CN101395025B - 使用电子控制止滑差动机构的稳定性增强牵引与横摆控制 - Google Patents

使用电子控制止滑差动机构的稳定性增强牵引与横摆控制 Download PDF

Info

Publication number
CN101395025B
CN101395025B CN2007800077482A CN200780007748A CN101395025B CN 101395025 B CN101395025 B CN 101395025B CN 2007800077482 A CN2007800077482 A CN 2007800077482A CN 200780007748 A CN200780007748 A CN 200780007748A CN 101395025 B CN101395025 B CN 101395025B
Authority
CN
China
Prior art keywords
vehicle
mrow
msub
yaw rate
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800077482A
Other languages
English (en)
Other versions
CN101395025A (zh
Inventor
D·皮亚博格卡恩
J·Y·卢
J·A·格罗格
R·J·凯尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Intelligent Power Ltd
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of CN101395025A publication Critical patent/CN101395025A/zh
Application granted granted Critical
Publication of CN101395025B publication Critical patent/CN101395025B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/22Arrangements for suppressing or influencing the differential action, e.g. locking devices using friction clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • F16H48/34Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means using electromagnetic or electric actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/14Electronic locking-differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H2048/204Control of arrangements for suppressing differential actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2071Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using three freewheel mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/30Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means
    • F16H48/32Arrangements for suppressing or influencing the differential action, e.g. locking devices using externally-actuatable means using fluid pressure actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/12Gyroscopes
    • Y10T74/1229Gyroscope control
    • Y10T74/1232Erecting
    • Y10T74/1254Erecting by motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/14Rotary member or shaft indexing, e.g., tool or work turret
    • Y10T74/1418Preselected indexed position
    • Y10T74/1424Sequential
    • Y10T74/1435Held by torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19251Control mechanism
    • Y10T74/19256Automatic
    • Y10T74/19274Automatic torque responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2186Gear casings
    • Y10T74/2188Axle and torque tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Friction Gearing (AREA)
  • Regulating Braking Force (AREA)

Abstract

提供了一种用于具有第一与第二轮(28,30)的车辆的控制***(50),其包含:差动设备(22),其适用于在所述第一与第二轮(28,30)之间分配转矩;牵引控制器(52),其用于从车辆发动控制直到预定车辆速度对差动设备(22)的运行进行控制。牵引控制器(52)被配置为根据表示低牵引运行条件的至少一个车辆运行参数接合第一运行状态中的差动设备(22),并进一步根据实际车辆横摆率与预定目标车辆横摆率之间的差在低牵引运行条件期间控制第二车辆运行状态中的差动设备(22)的接合。控制***(50)还包含稳定性控制器(54),其用于在所述预定车辆速度时或高于所述预定车辆速度时对所述差动设备(22)的接合进行控制。

Description

使用电子控制止滑差动机构的稳定性增强牵引与横摆控制
相关申请的交叉引用
本申请要求2006年2月3日由Damrongrit Piyabongkarn、Jae YoungLew、John Allen Grogg、Robert Joseph Kyle提交的美国临时专利申请No.60/765,046“STABILITY-ENHANCED TRACTION AND YAWCONTROL USING ELECTRONIC LIMITED SLIP DIFFERENTIAL”的优先权。
技术领域
本发明涉及使用电子控制止滑差动机构在保持纵向运动的同时增强车辆横向动态的有效(active)车辆稳定性控制***以及方法。
背景技术
防抱死***(ABS)已经成为现代客车的组成部分,并可用于提高车辆牵引(traction)和稳定性。基于制动干预的典型牵引控制***具有这样的缺点:消耗了与对高摩擦轮进行偏置(bias)所花费能量的大致相等的量的能量。例如,当车辆试图在拼合摩擦(split-μ)、低-高摩擦表面上爬坡或加速时,其常常通过耗散与其偏置到高摩擦轮的相等量的能量来将其能量损耗到制动***。因此,制动转矩限制了高摩擦轮上的驱动转矩,且经常不足以移动车辆,例如在上坡驱动情况下。
为了克服这种限制,可在被驱动轮上应用使用电子控制止滑差动机构(ELSD)的牵引控制,使得车辆可通过向较高摩擦车轮发送较大牵引转矩来保持纵向运动。完全锁定差动机构实现优良的纵向牵引,但在光滑或split-μ表面上,车辆的横向动态可能降低并偏离驾驶者期望的方向。事实上,偏置牵引转矩必须受到适当的控制,以便防止不希望的横摆运动以及车辆横向动态的最终降低。
在相对较高的速度下,可应用横摆稳定性控制***,以便防止车辆失去控制。市场上的大多数车辆稳定性控制***是基于制动器的。基于制动器的稳定性控制***使用ABS硬件来施加单独的车轮制动力,以便校正车辆横摆动态。然而,基于制动器的***受到以下限制所苦:车辆速度性能劣化并与驾驶者的动作矛盾。为了克服基于制动器的稳定性控制的限制,有效转矩分配稳定性控制的使用将在接近于车辆稳定性限制的加速下更为有利。
最后的两种降级在将四轮驱动(4WD)***应用到客车时显著增大。止滑差动机构(LSD)技术已经用于多种生产模型。ELSD在汽车市场中广泛使用,并已知道,除其优良的牵引性能外,ELSD具有将横摆阻尼加到车辆的能力。
发明内容
具有第一与第二车轮的车辆的控制***被设置为具有:差动设备,该设备适用于在第一与第二车轮之间分配转矩;牵引控制器,其用于从车辆发动直到预定车速对差动设备的运行进行控制。牵引控制器被配置为根据表示低牵引运行条件的至少一个车辆运行参数接合(engage)第一车辆运行状态中的差动设备,并进一步根据实际车辆横摆率与预定目标车辆横摆率之间的差在低牵引运行条件期间控制第二车辆运行状态中的差动设备的接合。控制***还包含稳定性控制器,其用于在预定车速或预定车速之上控制差动设备的接合。
本发明一实施例包含有效稳定性控制方法,其使用ELSD在保持纵向运动的同时增强车辆横向动态。本发明另一实施例包含一种控制***,其提供牵引控制的稳定性增强。在split-μ冰/柏油表面上,在直线全节流阀发动的情况下,对稳定性增强牵引控制进行评估。实验数据显示出牵引控制运行模式下的显著的稳定性提高。
附图说明
图1为示例性车辆驱动线(driveline)构造,其包含电子控制止滑差动机构;
图2为示例性电子控制止滑差动机构的截面图;
图3为图2所示示例性电子控制止滑差动机构的离合器响应时间的图表;
图4为包含电子控制止滑差动机构的车轴的动态模型;
图5为电子控制止滑差动机构离合器的动态模型;
图6为根据本发明一实施例的控制***的原理图;
图7为一图表,其示出了在车轴后轮上锁定电子控制止滑差动机构的效果;
图8为在包含根据本发明一实施例的控制***的车辆中的双车道(lane)改变操纵的车辆横摆率的图表;
图9为对应于图8的图表的电子控制止滑差动机构的离合器转矩的图表;
图10为对应于图8的图表的车辆动画行驶(animation run)的合成快照;
图11-13以图表的形式示出了使用根据本发明一实施例的控制***在发动过程中的车辆性能的测试结果;
图14-22以图表的形式示出了使用根据本发明一实施例的控制***在相对高速回旋(slalom)操纵过程中的车辆性能的测试结果;
图23与24以图表的形式示出了使用根据本发明一实施例的控制***在积雪路面上在开环(open-loop)、正弦-转向(sine-steer)操纵过程中的车辆性能的测试结果。
具体实施方式
下面将介绍本发明。首先将介绍使用电子控制止滑差动机构的示例性车辆驱动线构造。其次,将分析止滑差动机构的建模。第三,对于牵引控制和横摆控制介绍稳定性控制***。最后,仿真和实验结果将说明控制***在发动与相对较高速度运行过程中对车辆稳定性进行控制的有效性。
参照图1,示出了所建议的驱动线构造20,其不是为了进行限制。驱动线20包含安装在前轴24和后轴26中的至少一个中的电子控制止滑差动机构(ELSD)22a、22b。ELSD22可用于对左右轮28、30之间的转矩进行偏置。在一个实施例中,由ELSD22在左右轮28、30之间分配的转矩量由离合器(未示出)的接合决定,如现有技术中所了解的那样,该离合器可通过例如液压或电磁***实现。用于驱动线20的示例性ELSD在待准美国专利申请11/167,474以及已发布的美国专利No.7,051,857中有介绍,其被转让为本发明的受让人,并且整体引入此处作为参考。
如图2所示,并参照前面提到的参考文献,前后轴24、26中使用的ELSD通过布置在第一锥形侧齿轮32与差动机构外壳34之间的有效控制湿型多盘型摩擦离合器30实现其止滑功能。离合器30的接合限制了侧齿轮32与差动机构外壳34之间的滑动,通过这样做,限制了连接到各车轮28、30的一对输出半轴(未示出)之间的滑动。这种滑动限制功能带来了这样的能力:在输出半轴之间产生转矩偏置,其大小将小于或等于离合器转矩。例如相对较高的锁定转矩水平、热容量、持久性以及无噪音运行等示例性特征概括了这种离合器设计。差动机构外壳34与二级外壳38之间的旋转运动操作摆线泵40,其将油从轴槽移动到与离合器致动活塞42以及螺线管操作压力调节阀44直接连通的释放通道。当阀44被解除激励时,油自由地流过阀44,导致离合器致动活塞42上的小液压或没有液压。当阀44被激励时,油流动受到在致动活塞42上产生液压的阀44的限制,以便根据与液压水平成比例的水平接合离合器30。
液压***最优化是ELSD的基本设计部分,这种最优化的核心是适当的泵设计与进出口(porting)控制。图2所示示例性ELSD设计中的摆线泵40以优良的低速(例如小于每小时32公里(kph))牵引所需的高水平液压效率受到操作,同时,不对较高车速(例如大于大约113kph)的机械效率过度造成不利。由装有上述ELSD设计的测试车辆获得的公路速度燃料经济性测量没有显示出燃料经济性的可测量的降低。类似地,由于泵40的机械损耗,图2所示示例性差动机构的实验室台架试验在大约113kph下显示出大于0.11kW的功率损耗。
无论ELSD32的机械构造如何,离合器响应时间需要足够保证稳定性控制***的有效性。对于迅速的峰值转矩建立,图2所示ELSD设计需要最小电流吸取,例如使用2.67安(32W)电流的2000Nm转矩,特别是在与使用电磁或基于电动机的致动器的其他***相比时。对于基于驱动线转矩控制的车辆动态运行(如这里所介绍)以及与许多基于电流值动器的车辆动态干预***的兼容性,都需要相对较快的差动转矩偏置施加与移除。图3示出了使用这里介绍的示例性ELSD进行的阶跃转矩偏置施加与移除的图表。如所示出的那样,对于以大约64kph行驶的车辆,离合器接合与解除接合时间均小于50ms。
参照图4与5,将对于车辆控制***评估介绍ELSD的动态模型。模型基于离合器的动态特性,并集中在锁定和解锁(或滑动)离合器条件,包括在解锁/滑动状态与锁定状态之间转换离合器接合的条件。
ELSD通常具有与开路(open)差动机构相同的部件,除了提供转矩传送的附加路径的离合器以外。参照图4,Tin为传送到后传动轴(rearprop-shaft)的转矩,Tdiff为通过差动齿轮传送的转矩,TCT为通过离合器传送的转矩。TCT不必与依赖于锁定、解锁或滑动状态受到车辆电子控制单元(ECU)或其他控制器控制的所施加的离合器转矩水平相同。假设转矩传送的效率为100%,从传动轴到差动机构的差动齿轮比为1,差动机构有着很小的质量惯性或没有质量惯性,则:
Tin=TCT+Tdiff          (1)
由于通过差动齿轮传送的转矩Tdiff被相等地分配到左右轴,到左后惯性(rear-left inertia)与右后惯性的净转矩可表达为:
T L = T CT + T diff 2 - - - ( 2 )
T R = T diff 2 - - - ( 3 )
参照图5,离合器可根据下面的公式被建模为弹簧阻尼器扭转元件:
TCT=c·Δω+∫k·Δω·dt          (4)
其中,c为离合器阻尼系数,k为离合器弹簧系数,Δω=ΔωdiffL,其表示差动机构与左轴之间的速度差。
离合器可进一步在锁定状态中被建模。TCT_max表示施加到离合器盘并受到车辆控制器控制的离合器转矩。然而,依赖于锁定状态,实际传送的离合器转矩不必与所施加的离合器转矩水平相同。事实上,所传送的离合器转矩可如下所示受到TCT_max的限制:
T CT = sat T CT _ max { c · Δω + ∫ k · Δωdt } - - - ( 5 )
对于止滑差动机构的锁定条件如下所示地建模。从锁定状态到解锁/滑动状态的转换在此时发生:
c·Δω+∫k·Δωdt=TCT_max
对于此条件的建模可由公式(2)与(3)如下所示地得出:
T L = T in + T CT _ max · sgn ( Δω ) 2 - - - ( 6 )
T R = T in - T CT _ max · sgn ( Δω ) 2 - - - ( 7 )
从解锁/滑动状态到锁定状态的转换在此时发生:
c·Δω+∫k·Δωdt<TCT_max
这一模型表示出所施加的离合器转矩大于离合器盘之间的转矩差的情况,并相应地描述了离合器的锁定动态。
由公式(1)和(4),Tdiff被计算为:
Tdiff=Tin-TCT=Tin-(c·Δω+∫k·Δωdt)  (8)
于是:
T L = T CT + T diff 2 = T in + ( c &CenterDot; &Delta;&omega; + &Integral; k &CenterDot; &Delta;&omega;dt ) 2 - - - ( 9 )
T R = T diff 2 = T in - ( c &CenterDot; &Delta;&omega; + &Integral; k &CenterDot; &Delta;&omega;dt ) 2 - - - ( 10 )
对上面的公式求导数得到:
T &CenterDot; L = 1 2 ( T &CenterDot; in + c &CenterDot; &Delta; &omega; &CenterDot; + k &CenterDot; &Delta;&omega; ) - - - ( 11 )
T &CenterDot; R = 1 2 ( T &CenterDot; in - c &CenterDot; &Delta; &omega; &CenterDot; - k &CenterDot; &Delta;&omega; ) - - - ( 12 )
其中, &Delta; &omega; &CenterDot; = &omega; &CenterDot; diff - &omega; &CenterDot; L .
如下所示地得出左后与右后轴的动态公式:
I L &omega; &CenterDot; L = T L - r eff F L - - - ( 13 )
I R &omega; &CenterDot; R = T R - r eff F R - - - ( 14 )
另外,根据差动机构的物理原理,差动机构速度被如下所示地确定:
&omega; diff ( = &omega; in ) = &omega; L + &omega; R 2 ;
&omega; &CenterDot; diff = &omega; &CenterDot; L - &omega; &CenterDot; R 2 - - - ( 15 )
将公式(13)与(14)代入(15),得到:
&Delta; &omega; &CenterDot; = - T L - r eff F L 2 I L + T R - r eff F R 2 I R - - - ( 16 )
注意, 2 &Delta; &omega; &CenterDot; = 2 ( &omega; &CenterDot; diff - &omega; &CenterDot; L ) = &omega; &CenterDot; L - &omega; &CenterDot; R .
采用上面的转换条件,转矩偏置装置的动态可在例如Matlab/Simulink等仿真软件中实现。两装置的离散时间建模如下概括。
当从锁定状态改变到解锁/滑动状态时,于是:
T L ( n ) = T in ( n ) + T CT _ max ( n ) &CenterDot; sgn ( &Delta;&omega; ( n ) ) 2 - - - ( 17 )
T R ( n ) = T in ( n ) - T CT _ max ( n ) &CenterDot; sgn ( &Delta;&omega; ( n ) ) 2 - - - ( 18 )
当从解锁/滑动状态改变到锁定状态时,于是:
T L ( n + 1 ) = T L ( n ) + T in ( n + 1 ) 2 - T in ( n ) 2     (19)
+ k &CenterDot; &delta;t 2 &CenterDot; &Delta;&omega; ( n ) + c &CenterDot; &delta;t 2 &CenterDot; &Delta; &omega; &CenterDot; ( n )
T R ( n + 1 ) = T R ( n ) + T in ( n + 1 ) 2 - T in ( n ) 2      (20)
- k &CenterDot; &delta;t 2 &CenterDot; &Delta;&omega; ( n ) - c &CenterDot; &delta;t 2 &CenterDot; &Delta; &omega; &CenterDot; ( n )
尽管通过ELSD的转矩分配可用于改变车轮上的车辆牵引力,结果,车辆的动态横摆响应发生变化。离合器30的施加或接合可被调节,以便对于具体驱动条件调整所希望的车辆横摆动态特性。
参照图6,将介绍车辆控制***50,其包括根据本发明一实施例使用转矩偏置提高车辆稳定性的方法。在一实施例中,控制***50包含两个主要控制器:稳定性增强牵引控制器52和横摆阻尼控制器54。监督控制器56可用于根据通过接收自一个或一个以上的车辆传感器58的车辆传感器信息确定的一个或一个以上的车辆运行参数——例如车辆速度——选择控制动作。在相对较低的车辆速度下,在牵引控制有效的同时,稳定增强牵引控制算法被施加以提高车辆稳定性。在相对较高的车辆速度下,稳定性增强牵引控制被关闭,仅横摆阻尼控制是有效的。牵引控制器52和横摆阻尼控制器54可被设置为与单独的控制单元通信或包含在单独的控制单元中,该控制单元例如为车辆电子控制单元(ECU),其集成在车辆ECU之内或与之彼此成为一体,或者,构成车辆ECU或其他车辆控制器的非硬件部件(例如软件)。
使用有效控制、可全锁定差动机构的牵引控制***通常实现了优良的纵向车辆加速,但在split-μ条件下使得车辆的横向动态降级。具体而言,尽管传统的差动机构控制牵引控制***可以基于车轮滑动信息的反馈实时控制差动机构离合器,由于离合器的过度应用,***可产生横摆不稳定性。
通过除通常的有效牵引控制器外提供增强稳定性牵引控制控制器,根据本发明一实施例的车辆稳定性控制***克服了这种限制。在稳定性增强牵引控制器52中,判断实际车辆横摆率是否超过预定的希望横摆率,如下所示:
Δr=r-rdes          (21)
其中,r为实际横摆率,rdes为希望横摆率。
r des = V x L ( 1 + K us V x 2 gL ) &delta; - - - ( 22 )
其中,Vx为车辆纵向速度,δ为转向角度,L为车辆轴距,Kus为不足转向梯度。
每当实际车辆横摆率超过预定的希望横摆率时,与实际以及希望横摆率之间的差成比例地解除接合差动机构离合器,允许车辆驾驶者将车辆转回到路线上。通过根据下面的公式改变原始或通常的差动施加转矩来实现稳定性增强牵引控制:
Figure G2007800077482D00092
其中,u为差动施加转矩,utraction为原始牵引控制信号,deadband为可基于驾驶者控制车辆的技能进行调节的对于横摆率差的阈值函数,sat为设置在[-a,+a]的饱和函数,a为作为设计参数的误差范围值。
除了提高低牵引直线车辆运行的稳定性以外,车辆稳定性控制***也可有助于在车辆转弯时增大稳定性。当稳定性增强牵引控制功能完成时,ELSD仍可用于对左右车轮之间的传动轴转矩进行偏置。如果差动机构离合器转矩在车辆转弯的同时被施加,装置仅从外侧车轮向内侧车轮传送驱动转矩,由此,产生与转弯方向相反的横摆力矩,增大了车辆的不足转向趋势。这种现象可通过考虑公式(19)与(20)来解释。在转弯时,外侧车轮的速度通常大于内侧车轮的速度。差动机构离合器的应用将试图将外侧车轮与内侧车轮的速度引至同样的值。外侧车轮速度和加速将会与驱动转矩一起减小,反之亦然,而内侧车轮的驱动转矩将会增大。因此,控制策略基于这样的原理:锁定ELSD导致更大的转向不足行为。
当实际横摆率大于预定的希望横摆率时,横摆阻尼控制器54锁定差动机构,以便增大横摆阻尼。如上所述,希望横摆率可基于车辆速度以及转向轮角来确定。于是,可实时地将实际横摆率与希望横摆率相比。如果实际横摆率小于希望横摆率,由于增大前后差动机构的锁定转矩增大了横摆阻尼,差动机构不再进一步接合,由此减小了横摆率。当横向加速低于0.03g且实际与希望横摆率之间的横摆率变化小于3%时,横摆率比较可以不是有效的。将由横摆阻尼控制器54施加的差动施加转矩可根据下面的公式确定:
Figure G2007800077482D00101
其中,u为差动施加转矩,deadband为可基于控制***灵敏度进行调节的对于横摆率差的阈值函数,Kp与Ki分别为比例增益与积分增益,pos为正值函数。每当在恒定μ条件下存在太大的横摆率过冲时,横摆阻尼控制器54接合ELSD。横摆阻尼控制器54的运行在申请人的并行待准美国专利申请“Minimizing Dynamic Rollover Propensity with Electronic LimitedSlip Differentials”中有更详细的介绍,其整体并入此处作为参考。
在Matlab/Simulink环境中产生控制***50的动态模型。使用了CarSim所开发的全车辆模型并对之进行修改,以便包含上面所介绍的示例性ELSD,使得可进行共同仿真。图7示出了所开发的模型的验证。当对于转弯操纵施加高离合器转矩时,左轮与右轮的速度在接合时间内变得基本类似。
为了对在横摆阻尼控制器54控制下运行的所提出的控制***50的性能进行评估,对标准化的双车道改变操纵进行仿真,以便验证所提出的横摆控制在车辆动态上的效果。进行这种操纵以评估后轮驱动模式中的横摆阻尼性能。所有条件被设置为相对较滑的道路(μ=0.6)上的100km/h的相同速度。
图8示出了在有和没有横摆阻尼控制的情况下的车辆比较。与没有横摆阻尼控制的车辆——其最终变得不稳定——相比,有横摆阻尼控制的车辆具有优越的性能和稳定性。图9示出了用于控制转矩偏置装置的对应的离合器转矩水平。ELSD离合器仅仅在车辆过度转向时被致动。最后,图10示出了CarSim中的动画行驶的快照。
在前轴与后轴均装有Eaton Corporation的EGerodiscTM差动机构的改装Ford F-150以及后轴上装有Eaton Corporation的EGerodisc IITM差动机构的改装Chevrolet Silverado上进行车辆测试。为了获得客观的测试结果,为车辆设置仪器,以便记录相关的运行参数。来自dSPACE的MicroAutoBox用于建立用于车辆的实时控制器,提供了Matlab/Simulink中的迅速的样机创建环境。类似于车辆ECU,控制器被设计为车内单元,采样时间被设置在10ms。来自dSPACE的ControlDesk实验软件被用于通过图形用户界面模式(GUI)管理、监视和记录实验数据。
来自Oxford Technical Solution的实时车辆导航***RT3000也用于试验。RT3000是具有所结合的GPS的完全六轴惯性导航***。GPS输出经由车辆CAN通信以0.5Mbits/sec的波特率被连接到MicroAutoBox。稳定性测试中使用的传感器信息包括车轮速度传感器、转向角传感器、RT3000信号(例如车辆速度、全球X、全球Y、横向加速、纵向加速、车身滑动角与横摆率)。
稳定性增强牵引控制测试使用split-μ干与冰表面上的直线全节流阀车辆发动进行。为了得到客观验证,转向轮角度在测试过程中(例如开环)被设置为零。公式(23)中的deadband函数中的横摆误差被设置为±0.5deg/sec。误差范围值a对于本测试被设置为0.5deg/sec。如图11-13所示,实验数据示出了稳定性增强牵引控制模式中在车辆发动过程中车辆稳定性的显著提高。当仅仅使用通常的牵引控制模式运行时,车辆迅速向着路面的有冰部分绕转(spin out)。在采用稳定性增强牵引控制的情况下,车辆横摆动态是稳定的,且车辆保持在基本直线前进方向。使用低的deadband阈值,实现了最小的不希望的横摆,但车辆发动较慢。然而,deadband可基于驾驶者技能进行调节。
如车轮速度传感器等车辆传感器所确定地高于预定车辆速度时,横摆阻尼控制器变得有效。特别地,回旋操纵可创建不稳定的车辆情况。可在低μ表面回旋操纵下观察到过度转向行为,因此,可选择回旋操纵来对有效横摆控制进行评估。跑道使用积雪表面上具有大约100英尺间距的直线七车道。于是,在进入回旋跑道之前,驾驶者驱动车辆直到大约50km/h的速度。
参照图14-24,实验结果显示,车辆差动机构的有效控制提高了回旋操纵过程中的车辆动态。然而,如果车辆没有被驱动到操作限制,难以分辨具有以及不具有横摆控制的***之间的差别,如图14所示。注意,当车辆没有在操作限制下被驱动时,驾驶者技能对性能有着显著影响。
图14-22示出了在有和没有使用横摆阻尼控制器54的恒定速度控制的情况下当达到操作限制时的回旋操纵的测试结果。具有横摆阻尼控制器54的车辆保持其方向以跟随希望横摆率,而没有横摆阻尼控制器54的车辆丧失其稳定性并旋离路线。车辆纵向速度的比较也在图16与20中示出。没有横摆阻尼控制器54的控制的车辆由于车辆绕转而显示出不利的速度性能。使用横摆阻尼控制器54,当过度转向行为被检测到时,差动机构被接合,以便增加横摆阻尼,这使得驾驶者更容易保持所希望的车辆路线。
参照图23与24,进行积雪路面上的开环正弦转向操纵,以便评估具有横摆阻尼控制器54的操作特性。驾驶者用恒定速度控制以大约0.5Hz的正弦形转向角驱动车辆。图23与24所示的实验结果显示,车辆在大多数时间转向不足,除了横摆阻尼控制器54对过度转向行为进行校正的从后弯心(late mid-corner)到弯道出口(corner exit)以外。
在上面的说明书中详细介绍了本发明,相信本领域技术人员由对说明书的阅读与理解可以想到本发明的多种改变和修改。在所有这些修改与改变属于所附权利要求书的范围的情况下,它们包含在本发明中。

Claims (5)

1.一种用于具有第一与第二轮(28,30)的车辆的控制***(50),其包含:
差动设备(22),其适用于在所述第一与第二轮(28,30)之间分配转矩;
稳定性增强牵引控制器(52),其用于从车辆发动直到预定车辆速度对所述差动设备(22)的运行进行控制;所述牵引控制器(52)被配置为根据表示低牵引运行条件的至少一个车辆运行参数接合第一车辆运行状态中的差动设备(22),并进一步根据实际车辆横摆率与预定目标车辆横摆率之间的差在低牵引运行条件期间控制第二车辆运行状态中的所述差动设备(22)的接合;以及
稳定性控制器(54),其用于在所述预定车辆速度时或高于所述预定车辆速度时控制所述差动设备(22)的接合。
2.根据权利要求1的控制***,其中,所述牵引控制器(52)被配置为根据实际车辆横摆率与预定目标车辆横摆率之间的差在低牵引运行条件过程中调制所述差动设备(22)的接合。
3.根据权利要求1的控制***,其中,所述牵引控制器(52)被配置为根据基于修改后的原始差动施加转矩信号的希望差动施加转矩信号来接合所述差动设备(22)。
4.根据权利要求3的控制***,其中,希望差动施加转矩信号等于原始差动施加转矩信号乘以修改量,所述修改量在其分子中包含误差范围值和这样的值之间的差:该值为实际车辆横摆率与预定目标车辆横摆率之间差、deadband以及饱和函数的乘积,其中,deadband为能基于驾驶者控制车辆的技能进行调节的对于横摆率差的阈值函数,
且所述修改量在其分母中包含误差范围值。
5.根据权利要求1的控制***,其中,在所述第一车辆运行状态下,所述实际车辆横摆率小于或基本等于所述预定目标车辆横摆率,在所述第二车辆运行状态下,所述实际车辆横摆率大于所述预定目标车辆横摆率。
CN2007800077482A 2006-02-03 2007-02-02 使用电子控制止滑差动机构的稳定性增强牵引与横摆控制 Active CN101395025B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US76504606P 2006-02-03 2006-02-03
US60/765,046 2006-02-03
PCT/IB2007/000242 WO2007088467A2 (en) 2006-02-03 2007-02-02 Stability-enhanced traction and yaw control using electronically controlled limited-slip differential

Publications (2)

Publication Number Publication Date
CN101395025A CN101395025A (zh) 2009-03-25
CN101395025B true CN101395025B (zh) 2012-04-11

Family

ID=38326276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800077482A Active CN101395025B (zh) 2006-02-03 2007-02-02 使用电子控制止滑差动机构的稳定性增强牵引与横摆控制

Country Status (15)

Country Link
US (1) US7801657B2 (zh)
EP (1) EP1979189B1 (zh)
JP (1) JP5246500B2 (zh)
KR (1) KR20080092981A (zh)
CN (1) CN101395025B (zh)
AT (1) ATE507996T1 (zh)
AU (1) AU2007210853B2 (zh)
BR (1) BRPI0706922A2 (zh)
CA (1) CA2641897C (zh)
DE (1) DE602007014323D1 (zh)
ES (1) ES2362238T3 (zh)
MX (1) MX2008009971A (zh)
PL (1) PL1979189T3 (zh)
RU (1) RU2449909C2 (zh)
WO (1) WO2007088467A2 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007210853B2 (en) * 2006-02-03 2012-03-08 Eaton Intelligent Power Limited Stability-enhanced traction and yaw control using electronically controlled limited-slip differential
CA2651252A1 (en) * 2006-05-09 2008-05-08 Lockheed Martin Corporation Mobility traction control system and method
US8589049B2 (en) 2007-12-03 2013-11-19 Lockheed Martin Corporation GPS-based system and method for controlling vehicle characteristics based on terrain
US20090143937A1 (en) * 2007-12-04 2009-06-04 Lockheed Martin Corporation GPS-based traction control system using wirelessly received weather data
US8145402B2 (en) * 2007-12-05 2012-03-27 Lockheed Martin Corporation GPS-based traction control system and method using data transmitted between vehicles
US8229639B2 (en) * 2009-02-17 2012-07-24 Lockheed Martin Corporation System and method for stability control
US8244442B2 (en) * 2009-02-17 2012-08-14 Lockheed Martin Corporation System and method for stability control of vehicle and trailer
US8352120B2 (en) 2009-02-17 2013-01-08 Lockheed Martin Corporation System and method for stability control using GPS data
US20100209885A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill based on lane change maneuver
US9605740B2 (en) * 2009-10-01 2017-03-28 Ford Global Technologies, Llc Control of an electronic locking differential
US20110269595A1 (en) 2010-04-30 2011-11-03 American Axle & Manufacturing Inc. Control strategy for operating a locking differential
US8437914B2 (en) 2010-05-18 2013-05-07 Ford Global Technologies Electric motor enhanced driveability in vehicle handling and stability control events
JP5257414B2 (ja) * 2010-07-09 2013-08-07 日産自動車株式会社 四輪駆動車両の駆動力配分制御装置
US8663051B2 (en) 2010-07-14 2014-03-04 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
US8998765B2 (en) 2010-07-14 2015-04-07 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
JP5498887B2 (ja) * 2010-07-27 2014-05-21 ナブテスコ株式会社 ダンピング試験方法、制御装置、油圧システム及びプログラム
US20130231837A1 (en) * 2012-03-02 2013-09-05 GM Global Technology Operations LLC Electronic control of a limited slip differential
US8831853B1 (en) 2013-07-12 2014-09-09 Andrew Wyllie Barrowman Slip or loss of traction detector using the third derivative of rotational speed difference
WO2015058059A1 (en) * 2013-10-18 2015-04-23 The Florida State University Research Foundation, Inc. Slip mitigation control for electric ground vehicles
US20160090005A1 (en) * 2014-03-10 2016-03-31 Dean Drako Distributed Torque Generation System and Method of Control
SE539607C2 (sv) * 2014-06-24 2017-10-17 Dsensed Tech Ab En metod och ett system för reglering av stabilitet och gir-svar hos ett fordon
US20160121883A1 (en) * 2014-11-05 2016-05-05 GM Global Technology Operations LLC Front-rear torque split control for an all-wheel-drive vehicle with independent power-sources
JP6413953B2 (ja) * 2015-06-29 2018-10-31 株式会社デンソー 車線逸脱回避システム
US9784354B2 (en) 2015-09-24 2017-10-10 Ford Global Technologies, Llc Method for controlling a limited slip differential
US9873426B2 (en) 2016-06-21 2018-01-23 Ford Global Technologies, Llc System for mitigating vehicle sway
IT201600094657A1 (it) * 2016-09-21 2018-03-21 Same Deutz Fahr Italia S P A Veicolo per uso agricolo con mezzi di analisi stato veicolo e comando gruppo differenziale
US10744875B2 (en) * 2016-12-13 2020-08-18 Honda Motor Co., Ltd. Control device for torque distributor
US10066722B2 (en) 2017-01-05 2018-09-04 GM Global Technology Operations LLC Limited slip differentials with centrifugal spring mass actuator for vehicle powertrains
DE112018001436T5 (de) * 2017-04-14 2019-12-05 Eaton Intelligent Power Limited Verfahren zur kompensation des kupplungsmoments in einem elektronischen sperrdifferential
US9958049B1 (en) 2017-05-15 2018-05-01 E-Aam Driveline Systems Ab Electric drive module with Ravigneaux gearset
DE102017114494A1 (de) * 2017-06-29 2019-01-03 Thyssenkrupp Ag Steer-by-Wire-Lenksystem mit Torque-Vectoring und integrierter Anti-Schlupf-Regelung
CA3076123A1 (en) 2017-09-19 2019-03-28 Bombardier Recreational Products Inc. Control of a limited slip differential based on an engine torque
CA3076149A1 (en) 2017-09-19 2019-03-28 Bombardier Recreational Products Inc. Control of a limited slip differential based on an accelerator control position
CN111094044B (zh) 2017-09-19 2023-08-01 庞巴迪动力产品公司 基于车辆的转向角度的限滑差速器的控制
WO2019058233A1 (en) 2017-09-19 2019-03-28 Bombardier Recreational Products Inc. CONTROL OF LIMITED SLIP DIFFERENTIAL, OPTIMIZED FOR SLOW DRIVING CONDITIONS
US10316946B2 (en) 2017-10-13 2019-06-11 E-Aam Driveline Systems Ab Two mode electric drive module with Ravigneaux gearset
US10451161B2 (en) 2017-11-06 2019-10-22 Ford Global Technologies, Llc Electronic locking differential
US10501082B2 (en) * 2017-11-06 2019-12-10 Ford Global Technologies, Llc Electronic locking differential
CN108177692B (zh) * 2017-12-28 2019-07-30 吉林大学 一种电动轮驱动汽车差动助力转向与稳定性协调控制方法
DE102018101182A1 (de) * 2018-01-19 2019-07-25 Thyssenkrupp Ag Verfahren zum Vermeiden von Überschlägen eines Kraftfahrzeuges mittels Torque Vectoring
US10858005B2 (en) 2018-12-13 2020-12-08 Honda Motor Co., Ltd. Launch control
KR102603040B1 (ko) * 2019-05-07 2023-11-15 현대자동차주식회사 차량의 발진 제어방법
CN112937579A (zh) * 2019-11-22 2021-06-11 北京宝沃汽车股份有限公司 车辆及其控制方法、控制装置
DE102020100954A1 (de) * 2020-01-16 2021-07-22 Audi Aktiengesellschaft Kraftübertragungssystem mit gezielter Antriebsmomentbereitstellung
US11651633B2 (en) * 2021-05-20 2023-05-16 GM Global Technology Operations LLC System and method for estimating a clutch torque of an electronic limited slip differential and tire longitudinal forces
KR102674698B1 (ko) * 2021-10-18 2024-06-13 경북대학교 산학협력단 전기자동차 제동시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919969A1 (de) * 1999-04-30 2000-11-09 Daimler Chrysler Ag Antriebsschlupfregelverfahren
CN1597410A (zh) * 2003-09-19 2005-03-23 博格华纳公司 用于交互式驱动***的控制***和车辆控制
CN1721253A (zh) * 2004-07-16 2006-01-18 三菱自动车工业株式会社 控制提供到车辆相对两侧车轮上的驱动力的装置以及方法

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294421A (ja) * 1985-10-18 1987-04-30 Fuji Heavy Ind Ltd 車両の後輪駆動装置
JPS62214019A (ja) * 1986-03-13 1987-09-19 Nissan Motor Co Ltd 駆動輪推進制御装置付車両の差動制限制御装置
US5332059A (en) * 1991-04-26 1994-07-26 Fuji Jukogyo Kabushiki Kaisha Control system for a differential of a motor vehicle
US5388658A (en) * 1991-12-02 1995-02-14 Imra America, Inc. Integrated torque and steering control system
US5456641A (en) * 1992-06-15 1995-10-10 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Left/right drive torque adjusting apparatus for vehicle and left/right drive torque adjusting method for vehicle
US5450919A (en) * 1993-01-12 1995-09-19 Mazda Motor Corporation Differential action control system of a vehicle
US5417298A (en) * 1993-07-07 1995-05-23 Honda Giken Kohyo Kabushiki Kaisha Torque distribution control apparatus for vehicle
JP3411937B2 (ja) * 1993-08-18 2003-06-03 マツダ株式会社 車両の制御装置
JP2981965B2 (ja) * 1993-11-29 1999-11-22 本田技研工業株式会社 車両の駆動力制御装置
JPH07329595A (ja) 1994-06-06 1995-12-19 Nissan Diesel Motor Co Ltd 差動制限制御装置
JP3291916B2 (ja) * 1994-06-06 2002-06-17 株式会社エクォス・リサーチ ハイブリッド型車両
JPH0848256A (ja) * 1994-08-08 1996-02-20 Toyota Motor Corp 車両の運動制御装置
JP3534271B2 (ja) * 1995-04-20 2004-06-07 株式会社エクォス・リサーチ ハイブリッド車両
US7386372B2 (en) * 1995-06-07 2008-06-10 Automotive Technologies International, Inc. Apparatus and method for determining presence of objects in a vehicle
US5648903A (en) * 1995-07-10 1997-07-15 Ford Global Technologies, Inc. Four wheel steering control utilizing front/rear tire longitudinal slip difference
US6059065A (en) * 1996-08-06 2000-05-09 Denso Corporation Driving torque control method and apparatus for a four-wheel drive vehicle
US5878357A (en) * 1996-09-03 1999-03-02 Ford Global Technologies, Inc. Method and apparatus for vehicle yaw rate estimation
JPH10129288A (ja) * 1996-10-31 1998-05-19 Isuzu Motors Ltd 四輪駆動車
JPH10194001A (ja) * 1997-01-16 1998-07-28 Tochigi Fuji Ind Co Ltd デファレンシャル装置
JP4014016B2 (ja) * 1997-10-24 2007-11-28 富士重工業株式会社 4輪駆動車の差動制限制御装置
US6272418B1 (en) * 1997-12-12 2001-08-07 Honda Giken Kogyo Kabushiki Kaisha Integrated control system of vehicle
US6289281B1 (en) * 1997-12-12 2001-09-11 Honda Giken Kogyo Kabushiki Kaisha Integrated control system of vehicle
FR2799417B1 (fr) * 1999-10-08 2009-01-23 Toyota Motor Co Ltd Dispositif de controle de vehicule, notamment pour la repartition des forces de traction avant-arriere
JP2001171504A (ja) * 1999-12-16 2001-06-26 Nissan Motor Co Ltd 路面摩擦係数推定装置
EP1276649B1 (de) * 2000-04-19 2015-08-05 Continental Teves AG & Co. oHG Verfahren zur online ermittlung von grössen der fahrdynamik für ein kraftfahrzeug
US7233236B2 (en) * 2000-09-25 2007-06-19 Ford Global Technologies, Llc Passive wheel lift identification for an automotive vehicle using operating input torque to wheel
DE10056760A1 (de) 2000-11-16 2002-05-23 Bayerische Motoren Werke Ag Regelverfahren zur Erhöhung der Traktion bei einem Fahrzeug bei gleichbleibender Fahrzeugstabilität
US6453226B1 (en) * 2001-01-25 2002-09-17 Delphi Technologies, Inc. Integrated control of active tire steer and brakes
JP4638065B2 (ja) * 2001-02-08 2011-02-23 富士重工業株式会社 4輪駆動車の制御装置
JP4019813B2 (ja) * 2001-07-12 2007-12-12 株式会社豊田中央研究所 物理量推定装置、路面摩擦状態推定装置、操舵角中立点推定装置、及び空気圧低下推定装置
US6766239B2 (en) * 2001-09-07 2004-07-20 Kelsey-Hayes Company Advanced wheel slip detection using suspension system information
JP3808744B2 (ja) * 2001-10-11 2006-08-16 本田技研工業株式会社 車両運動制御装置
JP2003136990A (ja) * 2001-10-31 2003-05-14 Toyoda Mach Works Ltd 車両における駆動力配分方法及び駆動力配分制御装置
US6553293B1 (en) * 2002-01-03 2003-04-22 Delphi Technologies, Inc. Rear steering control for vehicles with front and rear steering
US6733411B1 (en) * 2002-01-31 2004-05-11 Dana Corporation Electronically controlled hydraulic actuator for limited slip differential assembly
US6618651B1 (en) * 2002-02-25 2003-09-09 Visteon Global Technologies, Inc. Estimating vehicle velocities using linear-parameter-varying and gain varying scheduling theories
US6692396B1 (en) * 2002-02-27 2004-02-17 Torque-Traction Technologies, Inc. Solenoid actuated variable pressure relief valve assembly for limited slip differential assembly
JP3617502B2 (ja) * 2002-04-11 2005-02-09 日産自動車株式会社 車線逸脱防止装置
EP1357007B1 (en) * 2002-04-23 2006-05-17 Aisin Seiki Kabushiki Kaisha Wheel grip factor estimation apparatus
US6725989B1 (en) * 2002-04-24 2004-04-27 Torque-Traction Technologies, Inc. Variably controlled torque coupling device for on-demand all-wheel drive drivetrains
DE60324227D1 (de) * 2002-06-19 2008-12-04 Jtekt Corp Kontrollverfahren zur Antriebskraftverteilung und Vorrichtung für ein Fahrzeug mit Vierradantrieb
DE10245032A1 (de) * 2002-09-26 2004-04-08 Dr.Ing.H.C. F. Porsche Ag Verfahren zur Regelung des Fahrverhaltens mittels Einflussnahme auf die Giergeschwindigkeit
JP3823924B2 (ja) * 2003-01-31 2006-09-20 日産自動車株式会社 車両挙動制御装置
US6752233B1 (en) * 2003-02-11 2004-06-22 General Motors Corporation Selectable overspeed secondary drive module
US7211019B2 (en) * 2003-02-21 2007-05-01 Magna Powertrain Usa, Inc. Torque vectoring drive mechanism having a power sharing control system
US7175557B2 (en) * 2003-02-21 2007-02-13 Magna Powertrain Usa, Inc. Torque vectoring device having an electric motor/brake actuator and friction clutch
US6830122B2 (en) * 2003-02-26 2004-12-14 Dana Corporation Vehicle yaw management system with driveline torque control
US6909959B2 (en) * 2003-03-07 2005-06-21 Stephen James Hallowell Torque distribution systems and methods for wheeled vehicles
DE10316645A1 (de) 2003-04-11 2004-10-28 Robert Bosch Gmbh Vorrichtung zum Betreiben eines Gassensors
JP4258265B2 (ja) 2003-04-30 2009-04-30 日産自動車株式会社 車両挙動制御装置
DE10333654B4 (de) * 2003-07-24 2005-09-29 Bayerische Motoren Werke Ag Steuervorrichtung für ein zumindest zeitweise vierradgetriebenes Kraftfahrzeug
JP2005125986A (ja) * 2003-10-27 2005-05-19 Fuji Heavy Ind Ltd 車両制御装置および車両制御方法
US7212901B2 (en) * 2003-10-29 2007-05-01 Nissan Motor Co., Ltd. Lane departure prevention apparatus
JP4496759B2 (ja) * 2003-10-29 2010-07-07 日産自動車株式会社 車線逸脱防止装置
JP4496760B2 (ja) * 2003-10-29 2010-07-07 日産自動車株式会社 車線逸脱防止装置
US7200478B2 (en) * 2003-10-31 2007-04-03 Nissan Motor Co., Ltd. Lane departure prevention apparatus
US7444224B2 (en) * 2003-11-14 2008-10-28 Nissan Motor Co., Ltd. Lane departure prevention apparatus
US7004870B2 (en) * 2004-02-25 2006-02-28 Dana Corporation Integrated torque and roll control system
US7229139B2 (en) * 2004-03-18 2007-06-12 Ford Global Technologies, Llc Control system for brake-steer assisted parking and method therefor
US7044880B2 (en) * 2004-05-20 2006-05-16 Magna Powertrain, Inc. Torque distributing differential assembly
US7059990B2 (en) * 2004-05-25 2006-06-13 Magna Powertrain, Inc. Torque vectoring drive axle assembly
US7004876B2 (en) * 2004-05-27 2006-02-28 Magna Powertrain, Inc. Torque vectoring limited slip differential assembly
JP4417203B2 (ja) * 2004-08-23 2010-02-17 本田技研工業株式会社 4輪駆動車両の駆動力制御方法
US7640081B2 (en) * 2004-10-01 2009-12-29 Ford Global Technologies, Llc Roll stability control using four-wheel drive
JP4114657B2 (ja) * 2004-10-25 2008-07-09 三菱自動車工業株式会社 車両の旋回挙動制御装置
AU2007210853B2 (en) * 2006-02-03 2012-03-08 Eaton Intelligent Power Limited Stability-enhanced traction and yaw control using electronically controlled limited-slip differential
JP4969936B2 (ja) * 2006-07-28 2012-07-04 富士重工業株式会社 車両の駆動力配分制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919969A1 (de) * 1999-04-30 2000-11-09 Daimler Chrysler Ag Antriebsschlupfregelverfahren
CN1597410A (zh) * 2003-09-19 2005-03-23 博格华纳公司 用于交互式驱动***的控制***和车辆控制
CN1721253A (zh) * 2004-07-16 2006-01-18 三菱自动车工业株式会社 控制提供到车辆相对两侧车轮上的驱动力的装置以及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平7-52678A 1995.02.28

Also Published As

Publication number Publication date
ATE507996T1 (de) 2011-05-15
AU2007210853A1 (en) 2007-08-09
RU2449909C2 (ru) 2012-05-10
MX2008009971A (es) 2008-10-03
EP1979189B1 (en) 2011-05-04
WO2007088467A2 (en) 2007-08-09
CA2641897C (en) 2012-11-27
JP5246500B2 (ja) 2013-07-24
EP1979189A2 (en) 2008-10-15
RU2008135703A (ru) 2010-03-10
US20070184929A1 (en) 2007-08-09
DE602007014323D1 (de) 2011-06-16
BRPI0706922A2 (pt) 2011-04-12
WO2007088467A3 (en) 2007-11-22
PL1979189T3 (pl) 2011-09-30
KR20080092981A (ko) 2008-10-16
ES2362238T3 (es) 2011-06-30
CA2641897A1 (en) 2007-08-09
US7801657B2 (en) 2010-09-21
JP2009525440A (ja) 2009-07-09
CN101395025A (zh) 2009-03-25
AU2007210853B2 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
CN101395025B (zh) 使用电子控制止滑差动机构的稳定性增强牵引与横摆控制
Tchamna et al. Yaw rate and side-slip control considering vehicle longitudinal dynamics
EP1993867B1 (en) Stability-enhanced traction control with electrically controlled center coupler
US9950703B2 (en) Vehicle with independently driven multiple axes, and controller which independently drives multiple axles
Piyabongkarn et al. Active driveline torque-management systems
EP3044058B1 (en) Vehicle control system and method
EP1782994A2 (en) Vehicle behaviour control device
KR20090062321A (ko) 인 휠 드라이브 전기자동차의 독립구동 주행시스템과 그제어방법
US11787394B2 (en) Supervisory control for e-AWD and e-LSD
Rajamani et al. Electronic stability control
GB2428755A (en) Vehicle traction control using an active limited slip differential
JP4819672B2 (ja) 電子制御可能なセルフロック差動部を備えた後輪駆動の車両
Piyabongkarn et al. Stability-enhanced traction and yaw control using electronic limited slip differential
Park et al. Dana torque vectoring differential dynamic trak™
Bozdemir et al. Yaw moment control using an active differential and Electronic Stability Control system (ESC)
우승훈 A Predictive Control Strategy for Handling Performance of Front-Wheel-Drive Vehicles with Electronic Limited Slip Differential
Woo A Predictive Control Strategy for Handling Performance of Front-Wheel-Drive Vehicles with Electronic Limited Slip Differential
Maghroory et al. Hydraulic anti-lock, anti-skid braking system using fuzzy controller
Lin et al. DESIGN OF AN ON-DEMAND ALL WHEEL DRIVE CONTROL SYSTEM FOR IMPROVED AUTONOMOUS NAVIGATION

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190621

Address after: Dublin, Ireland

Patentee after: Eaton Intelligent Power Co.,Ltd.

Address before: Ohio, USA

Patentee before: Eaton Corp.