CN101535636A - 风力发电机中的负荷减小方法 - Google Patents

风力发电机中的负荷减小方法 Download PDF

Info

Publication number
CN101535636A
CN101535636A CNA200780042765XA CN200780042765A CN101535636A CN 101535636 A CN101535636 A CN 101535636A CN A200780042765X A CNA200780042765X A CN A200780042765XA CN 200780042765 A CN200780042765 A CN 200780042765A CN 101535636 A CN101535636 A CN 101535636A
Authority
CN
China
Prior art keywords
wind
blade
pitch
generator
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200780042765XA
Other languages
English (en)
Other versions
CN101535636B (zh
Inventor
迭戈·奥塔门迪克拉拉蒙特
埃米利奥·埃斯卡兰特阿罗约
赫马·罗德里格斯帕罗
弗朗西斯科哈维尔·埃查尔特卡斯克罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gamesa Eolica SA
Original Assignee
Gamesa Eolica SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Eolica SA filed Critical Gamesa Eolica SA
Publication of CN101535636A publication Critical patent/CN101535636A/zh
Application granted granted Critical
Publication of CN101535636B publication Critical patent/CN101535636B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0256Stall control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • F05B2270/1071Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/322Control parameters, e.g. input parameters the detection or prediction of a wind gust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及在阵风期间风力发电机与电网断开时减小风力发电机中的负荷的方法,该方法采用由三个环构成的控制***,该控制***利用考虑到叶片位置、塔的摆动以及发电机转动速度限制的非线性规则修正在受控的紧急停机期间叶片移动到顺桨位置的速度。

Description

风力发电机中的负荷减小方法
技术领域
本发明涉及风力发电机中的负荷减小方法,尤其涉及在阵风作用期间兼有电网断开时在受控的紧急停机期间风力发电机中的负荷减小方法。该负荷减小方法基于调节风力发电机叶片移动到顺桨位置的速度。
背景技术
具有叶片桨距改变控制部分的变速风力发电机在现有技术中是公知的。这些控制部分一般至少包括连接到控制装置的桨距改变马达和传动装置,控制装置接收来自风力发电机部件的数据并向桨距改变马达发送信号,以根据允许优化所产生的功率并同时在阵风或紧急情况下保护风力发电机本身的一些策略使叶片围绕其纵轴转动。
在极端的阵风和/或例如发电机与电网断开、其部件出现故障等紧急情况下,已知的现有技术考虑让控制***通过使叶片尽快到达顺桨位置来停止风力发电机,因此,尽管这种紧急停机通常是非常短暂的,但也是不受控制的,并且对风力发电机的一些部件有害。
下列文献示出了在现有技术中使用的宽范围的减小负荷或摆动的技术和方法,这些负荷或摆动有时是在正常的风力发电机条件下操作期间出现的,其它的是在紧急停机期间出现的:
文献WO2005083266考虑一种在正常操作条件下隔离风力发电机的机舱和塔的摆动的方法,该方法基于利用固定到机舱的加速计测量机舱加速度并随后计算用来获得必要的风推力以消除这些摆动的叶片角度。
文献WO06007838涉及一种在阵风引起的紧急停机期间具有两个速度的线性风力发电机叶片顺桨***。叶片以大约10°/s的第一快速度快速偏离风的方向,以防止发电机主轴的转动速度超过设定的安全余量。然后,叶片以大约5°/s的另一较慢桨距变化速度定位到偏离风推力的顺桨位置。
文献WO05116445描述了一种桨距控制***,当检测到风速高于规定的限度时,风力发电机作出反应,使叶片偏离风的方向,并在预定的范围改变机舱的方位角。
文献US04435647涉及一种用于在正常的风力发电机运行条件期间在风的强度变化时减小风力发电机塔振荡的第一频率,同时保持发电机功率恒定的方法。
文献US6619918和US20040057828讨论了用于保持风力发电机的叶片尖端和塔之间的安全距离的两个控制***,这两个***通过即时控制影响叶片的机械负荷、扣除叶片尖端位置并作用于相对于风的叶片偏转来始终保持该安全距离。
在现有技术中发现的应用和本发明之间的主要差别在于,预见到当风力发电机因阵风而与电网断开时在叶片顺桨处理期间的紧急停机这一情况,这被证实是风力发电机的最坏假设之一。
发明内容
本发明的目的是防止风力发电机遭受在风力发电机的结构和机械部件上产生超过预期水平的力量和/或疲劳的负荷。还设计了一种用于在风力发电机受阵风影响并且与电网断开的情况下紧急停机的操作方法。
根据本发明的方法,在阵风期间风力发电机与电网断开的故障中实现上述准则。这是通过首先将发电机转子达到的过高速减小到安全余量,其次减小在紧急停机期间引起风力发电机的结构和机械部件疲劳的摆动来实现的。后者是通过始终受控的快速叶片顺桨实现的,该快速叶片顺桨改变桨距变化速度以充分利用风在叶片中的推力,使该推力提供对塔的摆动的阻力:以这种方式最小化在叶片的根部、第一轴承、塔的底部和顶部上产生的力和动量。
用于在阵风期间电网断开时减小风力发电机中的负荷的方法是为了解决对当前的风力发电机规格最有害的负荷情况之一而开发出来的,但是该方法也可应用于其它正常的操作条件。这获得了所有风力发电机部件的负荷和摆动的减小,负荷的减小用于不仅对于合乎规格的负荷而且对于其它实际情况保证机器、增加所有部件的疲劳寿命。该方法还减小塔的振荡,提高其可用性,并且可以优化风力发电机塔和其它部件,减少材料使用量,由此还降低了成本。还可以代替改变元件设计,选择增加机器的安全余量。
墨西哥帽状阵风的特征在于,在该现象的开始时初始风速轻微下降,然后突然快速增加,再快速减小到初始速度以下,在该现象结束时恢复到风速的初始值。当除了墨西哥帽状阵风之外风力发电机还在该阵风期间与电网断开时,出现被证实是风力发电机面临极端负荷的最坏假设之一。大多数风力发电机的机械部件都是针对该情况设计尺寸的。
附图说明
图1示出墨西哥帽状阵风情况下的风分布图,其中在该阵风的第一谷中出现电网断开。
图2是示出风力发电机及其内部元件以及在风的作用期间风力发电机的表现的示意图。
图3是示出负荷减小方法的控制图。
图4列举在紧急停机期间在叶片沿其纵轴转动的演变中施加的不同策略。
具体实施方式
如图1中所示,墨西哥帽状阵风的作用结合风力发电机与电网断开的极端负荷情况由该阵风的特征和风力发电机与电网断开的瞬间来定义。在IEC标准中考虑的极端负荷的实际情况指的是:(1)在阵风处于12m/s的初始速度时风力发电机断开,这可能是在该现象的开始;(2)在阵风处于最小风速时(第一风谷)风力发电机断开;(3)在阵风加速时风力发电机断开;(4)阵风处于最大风速时风力发电机断开。同样地,还可以针对具有25m/s的初始风速的墨西哥帽状阵风考虑和定义同样的风力发电机与电网断开点。
如图2中所示,风力发电机(14)与电网断开或者断电期间,无论阵风是否同时影响该机器,都意味着发电机(5)中电压丧失,在不快速将叶片(6)定位到顺桨位置的情况下,由于抵抗转动的电扭矩的消失,这种电压丧失使发电机转子(5)突然加速。因此,风推力(7)使叶片(6)转动速度增加,这种叶片转动速度的增加会增加叶片根部、第一轴承和塔(8)中的负荷,并且可因离心力而危害发电机(5)本身的整体性。同样地,在以风力发电机(14)的正常条件操作期间,风(7)影响迎着风的机器叶片(6)的表面,并且由于发电机(5)的电扭矩,它们对转动提供阻力。作为风推力(7)和叶片阻力(6)的结果,塔(8)在与风相同的方向上轻微弯曲。如果风力发电机(14)在特定瞬间与电网断开,则该阻力丧失,并且塔(8)可能主要以其第一振荡模式开始摇摆,并且如果该现象经常发生,则可能出现疲劳损伤。
当在阵风期间与电网断开时,风力发电机的机械部件中的极端负荷更加严重。在此情况下,转子转动除了由于增加的风速而加速以外,还由于对发电机转动提供阻力的电扭矩的丧失而加速,使得塔(8)的底部和顶部中的受力和动量大大增加,对于叶片根部、叶片本身以及第一轴承也同样如此,并且过高的发电机速度也引起损伤。此外,塔的摇摆可因在阵风的瞬间出现断开而更糟,因此不仅在设计塔的尺寸时,而且在设计风力发电机(14)的其它机械部件时,都应该特别考虑到疲劳损伤。因此,本发明提出一种控制***以减小风力发电机(14)的机械部件中的负荷,同时减小塔振荡的幅度并允许优化其部件的设计或增加安全余量。
解决该问题的困难主要在于一方面阵风不具有线性影响,另一方面是在实际情况中不能预测风力发电机(14)什么时候与电网断开。因此,本发明尝试利用图3中所示的由三个控制环构成的控制***解决这两个自由度。开控制环(9)固定用于扩展风力发电机(14)在正常条件下的操作范围的操作点,如在紧急情况下叶片的顺桨。另两个闭环(10和11)负责加入主动控制策略,以修正和确保在正常条件和叶片顺桨中其操作的每个瞬间所需的最佳点。这用于试图获得控制风力发电机速度的主要目标,这等同于防止用来产生叶片转动的力的极端值,并减小由叶片推力引起的振荡所导致的塔的底部的最大弯曲值。从控制的观点来看,第一开环(9)固定该***的静态响应的值,而闭环(10和11)通过动态地并以非线性响应更新值来改善发电机和塔的表现。
在这个意义上,***的开环(9)包括在风力发电机(14)正常操作条件期间的叶片偏转控制以调节发电机转子的功率和转动,并且还包括在紧急情况下的受控停机或叶片的顺桨处理。如图4中的曲线(12)所示,我们所讨论的根据开环(9)中的控制的受控停机的情况是这样定义的:基于预定的平均叶片桨距变化速度,以高的速度开始叶片桨距改变,然后缓慢减速,直到达到最终的顺桨位置。以这种方式减小风力发电机的速度超过安全限度的风险,同时从紧急情况的开始减小塔的摆动幅度。
同样地,如图4中的曲线(13)所示,第一闭控制环(10)设法在每个瞬时减小塔的摆动幅度。为了做到这一点,它结合一种用于预测阵风的影响并在可能的风力发电机(14)与电网断开之前增加叶片偏转角度值的***。该***基于塔底部的弯曲值或者塔顶部的加速度,结合动态且非线性地改变风力发电机叶片移动倒顺桨位置的速度范围来减小塔上的负荷,这利用风在叶片中的推力对抗塔的摆动。该策略在第一开控制环(12)上叠加了具有正弦样子的非线性曲线(13)。
最后,第二闭环(11)划定图4中的曲线(13)的界线以防止负的攻角,因为尽管在非常特殊的情况下,负的升力系数可以帮助减小负荷和塔的振荡,但是它们同时还增加发电机转子速度并且可能在变速箱、叶片、叶片根部和风力发电机主轴的第一轴承中造成损伤。该闭控制环(11)记住攻角所依赖的参数,如转子速度、风速和叶片偏转角度,以防止攻角引起转动速度超过针对这些部件设计的最大设置值。
与迄今出版的现有技术相比,上述方法的应用在风力发电机关于下列的响应上显示出进步:最小化风力发电机组件负荷和摆动,减小对于风力发电机规格的极端负荷,不仅对于合乎规格的负荷而且对于其它实际情况增加所有部件的疲劳寿命,减小塔的振荡并从而提高其可用性,以及使得可以优化塔壁和其它风力发电机部件的厚度,从而减小材料使用量,并由此降低成本。或者增加机器的安全余量。

Claims (7)

1.连接到电网的风力发电机中减小负荷的方法,所述风力发电机由至少一个叶片、变速桨距改变***、发电机、塔、分布在这些元件上的一组传感器、不间断电源***以及连接到这些传感器和所述桨距改变***的控制***构成,所述方法的特征在于:当在阵风期间出现与所述电网断开的情况时,执行受控的紧急停机,该受控的紧急停机包括逐渐减小桨距变化速度直到叶片到达顺桨位置的快速叶片顺桨,以及在顺桨过程中以正弦波的形式动态修正叶片桨距变化速度。
2.根据权利要求1所述的方法,其特征在于:从采用预定的平均叶片桨距变化速度值作为基准的开环控制桨距变化速度的逐渐减小,并且从分别采用塔的振荡和发电机的速度作为基准的两个反馈环引入正弦波形式的动态修正。
3.根据权利要求2所述的方法,其特征在于:采用塔的振荡作为基准的反馈环动态加速或减速桨距顺桨,使得桨距变化速度变化的空气动力学效应在叶片上产生风推力来对抗顺桨过程中塔的振荡。
4.根据权利要求3所述的方法,其特征在于:采用发电机的速度作为基准的反馈环防止使发电机的转动速度增加到安全限度以上的叶片负攻角。
5.根据上述任一权利要求所述的方法,其特征在于:在包含电网断开的紧急情况中使用所述紧急停机,不需要兼有阵风。
6.根据上述任一权利要求所述的方法,其特征在于:在阵风时使用所述紧急停机,不需要兼有电网断开。
7.根据上述任一权利要求所述的方法,其特征在于:所述方法包括单独使用所述三个控制环中的任何一个,或者结合使用这三个控制环中的两个。
CN200780042765XA 2006-11-17 2007-11-13 风力发电机中的负荷减小方法 Expired - Fee Related CN101535636B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200602931A ES2301400B1 (es) 2006-11-17 2006-11-17 Metodo de reduccion de cargas en un aerogenerador.
ES200602931 2006-11-17
PCT/ES2007/000649 WO2008059090A1 (es) 2006-11-17 2007-11-13 Método de reducción de cargas en un aerogenerador

Publications (2)

Publication Number Publication Date
CN101535636A true CN101535636A (zh) 2009-09-16
CN101535636B CN101535636B (zh) 2012-07-04

Family

ID=39401353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780042765XA Expired - Fee Related CN101535636B (zh) 2006-11-17 2007-11-13 风力发电机中的负荷减小方法

Country Status (4)

Country Link
US (1) US20120139240A1 (zh)
CN (1) CN101535636B (zh)
ES (1) ES2301400B1 (zh)
WO (1) WO2008059090A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629047A (zh) * 2013-11-05 2014-03-12 清华大学 一种降低风电机组载荷的非线性桨距角控制方法
CN104653393A (zh) * 2013-11-25 2015-05-27 通用电气公司 关闭风力涡轮的方法和***
CN105298749A (zh) * 2014-06-30 2016-02-03 通用电气公司 用以运行风力涡轮***的方法和***
CN105781877A (zh) * 2016-03-04 2016-07-20 北京金风科创风电设备有限公司 风力发电机组的停机控制方法、装置及***
CN106884760A (zh) * 2016-11-25 2017-06-23 科诺伟业风能设备(北京)有限公司 一种风力发电机组紧急顺桨控制方法
CN106968886A (zh) * 2017-05-18 2017-07-21 国电联合动力技术有限公司 一种风电机组的紧急收桨方法
CN110088460A (zh) * 2016-12-16 2019-08-02 乌本产权有限公司 用于控制风能设施的方法
CN113048019A (zh) * 2019-12-27 2021-06-29 北京金风科创风电设备有限公司 阵风检测方法、阵风控制器和风力发电***
CN113090455A (zh) * 2021-04-25 2021-07-09 中国华能集团清洁能源技术研究院有限公司 在电网掉电条件下风电机组桨距角控制方法、***和设备
CN114562413A (zh) * 2020-11-27 2022-05-31 新疆金风科技股份有限公司 变桨控制方法及其装置和塔架阻尼器

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362093B1 (en) * 2009-01-22 2012-10-17 Vestas Wind Systems A/S Control of rotor during a stop process of a wind turbine
US20120025526A1 (en) * 2010-07-30 2012-02-02 General Electric Company System and method for monitoring wind turbine gearbox health and performance
EP2463517B1 (en) 2010-12-08 2014-06-25 Siemens Aktiengesellschaft Method and control system for reducing vibrations of a wind turbine
DE102012218484A1 (de) * 2012-10-10 2014-04-10 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
US9644608B2 (en) * 2012-12-24 2017-05-09 General Electric Company Method and system for shutting down a wind turbine
CN105683563B (zh) * 2013-07-08 2019-04-23 维斯塔斯风力***集团公司 用于在安全操作期间控制风力涡轮机的方法
CN104047802B (zh) * 2014-06-19 2017-07-11 无锡曼克斯电子科技有限公司 风力发电机限速稳速限流发电的控制方法
US10100812B2 (en) 2014-06-30 2018-10-16 General Electric Company Methods and systems to operate a wind turbine system
US9784241B2 (en) 2014-08-25 2017-10-10 General Electric Company System and method for controlling a wind turbine
JP6276223B2 (ja) * 2015-07-16 2018-02-07 株式会社日本製鋼所 風力発電装置、風力発電制御装置および風力発電制御プログラム
JP6405324B2 (ja) 2016-01-29 2018-10-17 三菱重工業株式会社 風力発電装置及びその運転方法
JP6421134B2 (ja) 2016-01-29 2018-11-07 三菱重工業株式会社 風力発電装置及びその運転方法
US10774810B2 (en) * 2016-04-25 2020-09-15 General Electric Company System and method for estimating high bandwidth tower deflection for wind turbines
EP3500751B1 (en) 2016-08-17 2021-03-24 Vestas Wind Systems A/S Dynamic controlled wind turbine shutdown
CN108223269B (zh) * 2016-12-14 2019-07-23 北京金风科创风电设备有限公司 风力发电机组过速故障的穿越方法和装置
WO2018188821A1 (en) 2017-04-12 2018-10-18 Siemens Wind Power A/S Safety stop assembly
US10927812B2 (en) * 2019-02-19 2021-02-23 General Electric Company Method of dynamically adjusting a rate of change of a rotor speed set point during wind turbine shutdown
US11208986B2 (en) 2019-06-27 2021-12-28 Uptake Technologies, Inc. Computer system and method for detecting irregular yaw activity at a wind turbine
US10975841B2 (en) * 2019-08-02 2021-04-13 Uptake Technologies, Inc. Computer system and method for detecting rotor imbalance at a wind turbine
EP3779180A1 (en) * 2019-08-14 2021-02-17 Siemens Gamesa Renewable Energy A/S Controlling a wind farm with wind turbines that are damping tower oscillations
CN113864118B (zh) * 2021-10-29 2023-04-25 华能随县界山风电有限责任公司 一种风电机组叶片卡桨条件下的极限载荷控制方法
CN113864119B (zh) * 2021-10-29 2023-04-25 华能随县界山风电有限责任公司 一种叶片卡桨条件下的风电机组极限载荷控制方法
CN114689215B (zh) * 2022-03-16 2024-02-23 国网甘肃省电力公司电力科学研究院 一种风力发电机组叶片连接螺栓断裂监测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189648A (en) * 1978-06-15 1980-02-19 United Technologies Corporation Wind turbine generator acceleration control
DE2922972C2 (de) * 1978-06-15 1986-11-13 United Technologies Corp., Hartford, Conn. Windturbinenregelsystem
US4193005A (en) * 1978-08-17 1980-03-11 United Technologies Corporation Multi-mode control system for wind turbines
US4462753A (en) * 1982-06-22 1984-07-31 United Technologies Corporation Blade feathering system for wind turbines
DE19731918B4 (de) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Windenergieanlage
CN1268843C (zh) * 2002-11-13 2006-08-09 沈阳工业大学 兆瓦级变速恒频风电机组
CN1273729C (zh) * 2002-11-13 2006-09-06 沈阳工业大学 兆瓦级风电机组变速、变距控制***
US7309930B2 (en) * 2004-09-30 2007-12-18 General Electric Company Vibration damping system and method for variable speed wind turbines
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629047A (zh) * 2013-11-05 2014-03-12 清华大学 一种降低风电机组载荷的非线性桨距角控制方法
CN103629047B (zh) * 2013-11-05 2016-02-10 清华大学 一种降低风电机组载荷的非线性桨距角控制方法
CN104653393A (zh) * 2013-11-25 2015-05-27 通用电气公司 关闭风力涡轮的方法和***
CN104653393B (zh) * 2013-11-25 2019-12-10 通用电气公司 关闭风力涡轮的方法和***
CN105298749A (zh) * 2014-06-30 2016-02-03 通用电气公司 用以运行风力涡轮***的方法和***
CN105298749B (zh) * 2014-06-30 2019-08-02 通用电气公司 用以运行风力涡轮***的方法和***
CN105781877A (zh) * 2016-03-04 2016-07-20 北京金风科创风电设备有限公司 风力发电机组的停机控制方法、装置及***
CN105781877B (zh) * 2016-03-04 2018-09-11 北京金风科创风电设备有限公司 风力发电机组的停机控制方法、装置及***
CN106884760B (zh) * 2016-11-25 2019-06-18 科诺伟业风能设备(北京)有限公司 一种风力发电机组紧急顺桨控制方法
CN106884760A (zh) * 2016-11-25 2017-06-23 科诺伟业风能设备(北京)有限公司 一种风力发电机组紧急顺桨控制方法
CN110088460A (zh) * 2016-12-16 2019-08-02 乌本产权有限公司 用于控制风能设施的方法
US10995730B2 (en) 2016-12-16 2021-05-04 Wobben Properties Gmbh Method for controlling a wind turbine
CN106968886A (zh) * 2017-05-18 2017-07-21 国电联合动力技术有限公司 一种风电机组的紧急收桨方法
CN113048019A (zh) * 2019-12-27 2021-06-29 北京金风科创风电设备有限公司 阵风检测方法、阵风控制器和风力发电***
CN114562413A (zh) * 2020-11-27 2022-05-31 新疆金风科技股份有限公司 变桨控制方法及其装置和塔架阻尼器
CN113090455A (zh) * 2021-04-25 2021-07-09 中国华能集团清洁能源技术研究院有限公司 在电网掉电条件下风电机组桨距角控制方法、***和设备

Also Published As

Publication number Publication date
WO2008059090A1 (es) 2008-05-22
ES2301400B1 (es) 2009-05-01
ES2301400A1 (es) 2008-06-16
CN101535636B (zh) 2012-07-04
US20120139240A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
CN101535636B (zh) 风力发电机中的负荷减小方法
EP2447530B1 (en) Wind turbine having an active pitch angle control during idling situation
DK2963283T3 (en) METHODS AND SYSTEMS FOR OPERATING A WINDMILL SYSTEM
EP2084400B1 (en) A wind turbine and a method for damping edgewise oscillations in one or more blades of a wind turbine by changing the blade pitch
EP2169219B1 (en) System and method for controlling a wind turbine during loss of grid power and changing wind conditions
US8836154B2 (en) Wind turbine control methods for improving the production of energy
EP2463517B1 (en) Method and control system for reducing vibrations of a wind turbine
EP2150699B1 (en) A method of operating a wind turbine with pitch control
CN109891091B (zh) 动态控制的风力涡轮机关闭
EP2712403B1 (en) Power management system for yaw controlled wind turbines
EP2264311B1 (en) Wind turbine comprising an active flow control device on the rotor blade
EP2500562A2 (en) Methods and systems for alleviating the loads generated in wind turbines by wind asymmetries
DK2522853T3 (en) Wind turbine torque-speed control
CA2826342C (en) Damping tower shifting in wind turbine systems
EP2957767B1 (en) Methods and systems to operate a wind turbine
KR102018579B1 (ko) 풍력터빈 제어시스템의 피치제어기
EP2636895B1 (en) Methods and systems for alleviating loads in off-shore wind turbines
KR101363516B1 (ko) 풍력 발전기용 발전기의 제어 방법
CN101498280B (zh) 用于停止风力涡轮机的方法
EP3728838B1 (en) Applying wind turbine yaw moment via pitching
US20220397091A1 (en) Pivot angle control of blades of a wind turbine with hinged blades
WO2022008016A1 (en) De-rating wind turbine tower lateral oscillation control
Lackner Wind Turbine Control Systems: Current Status and Future Developments
WAKUI et al. ICOPE-15-1099 Power and Platform Motion Controls Based on Combined Manipulation of Blade Pitch and Generator Torque in a Floating Offshore Wind Turbine-Generator System
WAKUI et al. Power and Platform Motion Controls Based on Combined Manipulation of Blade Pitch and Generator Torque in a Floating Offshore Wind Turbine-Generator System

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20211113

CF01 Termination of patent right due to non-payment of annual fee