图5所示,堇青石成形体1通过置于所述成形体1上下表面的滤纸22位于自动压缩单元21内,并以1mm/min的速度压缩所述成形体1以获得施加在成形体1上的最大负荷。该最大负荷通过压缩单元21的自动绘图仪记录。然后,将该最大负荷除以所述成形体1的上表面或下表面的面积,以获得每单位面积的机械强度。作为该压缩的结果,发明人发现堇青石成形体1的机械强度为92MPa。
下面将描述堇青石成形体1的热膨胀的测量。
切割堇青石成形体1,使得沿着废气通过所述成形体1的流向的长度为50nm。然后,在40℃到800℃的温度范围内测量成形体1的热膨胀。在该测量中,使用由Ulvac-Riko Incorporation制造的热膨胀计。本发明人发现在该温度范围内平均线性热膨胀系数为0.08×10-6/K,充分低于催化载体所要求的0.2×10-6/K。
下面将描述堇青石成形体1中孔隙的物理性状的测量。
为了测量存在于堇青石成形体1中的孔隙的物理形状(即,体积和直径),使用汞注入分析仪。该分析仪利用汞注入法的原理。更具体地说,该分析仪用于测量存在于固体物质中的孔隙的体积和孔隙的平均直径。汞几乎不和任何固体物质反应且难以润湿,且当注入物质的孔隙时不从物质中泄漏。因此,首先从孔隙中除去存在于空隙中的气体(比如空气),将汞压入堇青石成形体1的脱气的孔隙中,并测量施加的压力和注入成形体1的孔隙中的汞的总体积之间的关系。
孔隙的体积和平均直径可由该关系和Washburn等式计算,Washburn等式:D=-4γcosθ/P。该Washburn等式由施加至汞的压力P、可以在压力P下接收汞的孔隙的最小直径D、汞的表面张力γ(γ=480dyne·cm-1),以及汞和孔隙壁接触的接触角θ(θ=140度)而表示。
由于表面张力γ和角度θ恒定,所述Washburn等式表明了汞压P和最小孔径D之间的关系。因此,可由Washburn等式和在各个压力P下获得的汞的总注入体积计算孔隙的直径分布和孔隙的体积分布。
图6是显示测量在堇青石成形体1中的孔隙的物理形状的说明图。
如图6所示,用汞5填充样品单元6,堇青石成形体1的一部分浸入单元6的汞5中。然后,将具有堇青石成形体1的单元6放入高压容器7中。然后,将容器7的压力依次增至第一压力P0,第二压力P1,第三压力P2和第四压力P3。在此情况下,压力Pi(i=0,1,2和3)每次都增大,将汞5新注入成形体1的孔隙中,其中成形体1的直径Di(-4γcosθ/Pi≤Di<-4γcosθ/Pi-1)小于已接收汞5的孔隙的直径D′i-1(D′i-1≥-4γcosθ/Pi-1),注入成形体1的孔隙中的汞5的体积增大。
作为该测量的结果,堇青石成形体1中的孔隙的物理形状的特征在于,每单位重量的成形体1的孔隙体积等于0.25cc/g,孔隙的平均直径等于4.8μm。孔隙的这一物理形状表明,堇青石成形体1的孔隙率约等于37.0%。
如上所述,制备了具有微结构的堇青石的成形体1,堇青石成形体1的所述微结构具有平均尺寸在40到150μm的范围内的域结构4,同时在各个域结构4中,堇青石的晶粒3基本沿着相同的方向取向。在此情况下,例如,在堇青石成形体1中,在40℃到800℃的温度范围内的平均线性热膨胀系数为0.08×10-6/K,这充分低于催化载体所要求的0.2×10-6/K,孔隙率等于37.0%,在催化载体所要求的范围(36到38%)内,且机械强度等于92MPa,充分高于催化载体所要求的60MPa。
因此,由于形成微结构的堇青石成形体1具有平均尺寸在40到150μm的范围内的域结构4,同时在各个域结构4中,堇青石的晶粒3基本沿着相同的方向取向,可以制造具有低热膨胀和高机械强度的堇青石成形体1。因此,堇青石成形体1可用作颗粒过滤器的催化载体。
在本实施方案中,堇青石成形体1的域结构4的平均尺寸在40到150μm的范围内。然而,域结构4的平均尺寸可在50μm到100μm的范围内。在此情况下,堇青石成形体1可具有充分低的热膨胀和充分高的机械强度。
第二实施方案
调节堇青石原料的组分和烧结温度,制备三组堇青石成形体1的样品。所述样品具有各自的域结构4的平均尺寸。第一组样品SA1的空隙率为34%,第二组样品SA2的空隙率为36%,第三组样品SA3的空隙率为38%。
按照和第一实施方案的测量相同的方式测量各个样品的机械强度,研究机械强度随着域结构4的平均尺寸而变化的关系。研究结果显示于图7中。图7是显示堇青石成形体1的域结构4的平均尺寸和堇青石成形体1的机械强度之间的关系的说明图。
如图7所示,随着堇青石成形体1的空隙率减小,堇青石成形体1的机械强度增大。另外,随着域结构4的平均尺寸增大,机械强度减小。因为形成蜂窝结构的堇青石成形体1要求孔隙率在36%到38%的范围内,因此要求孔隙率等于或低于38%的堇青石成形体1具有催化载体所要求的机械强度。当孔隙率等于或低于38%的堇青石成形体1的域结构4的平均尺寸等于或小于150μm时,堇青石成形体1的机械强度等于或高于催化载体所要求的60MPa。
因此,本发明人断定域结构4的平均尺寸等于或小于150μm的堇青石成形体1的机械强度对于催化载体足够高。
第三实施方案
调节堇青石原料的组分和烧结温度,制备堇青石成形体1的样品。所述样品具有各自的域结构4的平均尺寸。然后,按照和第一实施方案的测量相同的方式测量各个样品在40℃到800℃的温度范围内的平均线性热膨胀系数,并研究热膨胀随着域结构4的平均尺寸的变化关系。研究结果显示于图8中。图8是显示堇青石成形体1的域结构4的平均尺寸和堇青石成形体1的平均线性热膨胀系数之间的关系的说明图。
如图8所示,随着域结构4的平均尺寸增大,平均线性热膨胀系数大幅减小。当域结构4的平均尺寸等于或大于40μm时,平均线性热膨胀系数等于或小于催化载体所要求的0.2×10-6/K。
因此,本发明人断定域结构4的平均尺寸等于或大于40μm的堇青石成形体1具有对于催化载体足够的低热膨胀系数。
这些实施方案不应理解为将本发明限制于这些实施方案的结构,且本发明的结构可以和现有技术相结合。

Claims (13)

1.堇青石成形体,所述堇青石包含:
多个域;和
位于各个域中的多个晶粒,以形成域结构,
其中堇青石原料是粗晶滑石,
所述粗晶滑石在X射线衍射中在(006)晶格面、(111)晶格面和(132)晶格面中的每个晶格面均具有衍射峰,
(111)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的第一比值小于0.1,且
(132)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的第二比值小于0.1,
其中各个域中的晶粒基本沿相同方向取向,并且所述域的平均尺寸在40μm到150μm的范围内。
2.根据权利要求1的堇青石成形体,其中所述域结构的平均尺寸在50μm到100μm的范围内。
3.根据权利要求1的堇青石成形体,其具有多个形成蜂窝结构的单元壁以形成多个由所述单元壁分隔的单元。
4.根据权利要求3的堇青石成形体,其中各个单元壁的厚度在50到70μm的范围内。
5.根据权利要求1的堇青石成形体,其中各个晶粒具有三个晶轴,在沿着所述晶轴方向的热膨胀系数中,沿着所述晶轴中的特定晶轴方向的热膨胀系数最小,且在各个域结构中的晶粒沿着所述特定晶轴方向取向。
6.根据权利要求1的堇青石成形体,其中所述堇青石的线性热膨胀系数等于或小于0.2×10-6/K,机械强度等于或高于60×106Pa。
7.根据权利要求1的堇青石成形体,其中所述堇青石的孔隙率在36%到38%的范围内。
8.根据权利要求1的堇青石成形体,其中所述堇青石具有多个由微裂纹分隔的微结构,所述域结构在所述微结构中形成。
9.制备堇青石成形体的方法,其包括下列步骤:
制备堇青石原料,所述原料含有滑石;
以预定的形式模塑所述原料;
干燥所述以预定的形式模塑的原料;并
烧结所述干燥的原料以获得堇青石成形体,所述堇青石具有:
多个域;
和位于各个域中的多个晶粒,以形成域结构,
其中各个域中的晶粒基本沿相同方向取向,所述域的平均尺寸在40μm到150μm的范围内,所述滑石由粗晶滑石形成,在X射线衍射中,所述滑石在(006)晶格面、(111)晶格面和(132)晶格面具有多个衍射峰,(111)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的第一比值小于0.1,且(132)晶格面的衍射峰的强度与(006)晶格面的衍射峰的强度的第二比值小于0.1。
10.根据权利要求9的方法,其中模塑所述原料的步骤包括:
按照挤塑法将所述原料以蜂窝状挤出。
11.根据权利要求9的方法,其中干燥所述原料的步骤包括:
按照热空气干燥、微波干燥、高频干燥、降压干燥、真空干燥或冷冻干燥,将所述原料在80℃到120℃的温度范围内加热。
12.根据权利要求11的方法,其中按照热空气干燥和微波干燥,或热空气干燥和高频干燥的任一种组合加热所述原料。
13.根据权利要求9的方法,其中烧结所述干燥的原料的步骤包括:
在1380℃到1425℃的温度范围内烧结所述干燥的原料四到十小时。
CN200910127703XA 2008-03-21 2009-03-19 堇青石成形体和制备所述成形体的方法 Active CN101575204B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP074053/2008 2008-03-21
JP2008074053 2008-03-21

Publications (2)

Publication Number Publication Date
CN101575204A CN101575204A (zh) 2009-11-11
CN101575204B true CN101575204B (zh) 2013-03-20

Family

ID=41089515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910127703XA Active CN101575204B (zh) 2008-03-21 2009-03-19 堇青石成形体和制备所述成形体的方法

Country Status (3)

Country Link
US (1) US7811652B2 (zh)
JP (1) JP4934695B2 (zh)
CN (1) CN101575204B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999224B2 (en) * 2010-11-30 2015-04-07 Corning Incorporated Cordierite porous ceramic honeycomb articles with delayed microcrack evolution
JP5968038B2 (ja) * 2012-04-23 2016-08-10 株式会社三和製作所 自動車用マフラ
WO2015049824A1 (ja) * 2013-10-02 2015-04-09 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6888087B2 (ja) * 2016-11-10 2021-06-16 コーニング インコーポレイテッド 複合セラミック材料、物品、および製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027424A3 (en) * 2006-08-29 2008-04-17 Corning Inc High strength substantially non-microcracked cordierite honeycomb body and manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145169A (en) * 1980-04-04 1981-11-11 Nippon Soken Manufacture of cordierite body
JPS644249A (en) * 1987-02-12 1989-01-09 Ngk Insulators Ltd Cordierite honeycomb construction catalyst support and its production
US5258150A (en) * 1991-12-06 1993-11-02 Corning Incorporated Fabrication of low thermal expansion, high porosity cordierite body
JPH11309380A (ja) * 1998-02-26 1999-11-09 Nippon Soken Inc コーディエライトハニカム構造体の製造方法
JP2002301770A (ja) * 2001-04-06 2002-10-15 Hitachi Cable Ltd Tabテープ用個片フィルム貼り合わせ装置
JP4383042B2 (ja) * 2002-12-18 2009-12-16 日本特殊陶業株式会社 セラミックス焼結体及びその製造方法
US7744980B2 (en) * 2005-12-20 2010-06-29 Corning Incorporated Low CTE cordierite honeycomb article and method of manufacturing same
JP2009226301A (ja) * 2008-03-21 2009-10-08 Denso Corp 高強度ハニカム構造体及びその製造方法。

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027424A3 (en) * 2006-08-29 2008-04-17 Corning Inc High strength substantially non-microcracked cordierite honeycomb body and manufacturing method

Also Published As

Publication number Publication date
JP2009256198A (ja) 2009-11-05
US7811652B2 (en) 2010-10-12
JP4934695B2 (ja) 2012-05-16
US20090239741A1 (en) 2009-09-24
CN101575204A (zh) 2009-11-11

Similar Documents

Publication Publication Date Title
CN101575204B (zh) 堇青石成形体和制备所述成形体的方法
CN101374786B (zh) 低热膨胀系数的堇青石蜂窝状制品及其制造方法
CN1166584C (zh) 低热膨胀高孔隙率高强度堇青石体及其制造方法
US6506336B1 (en) Fabrication of ultra-thinwall cordierite structures
Pyzik et al. New design of a ceramic filter for diesel emission control applications
JP5572102B2 (ja) 異方性多孔質セラミック物品およびその製造
JP5719377B2 (ja) 網状コージエライト組成物、物品およびその製造
US20030153459A1 (en) Electron beam apparatus and device manufacturing method using the electron beam apparatus
CN101435795B (zh) 多层分级纳米结构有序孔薄膜型气敏传感器及其制备方法
CN103562155A (zh) 用于控制钛酸铝陶瓷过滤器性质的方法
US7481962B2 (en) Method of manufacturing cordierite honeycomb structure including measuring cleavage index of kaolin particles
US8409492B2 (en) Method for producing aluminum titanate ceramic
CN104529422A (zh) 陶瓷结构体的制造方法
CN101437667A (zh) 制造陶瓷制品时用作成孔剂的含过氧化物的化合物
CN101189199A (zh) 低cte堇青石体及其制备方法
Yin et al. Water nanostructure formation on oxide probed in situ by optical resonances
JP5478025B2 (ja) コーディエライトセラミックスおよびその製造方法
Hirata et al. Compressive mechanical properties of partially sintered porous alumina of bimodal particle size system
CN1346697A (zh) 陶瓷催化剂体,陶瓷载体和它们的生产方法
Pandey et al. Nanoporous morphology of alumina films prepared by sol–gel dip coating method on alumina substrate
Peikolainen et al. Carbon xerogel from 5-methylresorcinol-formaldehyde gel: The controllability of structural properties
US8097549B2 (en) Method for manufacturing cordierite ceramics
US20090075022A1 (en) Honeycomb structure
Brodnik et al. Out‐of‐plane mechanical characterization of acicular mullite and aluminum titanate diesel particulate filters
Pourbeik et al. Dynamic mechanical thermoanalysis of layered calcium silicate hydrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant