CN101274246A - 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法 - Google Patents

二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法 Download PDF

Info

Publication number
CN101274246A
CN101274246A CNA2007101731112A CN200710173111A CN101274246A CN 101274246 A CN101274246 A CN 101274246A CN A2007101731112 A CNA2007101731112 A CN A2007101731112A CN 200710173111 A CN200710173111 A CN 200710173111A CN 101274246 A CN101274246 A CN 101274246A
Authority
CN
China
Prior art keywords
titanic oxide
earth silicon
oxide hollow
gel
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101731112A
Other languages
English (en)
Other versions
CN101274246B (zh
Inventor
高濂
宋雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN2007101731112A priority Critical patent/CN101274246B/zh
Publication of CN101274246A publication Critical patent/CN101274246A/zh
Application granted granted Critical
Publication of CN101274246B publication Critical patent/CN101274246B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供了一种溶胶-凝胶方法制备二氧化硅/二氧化钛空心微球的方法。主要特征是以阳离子聚苯乙烯微球(PS)为模板,分别以硅酸乙酯和钛酸丁酯为原料,使用稀释的氨水作为pH值调节剂,在70-80℃温度下进行溶胶-凝胶反应得到多层有机-无机杂化复合微球。所得沉淀物经过煅烧工艺去除模板粒子后即可得到二氧化硅/二氧化钛空心微球。通过改变反应物浓度、表面活性剂含量,以及煅烧温度可获得不同球壳厚度、密度及晶粒尺寸的二氧化硅/二氧化钛空心微球。使用该方法制备的空心微球具有高的光催化活性。克服了以往制备空心微球的方法只能制备单一壳层微球的缺点,可制备多层空心微球,工艺简单、成本低和适于工业化生产。

Description

二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法
技术领域
本发明涉及一种制备二氧化硅/二氧化钛空心杂化微球的溶胶-凝胶方法,可用于光催化、环境保护、光子晶体、药物控制释放等,属于纳米量级空心微球领域。
背景技术
近年来,空心微球一直是材料科学研究的热点之一,因为其在可控药物释放,低密度填充物,光催化,色谱,限域反应器,光子晶体等领域有重要应用。二氧化钛由于其无毒、高的化学稳定性、低成本,因而被广泛的使用作为核壳微球及空心结构的壳材料。
目前已有的合成方法主要是通过模板法,包括硬模板(例如,无机金属和聚合物胶体颗粒)和软模板(例如,表面活性剂和聚合物的分子模板),以及无模板法。硬模板法通常在模板粒子表面通过层层自组装法或溶胶-凝胶法来形成核壳结构及空心微球。其中,层层自组装法(LbL)(F.Caruso.Chem.Eur.J,6(2000),pp.413;F.Caruso etal.Science,282(1998),pp.1111)就是带有异种电荷的电解质交替吸附在模板粒子上,形成核壳复合粒子。Caruso等采用水溶性且稳定性能良好的钛前驱体通过LbL方法制备了模板-二氧化钛复合微球,通过煅烧除掉模板而制得空心二氧化钛微球。然而,该方法工艺复杂,需涉及多次使用带异种电荷的聚电解质。溶胶-凝胶法(Z.Zhongetal.Adv.Mater.12(2000),pp.206;A.Imhof.Langmuir,17(2001),pp.3579;A.Syoufian etal.Catal.Commun.8(2007),pp.755)是通过水解前驱体直接在模板粒子表面沉积无机分子来形成核壳型复合粒子。Xia等报道了以聚苯乙烯微球为模板,通过溶胶-凝胶法制备二氧化钛空心微球,在玻璃基材上排列的聚苯乙烯微球的表面,滴加氧化钛前驱体,通过前驱体的水解,聚合形成凝胶,得到二氧化钛核壳复合粒子,再使用甲苯溶剂选择性溶解聚苯乙烯微球得到二氧化钛空心微球。然而,该方法难以控制氧化钛纳米颗粒的生成速度,会导致二次粒子的大量聚集,影响微球的分散性。无模板法合成(C.W.Guoetal.Chem.Comm.2003,pp.700;H.G.Yang etal.J.Phys.Chem.B 108(2004),pp.3492)则是通过水热或溶剂热法一步制备得到核壳结构或空心微球。该方法的工艺虽然简单、快捷,但难以克服产物尺寸分布广,杂质较多的缺点。最重要的是,已报道的合成方法多数用来制备由一种无机颗粒组成的核或壳的微球,很少有关制备多层空心微球的研究。氧化钛多层空心微球由于其独特的多层反射,高的比表面积、中空的内部结构和高的光利用率,所以在光辐照情况下,壳层表面光生电子-空穴对的产生率会大幅上升,因而大幅度地提高了其光催化降解能力。氧化钛多层空心微球同时也为催化、微电子器件等行业发展提供了新的应用平台。因此寻求低成本,简单有效的制备多层空心微球结构具有重要的理论和现实意义。
发明内容
本发明的目的在于提供一种改进的溶胶-凝胶方法制备二氧化硅/二氧化钛空心微球的方法,旨在克服现有的工艺方法局限于只能制备由一种无机颗粒组成微球外壳的缺点,提供一种简单两步溶胶-凝胶法合成多层二氧化硅/二氧化钛空心微球的方法,并且设备简单,使用安全,环境友好。
本发明是这样实施的:首先制备阳离子型聚苯乙烯微球作为模板,然后,两次使用溶胶-凝胶法来制备单一分散的核壳结构微球,并可重复多次获得多层核壳结构微球,最后通过煅烧除去高分子模板得到空心二氧化硅/二氧化钛空心微球。具体步骤是:
(1)聚苯乙烯(PS)微球模板的制备:10~30mL苯乙烯加入到内有200mL去离子水的300mL装有冷凝管和通保护气体气口的三口圆底烧瓶中,然后分别加入占溶液总重量0.3%的偶氮二异丁基醚盐酸盐(AIBA)和占1.2%的聚乙烯吡咯烷酮k30(PVP),使用磁力搅拌混合均匀,并向反应器内通氮气排空氧气持续1h,然后使用水浴加热至70-80℃,保温24h。高速离心分离出白色沉淀物,分别使用去离子水和无水乙醇洗涤3-5次,除去剩余的苯乙烯单体和表面活性剂。
(2)聚苯乙烯/二氧化硅(PS/SiO2)复合微球粒子的制备:将1mL聚苯乙烯微球悬浮液(3wt%)分散到15mL去离子水和50mL异丙醇混合溶液中后,将溶液加入到步骤1的反应器中,磁力搅拌15min后加入0.1~0.6g硅酸乙酯(TEOS),并使用稀释的氨水(4-6vol%)溶液调节溶液的pH值至~10,在室温下磁力搅拌2h。高速离心分离出白色沉淀物,使用异丙醇洗涤3次,制得PS/SiO2复合微球粒子。
(3)聚苯乙烯/二氧化硅/二氧化钛(PS/SiO2/TiO2)有机-无机杂化的复合微球制备:0.03g PS/SiO2复合微球粉体加入到0.15g去离子水和24mL无水乙醇混合介质中并超声分散15min后,将溶液加入到步骤1的反应器中,然后加入0~0.03g PVP和0.06~0.18g TBOT,70-80℃水浴保温1-3h,高速离心分离出沉淀,分别使用去离子水和无水乙醇洗涤3-5次,将沉淀物放入烘箱,在60-70℃干燥6~10小时,得到PS/SiO2/TiO2有机-无机杂化复合微球粉体。
(4)PS/SiO2/TiO2有机-无机杂化复合微球粉体样品放入马弗炉中在550~650℃煅烧2-4小时,得到二氧化硅/二氧化钛空心微球粉体。
本发明提供的一种溶胶-凝胶法合成二氧化硅/二氧化钛空心微球的方法,其特点是:
(1)通过乳液法制备阳离子型PS粒子,得到规则球形,单分散性好的,平均粒径为250-270nm的微球模板;通过首先在PS粒子表面包覆SiO2层将有利于TiO2粒子的完美包覆。所制备的二氧化硅/二氧化钛空心微球的球壳内层白色层为SiO2相,外面层为TiO2相。
(2)生产工艺灵活、简单。通过改变钛酸丁酯的含量,可以灵活的调整TiO2壳层的厚度和密度。改变表面活性剂PVP的含量可以优化微球的分布状况,从而得到单一分散的核壳微球结构;
(3)不需要多次的使用聚电解质来改变微球表面的电荷,从而直接实现复合杂化微球的合成。并且克服了现有的试验方法仅仅只能制备由一种无机颗粒组成的核或壳的微球的缺点,对于实现具有复杂结构的微球提供了一条崭新的合成路径;
(4)改变煅烧时间可以灵活的控制氧化钛壳层晶粒的尺寸,从而优化空心微球的光催化性能。煅烧时间从500变到650℃,则外层TiO2相的厚度从10nm变到20nm。
(5)原料廉价易得,所需生产设备简单,易于实现工业化生产。
附图说明
图1实施例1所示的阳离子型PS模板微球的TEM照片。
图2(a)和(b)分别为实施例2和3的PS/SiO2有机-无机杂化微球TEM照片。
图3PS/SiO2/TiO2有机-无机杂化复合微球粒子TEM照片(a)实施例4,(b)实施例5,(c)实施例6,(d)实施例7。
图4实施例8制备的SiO2/TiO2空心微球的TEM照片;***图为外层纳米TiO2选区电子衍射图。
图5SiO2/TiO2空心微球的X射线衍射图(a)实施例8,(b)实施例9,(c)实施例10。
图6实施例10制备的SiO2/TiO2空心微球的TEM照片;***图为SiO2/TiO2双层壳层的放大SEM图。
图7SiO2/TiO2空心微球的光催化降解能力与P-25粉体的比较图。
具体实施方式
用下列非限定性实施例进一步说明实施方式及效果:
实施例1
20mL苯乙烯加入到内有200mL去离子水的300mL装有冷凝管和通保护气气口的三口圆底烧瓶中,然后加入0.6g偶氮二异丁基醚盐酸盐(AIBA)和2.5g聚乙烯吡咯烷酮k30(PVP),使用磁力搅拌混合均匀,并向反应器内通氮气排空氧气持续1h,然后使用水浴加热至70℃,保温24h.高速离心分离出白色沉淀物(PS),分别使用去离子水和无水乙醇洗涤3次。图1为本实施例制备的PS微球模板的TEM照片,从照片可以看出,微球模板非常均匀,直径约为262nm。
实施例2
将1mL聚苯乙烯微球悬浮液(3wt%)分散到15mL去离子水和50mL异丙醇混合溶液中后,将溶液加入到装有冷凝管和通保护气气口的300mL三口圆底烧瓶中,磁力搅拌15min后再加入0.15g硅酸乙酯(TEOS),并使用稀释的氨水(5vol%)溶液调节溶液的pH值至~10,在室温下磁力搅拌2h。高速离心分离出白色沉淀物,使用异丙醇洗涤3次,制得PS/SiO2复合微球粒子。图2(a)为本实施例所述的PS/SiO2有机-无机杂化微球的TEM照片,所得复合微球的SiO2壳层的厚度约为8nm,且壳层厚度均匀,微球分散性良好。
实施例3
将1mL聚苯乙烯微球悬浮液(3wt%)分散到15mL去离子水和50mL异丙醇混合溶液中后,将溶液加入到装有冷凝管和通保护气气口的300mL三口圆底烧瓶中,磁力搅拌15min后再加入0.6g硅酸乙酯(TEOS),并使用稀释的氨水(5vol%)溶液调节溶液的pH值至~10,在室温下磁力搅拌2h。高速离心分离出白色沉淀物,使用异丙醇洗涤3次,制得PS/SiO2有机-无机杂化微球粒子。当硅酸乙酯含量增加,SiO2壳层的厚度也随之增加,但是微球的分散性变差,这是由于更多的SiO2二次粒子的生成导致了微球的聚集。本实施例所制备的PS/SiO2有机-无机微球的TEM照片如图2(b)所示,复合微球的SiO2壳层的厚度为55nm,且厚度均匀。
实施例4
在室温下,0.03g PS/SiO2复合微球粉体加入到0.15g去离子水和24mL无水乙醇混合介质中并超声分散15min后,将溶液加入到装有冷凝管和通保护气气口的300mL三口圆底烧瓶中,然后加入0.06g TBOT,300转/分钟磁力搅拌后形成悬浊液。将此悬浊液在80℃水浴加热并保温2h。随后将反应液高速离心分离出沉淀,分别使用去离子水和无水乙醇洗涤3次,得到PS/SiO2/TiO2有机-无机杂化复合微球。所得的复合微球的SiO2/TiO2双层壳层的厚度为16nm,壳层厚度均匀(图3(a))。
实施例5
在室温下,0.03g PS/SiO2复合微球粉体加入到0.15g去离子水和24mL无水乙醇混合介质中并超声分散15min后,将溶液加入到装有冷凝管和通保护气气口的300mL三口圆底烧瓶中,然后加入0.12g TBOT,300转/分钟磁力搅拌后形成悬浊液。将此悬浊液在80℃水浴加热并保温2h。随后将反应液高速离心分离出沉淀,分别使用去离子水和无水乙醇洗涤3次,得到PS/SiO2/TiO2有机-无机杂化复合微球。所得的复合微球的SiO2/TiO2双层壳层的厚度较实施例4有所增加,增至30nm,壳层厚度均匀(图5(b))。
实施例6
在室温下,0.03g PS/SiO2复合微球粉体加入到0.15g去离子水和24mL无水乙醇混合介质中并超声分散15min后,将溶液加入到装有冷凝管和通保护气气口的300mL三口圆底烧瓶中,然后加入0.18g TBOT,300转/分钟磁力搅拌后形成悬浊液。将此悬浊液在80℃水浴加热并保温2h。随后将反应液高速离心分离出沉淀,分别使用去离子水和无水乙醇洗涤3次,得到PS/SiO2/TiO2有机-无机杂化复合微球。所得的复合微球的SiO2/TiO2双层壳层的厚度较实施例5有所增加,增至66nm,壳层厚度均匀(图3(c))。
实施例7
在室温下,0.03g PS/SiO2复合微球粉体加入到0.15g去离子水和24mL无水乙醇混合介质中并超声分散15min后,将溶液加入到装有冷凝管和通保护气气口的300mL三口圆底烧瓶中,然后加入0.01g PVP和0.12g TBOT,300转/分钟磁力搅拌后形成悬浊液。将此悬浊液在80℃水浴加热并保温2h。随后将反应液高速离心分离出沉淀,分别使用去离子水和无水乙醇洗涤3次,得到PS/SiO2/TiO2有机-无机杂化复合微球。本实施例制备的PS/SiO2/TiO2有机-无机杂化复合微球分散性较明显提高,壳层厚度大约为31nm(图3(d))。
实施例8
按照实施例7的步骤制备PS/SiO2/TiO2有机-无机杂化复合微球,然后将产物放入马弗炉中在550℃煅烧2小时,自然冷却至室温,得到二氧化硅/二氧化钛空心微球粉体。图4为本实施例制备的二氧化硅/二氧化钛空心微球粉体的透射电镜照片,表明壳层由细小的纳米TiO2颗粒组成,壳层均匀致密。***在图中的选区电子衍射图很好的对应于纳米TiO2多晶的衍射环,表明壳层外层确实由纳米TiO2颗粒组成。图5(a)为本实施例所制备的二氧化硅/二氧化钛空心微球粉体的X射线衍射图,可见所得粉体为锐钛矿相TiO2结构,谱中衍射峰依次对应于(101)、(103)、(004)、(112)、(200)、(105)、(211)、(204)、(116)、(220)和(215)的晶面衍射峰;谱图中未发现金红石相的衍射峰。由于SiO2相为非晶相,所以在X射线衍射图中并未能反映出来。根据Schrerrer公式计算得出外壳层TiO2颗粒尺寸为11.1nm。
实施例9
按照实施例7的步骤制备PS/SiO2/TiO2有机-无机杂化复合微球,然后将产物放入马弗炉中在600℃煅烧2小时,自然冷却至室温,得到二氧化硅/二氧化钛空心微球粉体。图5(b)为本实施例所制备的二氧化硅/二氧化钛空心微球粉体的X射线衍射图,根据Schrerrer公式计算得出外壳层TiO2颗粒尺寸为13.7nm。
实施例10
按照实施例7的步骤制备PS/SiO2/TiO2有机-无机杂化复合微球,然后将产物放入马弗炉中在650℃煅烧2小时,自然冷却至室温,得到二氧化硅/二氧化钛空心微球粉体。图5(c)为本实施例所制备的二氧化硅/二氧化钛空心微球粉体的X射线衍射图,可见所得粉体为锐钛矿相TiO2占主要结构,有部分金红石相出现。衍射峰强度高且尖锐,可见已经获得结晶完好的二氧化硅/二氧化钛空心微球,根据Schrerrer公式计算得出外壳层TiO2颗粒尺寸为17.3nm。图6为本实施例制备的二氧化硅/二氧化钛空心微球粉体的透射电镜照片。***的SEM照片证实了空心球壳是由两部分组成,即SiO2和TiO2两相组成,球壳内层白色层为SiO2相,外面层为TiO2相。光催化降解亚甲基蓝试验(图7)表明,二氧化硅/二氧化钛空心微球粉体的催化活性较P-25粉体提高2-3倍。

Claims (10)

1、一种二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于:首先制备阳离子型聚苯乙烯微球作为模板;然后,两次使用溶胶-凝胶法来制备单一分散的核壳结构微球,重复多次获得多层球壳结构;最后通过煅烧除去高分子模板得到二氧化硅/二氧化钛空心微球。
2、按权利要求1所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于制备工艺步骤是:
①聚苯乙烯微球模板的制备:10~30mL苯乙烯加入到内有200mL去离子水的装有冷凝管和通保护气体气口的三口圆底烧瓶中,然后分别加入占溶液总重量0.3%的偶氮二异丁基醚盐酸盐(AIBA)和占1.2%的聚乙烯吡咯烷酮k30,使用磁力搅拌混合均匀,并向反应器内通氮气排空氧气持续1h,然后使用水浴加热至70-80℃;高速离心分离出白色沉淀物,分别使用去离子水和无水乙醇洗涤,除去剩余的苯乙烯单体和表面活性剂;
②聚苯乙烯/二氧化硅复合微球粒子的制备:将质量百分浓度为3%的聚苯乙烯微球悬浮液1ml分散到15ml去离子水和50ml异丙醇混合溶液中后,将溶液加入到步骤①的反应器中,经磁力搅拌后加入0.1~0.6g硅酸乙酯,并使用稀释的氨水溶液调节溶液的pH值至10,在室温下磁力再搅拌,高速离心分离出白色沉淀物,使用异丙醇洗涤3次,制得PS/SiO2复合微球粒子;
③聚苯乙烯/二氧化硅/二氧化钛有机-无机杂化的复合微球制备:将步骤②制作的0.03g PS/SiO2复合微球粉体加入到0.15g去离子水和24mL无水乙醇混合介质中并超声分散15min后,将溶液加入到步骤①的反应器中,然后加入0~0.03g聚乙烯吡咯烷酮K30和0.06~0.18g钛酸丁酯,70-80℃水浴保温1-3h,高速离心分离出沉淀,分别使用去离子水和无水乙醇洗涤3-5次,将沉淀物放入烘箱,在60-70℃干燥,得到PS/SiO2/TiO2有机-无机杂化的复合微球粉体;
④将步骤③制备的PS/SiO2/TiO2有机-无机杂化的复合微球粉体样品放入马弗炉中在550~650℃煅烧,得到二氧化硅/二氧化钛空心微球粉体。
3、按权利要求2所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于步骤①水浴加热保温时间20-24h。
4、按权利要求2所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于步骤①用去离子水和无水乙醇洗涤次数为3-5次。
5、按权利要求2所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于步骤②中使用的稀释氨水的体积百分浓度为4-6%。
6、按权利要求2所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于步骤③沉淀物放入烘箱干燥时间为6-10小时。
7、按权利要求2所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于步骤④马弗炉中煅烧时间为2-4小时。
8、按权利要求1或2所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于微球模板的平均粒径微250-270nm。
9、按权利要去1、2或7所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于所制备的二氧化硅/二氧化钛空心微球的内层白色层为SiO2相,外壳层为TiO2相。
10、按权利要求9所述的二氧化硅/二氧化钛空心微球的溶胶-凝胶制备方法,其特征在于煅烧温度从550℃升到600℃,使TiO2壳层的尺寸从10nm变到20nm。
CN2007101731112A 2007-12-26 2007-12-26 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法 Expired - Fee Related CN101274246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101731112A CN101274246B (zh) 2007-12-26 2007-12-26 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101731112A CN101274246B (zh) 2007-12-26 2007-12-26 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法

Publications (2)

Publication Number Publication Date
CN101274246A true CN101274246A (zh) 2008-10-01
CN101274246B CN101274246B (zh) 2010-06-02

Family

ID=39994361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101731112A Expired - Fee Related CN101274246B (zh) 2007-12-26 2007-12-26 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法

Country Status (1)

Country Link
CN (1) CN101274246B (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275983A (zh) * 2011-07-18 2011-12-14 北京科技大学 一种二氧化钛碗状颗粒或哑铃形中空颗粒及其制备方法
CN101817530B (zh) * 2010-02-09 2012-01-11 济南大学 一种中空二氧化硅微球的制备方法
CN102433170A (zh) * 2011-09-16 2012-05-02 太原理工大学 一种铁硅复合脱硫剂的制备方法
CN102584279A (zh) * 2012-01-17 2012-07-18 中钢集团洛阳耐火材料研究院有限公司 氧化锆质空心球的制备方法
CN103159878A (zh) * 2013-04-03 2013-06-19 湖南科技大学 一种制备单分散阳离子型聚苯乙烯微球的简单方法
CN103484099A (zh) * 2013-09-25 2014-01-01 中国科学院宁波材料技术与工程研究所 一种电场调控下显色材料及其制备方法
CN103803643A (zh) * 2014-03-03 2014-05-21 福州大学 一种单分散介孔空心纳米球状二氧化钛及其制备方法
CN104474984A (zh) * 2014-11-27 2015-04-01 中国人民解放军***南京总医院 多层结构的介孔有机-无机杂化空心球及其制备方法
CN104785180A (zh) * 2015-04-17 2015-07-22 陕西科技大学 以二氧化硅为内壳层二氧化钛为外壳层的中空微球的制备方法
CN104998629A (zh) * 2015-06-11 2015-10-28 福建农林大学 一种核-壳结构SiO2-TiO2复合纳米材料及其制备方法和应用
CN105964195A (zh) * 2016-05-06 2016-09-28 东莞南玻太阳能玻璃有限公司 纳米核壳二氧化硅微球及增透减反复合镀膜液制备应用
CN106082318A (zh) * 2016-05-26 2016-11-09 青海大学 纳米二氧化钛空心球的制备方法
CN106823017A (zh) * 2016-12-12 2017-06-13 湖北大学 一种基于卤氨化合物和氧化锌纳米粒子的杂化生物功能涂层的制备方法
CN107149918A (zh) * 2017-06-05 2017-09-12 赵守彬 一种磁性二氧化钛中空微球的制备方法
CN107488437A (zh) * 2017-08-14 2017-12-19 哈尔滨工业大学 一种非同步收缩诱导制备中空核壳复合材料的方法
CN108134104A (zh) * 2017-12-26 2018-06-08 成都新柯力化工科技有限公司 一种燃料电池用复合催化剂载体及其制备方法和应用
CN108409158A (zh) * 2018-04-13 2018-08-17 新乡学院 一种WO3/TiO2多孔电致变色玻璃膜的制备方法
CN108889329A (zh) * 2018-08-02 2018-11-27 华东理工大学 一种氮化碳量子点改性多级孔TiO2-SiO2光催化剂
CN109400952A (zh) * 2017-08-18 2019-03-01 臻鼎科技股份有限公司 无机壳体、树脂组合物及无机壳体的制备方法
CN109562344A (zh) * 2016-03-18 2019-04-02 由联邦材料研究和检测机构***所代表的经济与能源部长所代表的德意志联邦共和国 用于合成包含聚合物核和二氧化硅壳的具有受控结构和表面的混合型核壳微颗粒的方法
CN109724961A (zh) * 2019-01-21 2019-05-07 陕西科技大学 一种光子晶体荧光增强检测痕量有机胺类化合物的方法
CN110759705A (zh) * 2019-11-13 2020-02-07 湖北工业大学 复合功能型陶粒的制备方法
CN111573747A (zh) * 2020-05-06 2020-08-25 电子科技大学 一种用于锂硫电池正极的空心微球材料的制备方法
CN112604612A (zh) * 2020-12-03 2021-04-06 广东省科学院生物工程研究所 一种有机无机树莓状结构微球及其制备方法和应用
CN113548691A (zh) * 2021-08-23 2021-10-26 合肥学院 一种用于毒死蜱识别与降解的纳米二氧化钛人工抗体壳层的制备方法
CN114213948A (zh) * 2021-12-20 2022-03-22 江南大学 一种含有中空SiO2@TiO2微球的光固化水性聚氨酯隔热涂料的制备方法
CN115486443A (zh) * 2022-09-16 2022-12-20 中国科学院赣江创新研究院 一种铈掺杂二氧化钛-聚苯乙烯微球复合抗菌物及其制备方法和用途
WO2023284240A1 (zh) * 2021-07-15 2023-01-19 深圳先进技术研究院 一种空心二氧化硅球形颗粒及其制备方法和应用
CN115637082A (zh) * 2022-12-23 2023-01-24 北京清冠科技有限公司 一种透明隔热气凝胶涂料的制备方法
CN116355604A (zh) * 2023-04-10 2023-06-30 承德石油高等专科学校 一种中空核壳TiO2/聚合物驱油剂及其制备方法
CN116804236A (zh) * 2023-04-13 2023-09-26 浙江红蜻蜓鞋业股份有限公司 一种制鞋用速干喷光剂的制备工艺
CN118238447A (zh) * 2024-05-23 2024-06-25 内蒙古工业大学 一种连续折叠式减振拉胀纺织复合材料及其制备方法
CN118238447B (zh) * 2024-05-23 2024-07-19 内蒙古工业大学 一种连续折叠式减振拉胀纺织复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186377C (zh) * 2003-05-15 2005-01-26 复旦大学 一种多功能有机-无机复合高分子微球及其制备方法
CN1546225A (zh) * 2003-12-17 2004-11-17 同济大学 一种TiO2/SiO2气凝胶小球及其制备方法

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817530B (zh) * 2010-02-09 2012-01-11 济南大学 一种中空二氧化硅微球的制备方法
CN102275983B (zh) * 2011-07-18 2013-04-24 北京科技大学 一种二氧化钛碗状颗粒或哑铃形中空颗粒及其制备方法
CN102275983A (zh) * 2011-07-18 2011-12-14 北京科技大学 一种二氧化钛碗状颗粒或哑铃形中空颗粒及其制备方法
CN102433170A (zh) * 2011-09-16 2012-05-02 太原理工大学 一种铁硅复合脱硫剂的制备方法
CN102584279A (zh) * 2012-01-17 2012-07-18 中钢集团洛阳耐火材料研究院有限公司 氧化锆质空心球的制备方法
CN102584279B (zh) * 2012-01-17 2013-10-30 中钢集团洛阳耐火材料研究院有限公司 氧化锆质空心球的制备方法
CN103159878B (zh) * 2013-04-03 2016-04-13 湖南科技大学 一种制备单分散阳离子型聚苯乙烯微球的简单方法
CN103159878A (zh) * 2013-04-03 2013-06-19 湖南科技大学 一种制备单分散阳离子型聚苯乙烯微球的简单方法
CN103484099A (zh) * 2013-09-25 2014-01-01 中国科学院宁波材料技术与工程研究所 一种电场调控下显色材料及其制备方法
CN103484099B (zh) * 2013-09-25 2014-12-24 中国科学院宁波材料技术与工程研究所 一种电场调控下显色材料及其制备方法
CN103803643A (zh) * 2014-03-03 2014-05-21 福州大学 一种单分散介孔空心纳米球状二氧化钛及其制备方法
CN103803643B (zh) * 2014-03-03 2016-01-27 福州大学 一种单分散介孔空心纳米球状二氧化钛及其制备方法
CN104474984A (zh) * 2014-11-27 2015-04-01 中国人民解放军***南京总医院 多层结构的介孔有机-无机杂化空心球及其制备方法
CN104785180A (zh) * 2015-04-17 2015-07-22 陕西科技大学 以二氧化硅为内壳层二氧化钛为外壳层的中空微球的制备方法
CN104998629A (zh) * 2015-06-11 2015-10-28 福建农林大学 一种核-壳结构SiO2-TiO2复合纳米材料及其制备方法和应用
CN104998629B (zh) * 2015-06-11 2017-10-03 福建农林大学 一种核‑壳结构SiO2‑TiO2复合纳米材料及其制备方法和应用
CN109562344B (zh) * 2016-03-18 2021-09-10 由联邦材料研究和检测机构***所代表的经济与能源部长所代表的德意志联邦共和国 用于合成包含聚合物核和二氧化硅壳的具有受控结构和表面的混合型核壳微颗粒的方法
CN109562344A (zh) * 2016-03-18 2019-04-02 由联邦材料研究和检测机构***所代表的经济与能源部长所代表的德意志联邦共和国 用于合成包含聚合物核和二氧化硅壳的具有受控结构和表面的混合型核壳微颗粒的方法
CN105964195B (zh) * 2016-05-06 2019-01-11 东莞南玻太阳能玻璃有限公司 纳米核壳二氧化硅微球及增透减反复合镀膜液制备应用
CN105964195A (zh) * 2016-05-06 2016-09-28 东莞南玻太阳能玻璃有限公司 纳米核壳二氧化硅微球及增透减反复合镀膜液制备应用
CN106082318A (zh) * 2016-05-26 2016-11-09 青海大学 纳米二氧化钛空心球的制备方法
CN106823017A (zh) * 2016-12-12 2017-06-13 湖北大学 一种基于卤氨化合物和氧化锌纳米粒子的杂化生物功能涂层的制备方法
CN107149918A (zh) * 2017-06-05 2017-09-12 赵守彬 一种磁性二氧化钛中空微球的制备方法
CN107488437B (zh) * 2017-08-14 2021-01-05 哈尔滨工业大学 一种非同步收缩诱导制备中空核壳复合材料的方法
CN107488437A (zh) * 2017-08-14 2017-12-19 哈尔滨工业大学 一种非同步收缩诱导制备中空核壳复合材料的方法
CN109400952A (zh) * 2017-08-18 2019-03-01 臻鼎科技股份有限公司 无机壳体、树脂组合物及无机壳体的制备方法
US10875984B2 (en) 2017-08-18 2020-12-29 Zhen Ding Technology Co., Ltd. Inorganic shell, resin composition, and method for making inorganic shell
CN108134104B (zh) * 2017-12-26 2020-05-12 成都新柯力化工科技有限公司 一种燃料电池用复合催化剂载体及其制备方法和应用
CN108134104A (zh) * 2017-12-26 2018-06-08 成都新柯力化工科技有限公司 一种燃料电池用复合催化剂载体及其制备方法和应用
CN108409158A (zh) * 2018-04-13 2018-08-17 新乡学院 一种WO3/TiO2多孔电致变色玻璃膜的制备方法
CN108409158B (zh) * 2018-04-13 2021-03-02 新乡学院 一种WO3/TiO2多孔电致变色玻璃膜的制备方法
CN108889329A (zh) * 2018-08-02 2018-11-27 华东理工大学 一种氮化碳量子点改性多级孔TiO2-SiO2光催化剂
CN108889329B (zh) * 2018-08-02 2020-10-13 华东理工大学 一种氮化碳量子点改性多级孔TiO2-SiO2光催化剂
CN109724961A (zh) * 2019-01-21 2019-05-07 陕西科技大学 一种光子晶体荧光增强检测痕量有机胺类化合物的方法
CN110759705B (zh) * 2019-11-13 2021-08-13 湖北工业大学 复合功能型陶粒的制备方法
CN110759705A (zh) * 2019-11-13 2020-02-07 湖北工业大学 复合功能型陶粒的制备方法
CN111573747A (zh) * 2020-05-06 2020-08-25 电子科技大学 一种用于锂硫电池正极的空心微球材料的制备方法
CN112604612A (zh) * 2020-12-03 2021-04-06 广东省科学院生物工程研究所 一种有机无机树莓状结构微球及其制备方法和应用
WO2023284240A1 (zh) * 2021-07-15 2023-01-19 深圳先进技术研究院 一种空心二氧化硅球形颗粒及其制备方法和应用
CN113548691A (zh) * 2021-08-23 2021-10-26 合肥学院 一种用于毒死蜱识别与降解的纳米二氧化钛人工抗体壳层的制备方法
CN114213948A (zh) * 2021-12-20 2022-03-22 江南大学 一种含有中空SiO2@TiO2微球的光固化水性聚氨酯隔热涂料的制备方法
CN115486443A (zh) * 2022-09-16 2022-12-20 中国科学院赣江创新研究院 一种铈掺杂二氧化钛-聚苯乙烯微球复合抗菌物及其制备方法和用途
CN115486443B (zh) * 2022-09-16 2023-11-10 中国科学院赣江创新研究院 一种铈掺杂二氧化钛-聚苯乙烯微球复合抗菌物及其制备方法和用途
CN115637082A (zh) * 2022-12-23 2023-01-24 北京清冠科技有限公司 一种透明隔热气凝胶涂料的制备方法
CN116355604A (zh) * 2023-04-10 2023-06-30 承德石油高等专科学校 一种中空核壳TiO2/聚合物驱油剂及其制备方法
CN116804236A (zh) * 2023-04-13 2023-09-26 浙江红蜻蜓鞋业股份有限公司 一种制鞋用速干喷光剂的制备工艺
CN118238447A (zh) * 2024-05-23 2024-06-25 内蒙古工业大学 一种连续折叠式减振拉胀纺织复合材料及其制备方法
CN118238447B (zh) * 2024-05-23 2024-07-19 内蒙古工业大学 一种连续折叠式减振拉胀纺织复合材料及其制备方法

Also Published As

Publication number Publication date
CN101274246B (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
CN101274246B (zh) 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法
CN108453265B (zh) 一种二氧化硅纳米管限域镍纳米颗粒及其制备方法
CN107585748B (zh) 一种介孔二氧化硅保护的超薄氮化镍铁复合材料及其制备
JP2016503376A (ja) 封入ナノ粒子
CN107286705B (zh) 纳米无机复合颜料及其制备方法
CN101890326B (zh) 一种TiO2/SiO2复合微球的制备方法
CN108855095B (zh) 甲烷重整多核壳空心型催化剂镍-镍硅酸盐-SiO2的制备方法
CN109967081A (zh) 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN102583255B (zh) 一种介孔过渡金属复合氧化物的制备方法
CN105517699B (zh) 蛋黄-壳粒子、催化剂及其制备方法
Liu et al. Architecture engineering toward highly active palladium integrated titanium dioxide yolk–double-shell nanoreactor for catalytic applications
CN103381486A (zh) 一种表面改性的核壳结构Cu@SiO2纳米颗粒的制备方法
CN104746178B (zh) 一种具有多级结构的硅酸盐双层空心纳米纤维的制备方法
CN111013587A (zh) 一种单分散的α-Fe2O3@TiO2椭球的制备方法
TWI468348B (zh) 氧化鋯奈米顆粒及其水溶膠與製備氧化鋯奈米顆粒之組合物及方法
JP6256930B2 (ja) シリカ殻からなるナノ中空粒子の製造方法
CN108940287B (zh) 一种Ni基双金属纳米胶囊催化剂及其制备和应用
CN105036177B (zh) 一种纳米氧化锌的制备方法
CN106362739A (zh) 介孔碳‑二氧化硅复合体负载纳米金催化剂及其制备方法
CN101186333B (zh) 仿生制备纳米二氧化钛微球的方法
CN106984318B (zh) 一种双金属钴基催化剂及制备方法和应用
CN102836706B (zh) 高温热稳定的钯复合催化剂及其制备方法与应用
KR101867683B1 (ko) 중공구조의 세라믹 나노입자 및 그 제조방법
KR101703977B1 (ko) 내산화성을 가지는 캡슐화된 구리 입자 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100602

Termination date: 20151226

EXPY Termination of patent right or utility model