CN1273729C - 兆瓦级风电机组变速、变距控制*** - Google Patents

兆瓦级风电机组变速、变距控制*** Download PDF

Info

Publication number
CN1273729C
CN1273729C CNB021448094A CN02144809A CN1273729C CN 1273729 C CN1273729 C CN 1273729C CN B021448094 A CNB021448094 A CN B021448094A CN 02144809 A CN02144809 A CN 02144809A CN 1273729 C CN1273729 C CN 1273729C
Authority
CN
China
Prior art keywords
control
speed
controller
rotor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021448094A
Other languages
English (en)
Other versions
CN1410669A (zh
Inventor
邓英
姚兴佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CNB021448094A priority Critical patent/CN1273729C/zh
Publication of CN1410669A publication Critical patent/CN1410669A/zh
Application granted granted Critical
Publication of CN1273729C publication Critical patent/CN1273729C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种风力发电控制***,适合在兆瓦级风电机组变速、变桨距控制使用,其结构由控制部分、检测部分及驱动三部分组成,其中控制部分由主控制器,即为运行控制器、变距控制器和变速控制器三部分组成;检测部分由风轮转子、传动机构、双馈发电机定子、绕线转子、转差励磁变频电源和脉宽调制逆变电源等部件传感器组成;驱动部分由不同功能的伺服电机组成,其联接是检测部分的机组部件分别以传感器信号输出,控制部分由主控制器即运行控制器、变距控制器和变速控制器三部分组成,这些控制输出直接由控制输出联接驱动模板;驱动模板输出联接到由不同功能的伺服电机,按控制要求各部分协调运行,具有结构简单、工作稳定可靠、机械传动控制灵活。

Description

兆瓦级风电机组变速、变距控制***
所属技术领域
本发明涉及一种风力发电控制***,适合在兆瓦级风电机组变速、变桨距控制使用。
背景技术
目前,我国并网风电机组主要有两种机型,一种为定桨距失速型风电机;另一种为变距型风电机组,且两种机型都已研制出600KW的样机,然而,第一种机型存在着捕风效率低的缺点,第二种机型虽然捕风效率比第一种机型高,但机组受到的较强的阵风冲击,使机组风轮和传动***,轮毂、主轴、齿轮箱和发电机等部件受到强烈的不均匀冲击和震动,因而使用寿命大为降低。
发明内容
为了实现风力发电机变速恒频控制,本发明的目的提供一种兆瓦级风电机组变速、变距控制***,利用双向变流器既四象限变频器,以实现机组功率优化输出最经济、最有效的设计方案。
本发明的技术方案是这样实现的:本发明控制***由控制部分、检测部分及驱动三部分组成(如图1所示),其中控制部分由主控制器,即为运行控制器、变距控制器和变速控制器三部分组成;检测部分由风轮转子、传动机构、双馈发电机定子、双馈发电机转子、转差励磁变频电源和脉宽调制逆变电源部件传感器组成;驱动部分由不同功能的伺服电机,由偏航、冷却等伺服电机装置,液压伺服机构和继电控制装置组成,上述控制***各部件的联接是检测部分的机组风轮转子、传动机构、双馈发电机定子、双馈发电机转子、转差励磁变频电源和脉宽调制逆变电源,分别以传感器信号输出,将信号转换成控制器可接收的标准信号,数字信号低电平0V、高电平24V,模拟信号4-20mA,计算机运行状态、参数检测***,对此信号进行采样处理,处理后的数据再分别送入参数采集***,有输入开关状态;气象电网参数;发电机运行参数及***运行状态,再将此参数分别送入状态控制器,控制部分由主控制器即运行控制器、变距控制器和变速控制器三部分组成,这些控制输出直接由控制输出联接驱动模板;驱动模板输出联接到由不同功能的伺服电机,有偏航、冷却伺服电机装置、液压伺服机构、继电控制装置,按控制要求各部分协调运行。
有关控制、检测和驱动三部分详细结构如下:
控制部分有:
1、主控制器
主控制器即控制***的核心控制器,主控制器组成(由图2所示)由S7-300系列可编程控制器完成,***的所有输出输入信号分别由5个不同功能的接口电路,即控制选通电路、输入光电隔离电路、霍尔电量传感接口电路、开关量输入隔离电路、变速控制器接口电路与输出控制驱动电路,其中,机舱温度、液压油温度等其它部件温度通过控制选通电路输入到可编程控制器;低速轴转速;高速轴转速、风速、风向、正、逆时计数器、变距角输入输出信号通过输入光电隔离电路输入到可编程控制器;定子a相电压、定子b相电压及转子a、b、c相电压、相电流信号输出通过霍尔电量传感器接口电路输入到可编程控制器;震动信号、电机过载、左、右扭极限、振动和超速开关、闸片磨损、压力开关一、二、三、四及维修、急停信号,均通过开关量输入隔离电路输入到可编程控制器;变速控制器接口电路输出联接到定子并网、转子励磁和逆变器并网、转速控制、功率控制、主电路冷却、控制器加热各输入端,输出控制驱动电路输出端分别接有控制箱加热、齿轮油加热、散热、液压油加热、电机除湿、偏航闸阀、液压油泵、液压阀位一、二、三、偏航电机一、二、机舱风扇、机械闸电机、变距比例阀、变距控制、控制箱冷却输入端,变速恒频风电机组主控制程序流程图(由图3所示),左上角虚线部分为运行控制器,控制器首先完成***监控需要的气象、电网、风电机组和变频器状态参数测试和纪录,流程以开机-并网-智能控制-脱网-安全停机为主线,分别按要求进行开机准备、偏航调整、故障处理和智能优化参数计算、速度和功率控制给定及***运行管理,右侧虚线部分为变桨距控制器,它由智能控制模块给出控制方式和桨距位置/速度给定,由液压***和变距机构实现桨距角的目标功率调节,在左下角虚线部分为变速控制器,它与主控制器组成主-从控制***,主控制器由它进行主控管理,变速控制器成为从控制器,在主控的管理下,独立地进行它的变速运行管理;首先检测发电机定子转子和电网参数(I、U、N、τ、O、cosφ)、进行发电机功率因数调节、机组功率优化控制、风轮转速优化控制、恒频恒压控制和PWM调制输出控制,发电机的定子/转子并网由变速控制器进行控制等,主控制器中智能控制模块也为机组的功率和转速优化控制计算目标给定,当主控失控时,也完全可独立进行变速变距控制、***保护控制、机组的安全停机。
2、变桨距控制器
变桨距控制器(简称变距控制器)由桨叶迎风位置检测传感器、桨距调节速度检测传感器、位置调节器、速度调节器,变桨距执行机构和液压伺服机构组成,(由图3所示)变距控制器按智能控制模块给定的控制目标,分别调节变桨距机构的位置和速度,完成风电机组的变桨距控制,变桨距控制是使风电机组保持额定风速以上输出恒定额定功率,而通过叶片沿其纵向轴心转动来调节桨叶迎风角的功率控制,其调节方式分为三个阶段:第一阶段为开机阶段,当风力机达到运行条件时,计算给定桨叶节距角,第一步节距角调节到28°左右;当转速达到1/2额定转速时,再调节到开平桨的角度0°,直到风力机达到额定转速并网发电,第二阶段为:当风速低于额定风速值时,即输出功率小于额定功率时,桨叶节距角保持在开平桨位置不变,第三阶段是:当风速大于额定风速值时,且功率达到额定后,变桨距调节***投入运行,调节的关键是额定风速时的额定功率,当风速大于额定风速时,且输出功率大于额定功率时,即调小桨叶桨距角,反之即然,桨距调节不断随风速的变化而进行,在本发明中变距控制与变速控制相结合来达到功率优化控制的目的。
3、变速控制器
变速控制器是本发明的发明关键点,变速控制器大体分成三大部分:变速控制核心控制器硬件、变速控制原理实现软件、变速控制器主电路,变速控制是采用矢量控制技术,对转差变频电源的频率、相位、幅值进行调节,达到发电机进行励磁电流调节目的,实现风轮转子按控制目标进行调节的控制,控制以机组转速和功率优化控制、定子和转子并网发电采用两种办法,①双馈发电机同步机并网调节方法,②转速超过并网转速的范围式的强制并网方式,随着风速不断增加,判断机组是否满足转子发电条件,在本***中转子发电条件为风速过额定功率点、四象限变流器工作稳定和转速过同步点同时满足;由电网侧脉宽调制逆变器的实现转子向电网回馈送电,***的恒频恒压、转速和功率优化控制由电机侧的转差励磁变频器调电流幅值、相位和频率来实现,控制方式可采用主控给定的方式,也可变速控制器自行计算优化给定值,可参考图7变速变距控制原理框图,变速控制中四象限变频电源是控制器的关键,它是***安全保护的重点,当它(主电路)出现故障,由继电器逻辑控制电路实现机组脱网停机保护。
4、恒频控制
本发明采用双馈绕线型感应发电机,其定子绕组直接接入电网,转子绕组由一台频率、电压可调的低频电源供给三相低频励磁电流,当转子绕组通过三相低频电流时,在转子中形成一个低速旋转磁场,这个磁场的旋转速度(n2)与转子的风轮转速(nr)相叠加,使其等于定子的同步转速(n1),即nr±n2=n1
从而在发电机定子绕组中感应出相应的工频电压,当风速变化时,转速nr随之而变化,在nr变化的同时,相应改变转子电流的频率和旋转磁场的速度n2,以补偿电机转速的变化,保持输出频率恒定不变,***中所采用的低频电源是将一种频率变换成另一种较低频率的电力变换装置即***的转差励磁变频器,为了获得较好的输出电压和电流波形,输出频率不超过输入频率的三分之一,由于转差励磁变频器处在发电机的转子回路(励磁回路),其容量不超过发电机额定功率的36%,本***中的发电机可以超同步运行(转子旋转磁场方向与风轮旋转方向相反,n2为负),也可以次同步运行(转子旋转磁场方向与风轮旋转方向相同,n2为正),在前一种情况下,除定子向电网馈送电力外,转子也向电网馈送一部分电力;在后一种情况下,则在定子向电网馈送电力的同时,需要向转子馈入部分电力。
5、变速控制器主电路原理
变速控制器主电路组成(由图6所示),有转差励磁变频器、脉宽调制逆变器、直流母线、K1、K2、K3控制接触器、滤波器组成,其中转差励磁变频器、直流母线和脉宽调制逆变器构成四象限变流器主电路,主电路中直流母线两侧电路的拓扑结构基本相同,以IGBT逆变/整流桥和驱动电路组成,他们之间由直流母线电容电阻连接,母线电压视发电机定子和转子发出电压而定,发电机转子发出的电压低于定子的电压,但转子向电网馈电时,电路必须采用斩波升压实现逆变上网,本电路在电网侧脉宽调制逆变器出口接入电感、电容L1、L2、L3、C1、C2、C3,与IGBT脉宽调制相结合,实现转子低电压发电并网能量回馈,同时,这些电容和电感还是正弦波滤波器的一部分。
6、变速控制核心控制器电路原理
(由图8所示)主控制器由CPU板和***接口电路板两大部分组成,主CPU板的微处理芯片为TMS320F240,总线上扩展了64K16位程序存储器,64K16位数据存储器,提供12路PMW输出,2路10位通道A/D输出,3个16位通用定时器输出,***具有SPI和通用RS-232接口,16路A/D输入接口,扩展一片MP7680JE接口,具有4路12位D/A输出,扩展两片SR128KX8R型快速闪存器,使***具有128*16位SRAM程序和数字存储器,总线挂有4片74ACT245总线驱动器,这些器件电路构成了DSP高性能数字微处理***,***接口电路板由四大部分组成,数字信号输入处理、隔离电路;模拟信号输出/输入选通、放大、隔离电路;PWM波输出稳幅隔离电路;开关信号输出放大隔离电路。
在本发明中吸取了变速恒频技术的优点,使得风电机组具有下列特点:采用双馈发电机矢量控制技术,通过调节转子励磁电流,实现风轮转子速度优化和变速运行,同时,可以进行双馈发电有功调节,使双馈饶线式交流发电***具有同步发电机上网所具有的全部特性,该***不仅可向电网输送电能,而且可以通过控制输出电流、电压的相位关系,调节发电机功率因数,向电网输送或吸收无功功率,对风电的长距离输送线路进行无功补偿,改善风电上网的供电质量。
双馈发电机转子励磁控制技术和双向四象限运行变频技术相结合,实现风电机组在变速恒频运行状态下风轮转子和发电机的柔性连接,以减小峰值负荷给叶片及传动机构造成的冲力,达到提高机组发电效率,增强保护功能和延长***使用寿命的多重效果。
变桨距目标功率跟踪与变速调节相结合,确保在额定风速点以上,稳定的额定功率输出,在额定风速下,保持最佳尖速比运行状态,提高捕获风能效率,使***在全风速范围内获得最优化能量输出。
采用先进的计算机控制技术,实行自学习运行控制策略,在获得机组自身最佳运行特性的同时,可以确保***实时优化控制***性能指标,使机组保持在运行最优状态,向电网馈送优质电能。
附图说明
图1为兆瓦级风电机组变速、变距控制***结构框图;
图2为兆瓦级风电机组变速、变距控制***主控制器组成框图;
图3为兆瓦级风电机组变速、变距控制***变速恒频风电机组主控制器程序流程图;
图4为兆瓦级风电机组变速、变距控制***变距控制***组成框图;
图5为兆瓦级风电机组变速、变距控制***变距变速控制流程图;
图6为兆瓦级风电机组变速、变距控制***变速控制主电路原理图;
图7为兆瓦级风电机组变速、变距控制***变速变距控制实现原理框图;
图8为兆瓦级风电机组变速、变距控制***变速控制核心控制器电原理图。
具体实施方式
本***的工作原理:
变速变距控制原理如图7的控制原理框图所示,***控制以跟踪风速的变化为调节量,以优化风轮转速、输出功率和***安全稳定运行为控制目标,形成了控制***调节的三条主线:(一)以风轮转速优化控制为目标,而形成闭环控制环节:由智能模块给出目标转速,并与实际转速相减,而偏差值进入框图5-框图9-框图11进行矢量控制的坐标变换17,再进入转差励磁Irq电流闭环调节,由调节器5对励磁电流信号Irq进行比例微分调节,信号输出经电阻换成电压信号,最后叠加成PWM调制输出波,由转子电流输出检测进入坐标变换17,将电流送入比较节点B5,形成励磁电流闭环负反馈调节控制,励磁电流的变化引起转速变化,经转速测试环节进入比较节点B1,形成转速的闭环控制;(二)以功率优化控制为目标而形成的2路闭环控制,功率优化包括有功功率的调节和功率因数的调节(本发明为间接调节无功),智能控制模块给出有功功率给定,与实际的有用功率相减后,得到转速偏差,进调节器2,与另一路经除法器6的转矩分量进入加法器相加之和乘比例因子Km2,再进入加法器10,经由坐标变换后,作为励磁电流的幅值变化量由调节器5组成的调节闭环反馈调节***,调节器6进行励磁电流Ird分量调节,Irq和Ird与调节回路共同完成PWM波的调制输出。
(三)根据***的功率特性和风速的特性,确定桨距位置目标和桨距速度调节目标给定,与实际桨距位置和速度相减得到偏差信号分别进入 调节器30和PID调节器36,调节信号输出分别驱动液压执行机构,其桨距的位置检测信号作为反馈信号,完成桨距角的目标跟踪控制。

Claims (7)

1、一种兆瓦级风电机组变速、变距控制***,其特征在于该***由控制、检测及驱动三部分组成,其中控制部分由主控制器,即为运行控制器(10)、变桨距控制器(11)和变速控制器(12)三部分组成;检测部分由机组风轮转子(1)、传动机构(2)、双馈发电机转子(3)、双馈发电机定子(4)、转差励磁变频电源(6)和脉宽调制逆变电源(7)部件组成;驱动部分由控制输出驱动模板和不同功能的伺服电机,有偏航、冷却伺服电机装置(14),液压伺服机构(15)和继电控制装置(16)组成,上述控制***各部件的联接是检测部分的机组风轮转子(1)、传动机构(2)、双馈发电机转子(3)、双馈发电机定子(4)、转差励磁变频电源(6)和脉宽调制逆变电源(7),分别以传感器信号输出,其中信号转换成控制器可接收的标准信号,数字信号低电平0V、高电平24V,模拟信号4-20mA,计算机运行状态、参数检测***(5)对此信号进行采样处理,处理后的数据再分别送入参数采集***,有输入开关状态、气象电网参数、发电机运行参数及***运行状态(9);再将此数据分别送入运行控制器,三控制器(10)、(11)、(12)的输出直接联接到控制输出驱动模板(13);驱动模板输出联接到驱动部分不同功能的伺服电机,有偏航、冷却伺服电机装置(14)、液压伺服机构(15)和继电控制装置(16)。
2、按权利要求1所述的控制***,其特征在于主控制器即控制***的核心控制器,控制器的核心包括不同功能的接口电路即控制选通电路、输入光电隔离电路、霍尔电量传感接口电路、开关量输入隔离电路、变速控制器接口电路与输出控制驱动电路,其中,机舱温度、液压油温度和齿轮箱油温、电机冷却液温度、控制箱温度、前主轴承温度、后主轴承温度、电机转子温度、电机定子温度、环境温度、电机轴承温、微机箱温度、IGBT箱的温度信号输出通过控制选通电路输入到可编程控制器;低速轴转速;高速轴转速、风速、风向、正、逆时计数器、变距角输入输出信号通过输入光电隔离电路输入到可编程控制器;定子a相电压、定子b相电压及转子a、b、c相电压、相电流信号输出通过霍尔电量传感器接口电路输入到可编程控制器;震动信号、电机过载和左、右扭极限、振动和超速开关、闸片磨损、压力开关一、二、三、四及维修、急停信号,均通过开关量输入隔离电路输入到可编程控制器;变速控制器接口电路输出联接到定子并网、转子励磁和逆变器并网、转速控制、功率控制、主电路冷却、控制器加热各输入端,输出控制驱动电路输出端分别接有控制箱加热、齿轮油加热、散热、液压油加热、电机除湿、偏航闸阀、液压油泵、液压阀位一、二、三、偏航电机一、二、机舱风扇、机械闸电机、变距比例阀、变距控制、控制箱冷却输入端。
3、按权利要求1所述的控制***,其特征在于变桨距控制器由桨叶迎风位置检测传感器、桨距调节速度检测传感器、位置调节器、速度调节器,变桨距执行机构和液压伺服机构组成,变桨距控制器按智能控制模块给定的控制目标,分别调节变桨距机构的位置和速度,完成风电机组的变桨距控制,变桨距控制是使风电机组保持额定风速以上输出恒定额定功率,而通过叶片沿其纵向轴心转动来调节桨叶迎风角的功率控制,其调节方式分为三个阶段:第一阶段为开机阶段,当风力机达到运行条件时,计算给定桨叶节距角,第一步节距角调节到28°左右;当转速达到1/2额定转速时,再调节到开平桨的角度0°,直到风力机达到额定转速并网发电;第二阶段为:当风速低于额定风速值时,即输出功率小于额定功率时,桨叶节距角保持在开平桨位置不变;第三阶段是:当风速大于额定风速值时,且功率达到额定后,变桨距调节***投入运行。
4、按权利要求1所述的控制***,其特征在于变速控制器分成三大部分:变速控制核心控制器硬件、变速控制原理实现软件、变速控制器主电路,变速控制是采用矢量控制技术,对转差变频电源的频率、相位、幅值进行调节,达到发电机进行励磁电流调节目的,实现风轮转子按控制目标进行调节的控制,控制以机组转速和功率优化控制、定子和转子并网发电,采用两种办法,a双馈发电机同步机并网调节方法,b转速超过并网转速的范围式的强制并网方式,随着风速不断增加,判断机组是否满足转子发电条件,在本***中转子发电条件为风速过额定功率点、四象限变流器工作稳定和转速过同步点同时满足;由电网侧脉宽调制逆变器实现转子向电网回馈送电,***的恒频恒压、转速和功率优化控制由电机侧的调转差励磁变频器的电流幅值、相位和频率来实现,控制方式可采用主控给定的方式,也可变速控制器自行计算优化给定值。
5、按权利要求1所述的控制***,其特征在于恒频控制采用双馈绕线型感应发电机,其定子绕组直接接入电网,转子绕组由一台频率、电压可调的低频电源供给三相低频励磁电流,当转子绕组通过三相低频电流时,在转子中形成一个低速旋转磁场,这个磁场的旋转速度(n2)与转子的风轮转速(nr)相叠加,使其等于定子的同步转速(n1),nr±n2=n1,发电机定子绕组中感应出相应的工频电压,当风速变化时,转速(nr)随之而变化,在(nr)变化的同时,相应改变转子电流的频率和旋转磁场的速度(n2),以补偿电机转速的变化,保持输出频率恒定不变,***中所采用的低频电源是将一种频率变换成另一种较低频率的电力变换装置即***的转差励磁变频器,为了获得输出电压和电流波形,输出频率不超过输入频率的三分之一,由于转差励磁变频器处在发电机的转子回路,其容量不超过发电机额定功率的36%,本***中的发电机可以超同步运行,也可以次同步运行,在前一种情况下,除定子向电网馈送电力外,转子也向电网馈送一部分电力;在后一种情况下,则在定子向电网馈送电力的同时,需要向转子馈入部分电力。
6、按权利要求1所述的控制***,其特征在于变速控制器有转差励磁变频器、脉宽调制逆变器、直流母线、K1、K2、K3控制接触器、滤波器组成,其中转差励磁变频器、直流母线和脉宽调制逆变器构成四象限变流器主电路,主电路中直流母线两侧电路的拓扑结构相同,以IGBT逆变/整流桥和驱动电路组成,他们之间由直流母线电容电阻连接,母线电压视发电机定子和转子发出电压而定,发电机转子发出的电压低于定子的电压,但转子向电网馈电时,电路必须采用斩波升压实现逆变上网,本电路在电网侧脉宽调制逆变器出口接入电感、电容L1、L2、L3、C1、C2、C3,与IGBT脉宽调制相结合,实现转子低电压发电并网能量回馈,同时,这些电容和电感还是正弦波滤波器的一部分。
7、按权利要求1所述的控制***,其特征在于主控制器由CPU板和***接口电路板两大部分组成,主CPU板的微处理芯片为TMS320F240,总线上扩展了65K16位程序存储器,64K16位数据存储器,提供12路PMW输出,2路10位通道A/D输出,3个16位通用定时器输出,***具有SPI和通用RS-232接口,16路A/D输入接口,扩展一片MP7680JE接口,具有4路12位D/A输出,扩展两片SR128KX8R型快速闪存器,使***具有128*16位SRAM程序和数字存储器,总线挂有4片74ACT245总线驱动器,这些器件电路构成了DSP高性能数字微处理***,***接口电路板由四大部分组成,数字信号输入处理、隔离电路;模拟信号输出/输入选通、放大、隔离电路;PWM波输出稳幅隔离电路;开关信号输出放大隔离电路。
CNB021448094A 2002-11-13 2002-11-13 兆瓦级风电机组变速、变距控制*** Expired - Fee Related CN1273729C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021448094A CN1273729C (zh) 2002-11-13 2002-11-13 兆瓦级风电机组变速、变距控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021448094A CN1273729C (zh) 2002-11-13 2002-11-13 兆瓦级风电机组变速、变距控制***

Publications (2)

Publication Number Publication Date
CN1410669A CN1410669A (zh) 2003-04-16
CN1273729C true CN1273729C (zh) 2006-09-06

Family

ID=4750671

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021448094A Expired - Fee Related CN1273729C (zh) 2002-11-13 2002-11-13 兆瓦级风电机组变速、变距控制***

Country Status (1)

Country Link
CN (1) CN1273729C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976180B (zh) * 2006-12-14 2010-05-26 天津市新源电气科技有限公司 变速变频风电机及其励磁控制***
CN101892953A (zh) * 2010-06-28 2010-11-24 三一电气有限责任公司 一种风力发电机组电动变桨***
CN101646867B (zh) * 2007-02-13 2013-09-11 罗伯特.博世有限公司 用于驱动多个轴的驱动装置

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504818A1 (de) * 2004-07-30 2008-08-15 Windtec Consulting Gmbh Triebstrang einer windkraftanlage
DE102004060943A1 (de) * 2004-12-17 2006-07-06 Repower Systems Ag Windparkleistungsregelung und -verfahren
CN100350720C (zh) * 2005-12-30 2007-11-21 西安理工大学 一种风力发电差动永磁电机装置
JP4738206B2 (ja) * 2006-02-28 2011-08-03 三菱重工業株式会社 風力発電システム、及びその制御方法
CN100376065C (zh) * 2006-07-07 2008-03-19 河海大学 基于直流发电机的风力发电***
ES2327695B1 (es) * 2006-10-11 2010-09-06 GAMESA INNOVATION & TECHNOLOGY, S.L. Sistema de giro de una pala de aerogenerador.
CN100456628C (zh) * 2006-10-26 2009-01-28 天津理工大学 基于dsp的参与二次调频的双馈型风力发电机交流励磁控制***及其工作方法
ES2301400B1 (es) * 2006-11-17 2009-05-01 GAMESA INNOVATION & TECHNOLOGY S.L. Metodo de reduccion de cargas en un aerogenerador.
CN100439702C (zh) * 2007-01-26 2008-12-03 沈阳工业大学 双馈式变速恒频风力发电机组
WO2008138169A1 (fr) * 2007-05-14 2008-11-20 Jiangsu Suya Mechanical & Electrical Manufacture Co., Ltd Systeme de commande solidaire de tangage, de lacet et de freinage pour generateur d'eolienne
DE102007022511B4 (de) * 2007-05-14 2009-07-30 Repower Systems Ag Windenergieanlage mit einer Verstelleinrichtung für die Rotorblätter
US8277185B2 (en) 2007-12-28 2012-10-02 General Electric Company Wind turbine, wind turbine controller and method for controlling a wind turbine
CN101240775B (zh) * 2008-03-14 2010-04-21 东南大学 风电机组液压变桨距***的控制方法
ES2345645B1 (es) * 2008-06-09 2011-07-13 GAMESA INNOVATION & TECHNOLOGY, S.L. Instalacion de energia eolica y procedimiento de modificacion del paso de pala en una instalacion de energia eolica.
DE102009014012B4 (de) 2009-03-23 2014-02-13 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
CN101672248B (zh) * 2009-07-21 2012-06-27 曲阜师范大学 风力机磁悬浮调向装置
CN101750215B (zh) * 2009-12-11 2011-08-31 国电南京自动化股份有限公司 风电主控制***和逆变***的试验***
CN101814744A (zh) * 2010-04-16 2010-08-25 陕西科技大学 一种基于双馈发电机的风力发电模拟***
CN101915207A (zh) * 2010-08-14 2010-12-15 东方电气集团东方汽轮机有限公司 四柜结构的数字化风机变桨控制***
CN102465832B (zh) * 2010-11-17 2013-08-07 三一电气有限责任公司 低电压穿越的分布式供电***及风力发电机组
CN102011696B (zh) * 2010-12-10 2012-09-19 苏州能健电气有限公司 一种风力发电变桨***
CN102619683A (zh) * 2011-01-30 2012-08-01 华锐风电科技(集团)股份有限公司 一种风力发电机变桨与偏航的分布式控制***
JP5237454B2 (ja) * 2011-02-28 2013-07-17 三菱重工業株式会社 風力発電装置およびその制御方法
CN102102631B (zh) * 2011-03-22 2012-08-22 国电联合动力技术有限公司 一种带有齿箱调速前端的风力发电机组运行控制方法
CN102200186A (zh) * 2011-05-10 2011-09-28 大连理工大学 风力发电机组齿轮箱远程在线状态监测与故障诊断***
CN102522769B (zh) * 2011-12-01 2014-03-19 北京动力机械研究所 宽风速范围的混合励磁风力发电***
IN2014CN04628A (zh) * 2011-12-20 2015-09-18 Windflow Technology Ltd
CN103244348B (zh) * 2012-02-08 2016-05-04 北京能高自动化技术股份有限公司 变速变桨风力发电机组功率曲线优化方法
DK201270417A (en) * 2012-07-09 2014-01-10 Envision Energy Denmark Aps Method and System to Actively Pitch to Reduce Extreme Loads on Wind Turbine
CN103353561B (zh) * 2013-06-24 2016-09-28 国家电网公司 一种风电机组交流回路检测***及其检测方法
CN103455028B (zh) * 2013-08-29 2016-04-20 国家电网公司 一种风电机组控制***pid环节静态测试及校验方法
CN104269884B (zh) * 2014-10-15 2017-03-29 三一重型能源装备有限公司 双模式并网方法、控制装置及***
DE202015001902U1 (de) * 2015-03-11 2016-06-14 Liebherr-Components Biberach Gmbh Verstelleinheit zur Pitchverstellung eines Rotorblatts und Windkraftanlage mit einer solchen Verstelleinheit
CN104832371B (zh) * 2015-05-28 2017-10-24 大唐山东烟台电力开发有限公司 一种风力发电机组控制方法和***
CN104948385B (zh) * 2015-06-26 2018-02-09 上海交通大学 风电机组恒额定转速区域提高发电量的变桨控制方法
CN105257475B (zh) * 2015-09-21 2017-11-07 北京科诺伟业科技股份有限公司 一种失速型风力发电机组的控制方法
CN106907295B (zh) * 2015-12-22 2019-10-18 通用电气公司 风力发电***及其控制方法
DE102016120700A1 (de) 2016-10-28 2018-05-03 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
US10352298B2 (en) 2016-12-21 2019-07-16 General Electric Company Wind generation system and controlling method thereof
CN107191330A (zh) * 2017-06-22 2017-09-22 中国华电科工集团有限公司 一种风能跟踪、风力发电装置和风能控制***
CN107630785B (zh) * 2017-09-11 2019-04-02 大连国通电气有限公司 一种多种工况下的风电机组保护控制***
CN107559154B (zh) * 2017-09-27 2019-02-26 山东科技大学 一种基于压电反馈的风力机挥舞颤振抑制智能变桨***
CN109944749B (zh) * 2017-12-21 2020-10-09 北京金风科创风电设备有限公司 极端湍流的识别方法、装置、设备及计算机可读存储介质
CN109441722B (zh) * 2018-10-12 2020-11-20 浙江运达风电股份有限公司 一种适用于低风速段风电机组启停机的控制***及方法
CN112145370B (zh) * 2020-09-04 2021-11-02 上海电气风电集团股份有限公司 通信质量检测方法、***和可读存储介质
CN113410949B (zh) * 2021-06-18 2022-12-13 桂林星辰科技股份有限公司 一种伺服节能型内燃机发电机组的控制运行方法
CN116335898A (zh) * 2021-12-24 2023-06-27 北京金风科创风电设备有限公司 风力发电机组的发电机冷却控制方法及装置
CN115199471B (zh) * 2022-06-24 2024-05-31 兰州理工大学 一种基于偏航变桨联动控制降载的功率控制方法和***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976180B (zh) * 2006-12-14 2010-05-26 天津市新源电气科技有限公司 变速变频风电机及其励磁控制***
CN101646867B (zh) * 2007-02-13 2013-09-11 罗伯特.博世有限公司 用于驱动多个轴的驱动装置
CN101892953A (zh) * 2010-06-28 2010-11-24 三一电气有限责任公司 一种风力发电机组电动变桨***
CN101892953B (zh) * 2010-06-28 2012-10-24 三一电气有限责任公司 一种风力发电机组电动变桨***

Also Published As

Publication number Publication date
CN1410669A (zh) 2003-04-16

Similar Documents

Publication Publication Date Title
CN1273729C (zh) 兆瓦级风电机组变速、变距控制***
CN1268843C (zh) 兆瓦级变速恒频风电机组
Boukhezzar et al. Nonlinear control of variable speed wind turbines for power regulation
CN102332727B (zh) 一种利用直流侧飞轮储能单元平滑永磁直驱风力发电***输出有功功率的方法
CN102680895B (zh) 一种风力发电模拟平台的模拟方法
CN101581272B (zh) 定桨距变速风力发电机组在失速区的功率控制方法
Belmokhtar et al. Modelling and fuzzy logic control of DFIG based wind energy conversion systems
CN102636352B (zh) 一种永磁直驱风力发电机组模拟实验***
CN102684589B (zh) 变速恒频双转子永磁风力发电***的控制***及方法
CN1881767A (zh) 风力发电用全功率型交直交变流器的控制结构
Errami et al. Control strategy for PMSG wind farm based on MPPT and direct power control
CN103762919B (zh) 用于直驱式风力发电机低电压穿越的功率控制装置及方法
Errami et al. Variable Structure Direct Torque Control and grid connected for wind energy conversion system based on the PMSG
CN102355175B (zh) 一种感应电机刹车控制方法
CN100439702C (zh) 双馈式变速恒频风力发电机组
Hassan et al. Control of a wind driven DFIG connected to the grid based on field orientation
Beltran et al. A combined high gain observer and high-order sliding mode controller for a DFIG-based wind turbine
Sirichai Experimental assessment with wind turbine emulator of variable-speed wind power generation system using boost chopper circuit of permanent magnet synchronous generator
Liu et al. Integrated control strategy of multibrid wind power generation system
Badreldien et al. Modeling, analysis and control of doubly fed induction generators for wind turbines
Hachemi et al. Control of the power quality for a DFIG powered by multilevel inverters
CN105119507B (zh) 一种pwm整流器功率前馈控制方法
Aljarhizi et al. Static Power Converters for a Wind Turbine Emulator Driving a Self-Excited Induction Generator
Boulkhrachef et al. Higher-order sliding mode control of a wind energy conversion system
Mossa Field orientation control of a wind driven dfig connected to the grid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060906

Termination date: 20121113