CN101162697A - 半导体元件的制造方法 - Google Patents

半导体元件的制造方法 Download PDF

Info

Publication number
CN101162697A
CN101162697A CNA2007101033125A CN200710103312A CN101162697A CN 101162697 A CN101162697 A CN 101162697A CN A2007101033125 A CNA2007101033125 A CN A2007101033125A CN 200710103312 A CN200710103312 A CN 200710103312A CN 101162697 A CN101162697 A CN 101162697A
Authority
CN
China
Prior art keywords
district
conduction type
type
drift region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101033125A
Other languages
English (en)
Inventor
黄宗义
蒋柏煜
柳瑞兴
许顺良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101162697A publication Critical patent/CN101162697A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种半导体元件的制造方法。本发明的一个实施例包括基底,基底中的部分顶部区域中具有埋藏层以延伸至漂移区。结构层形成于埋藏层和基底上方,并且高压N阱区和高压P阱区彼此连接。场介电结构位于部分的高压N阱和P阱上方,且栅极介电结构和栅极导电结构形成于高压N阱和高压P阱间的沟道区上方。晶体管的源极和漏极位于高压N阱和高压P阱中,另外,P型场环形成于场介电下的N阱区中。在本发明另一实施例中,具有位于高压N阱中的分隔区的横向能量超级接面金属氧化物半导体元件包括延伸漂移区。本发明的半导体元件具有高击穿电压且有低导通电阻。

Description

半导体元件的制造方法
技术领域
本发明涉及一种半导体结构和其制造方法,且特别涉及一种横向能量(lateral power)金属氧化物半导体场效应晶体管。
背景技术
基本上,横向能量金属氧化物半导体(MOSFET)形成有共面的源极和漏极区域的金属氧化物半导体场效应晶体管。图1A示出已知横向能量MOSFET元件100,元件100形成于P型基底101上,且另一P层113以外延方法成长于基底101上。在外延成长的P层113中,高压P阱区115邻接于高压N阱区103,N+源极117设置于高压P阱区115中,如此,N+源极117没有直接邻接高压N阱区103。介电层121形成以隔绝和定义元件100中的N+源极117和N+漏极105,栅极介电层111和栅极110由源极117延伸至部分场介电层107上。此外,元件100还包括P+区域119,位于高压P阱区115中。施加正电压至栅极110使电流从N+源极117流经沟道至高压N阱区103,而收集于N+漏极105。
此种横向能量MOSFET具有以下问题:元件在通过高电压时无法维持低的导通电阻,导通电阻是当电流通过元件时转换成热的电流能量,元件的导通电阻越大,其效率就越低,因此,需要尽可能的降低导通电阻以得到较高的效率。
图1B示出一种设计用以减少此问题的元件150,元件150相似于图1A的元件100,其中相似的单元采用相同的标号,图1B中增加场环109,此场环109用以减少表面电场并改进漂移区域的空乏能力,因此,可增加漂移区域的掺杂浓度和减少元件100的导通电阻。
然而,图1A所示的已知元件100和图1B所示的已知元件150具有以下另一缺点:击穿电压不够高,而不符需求,击穿电压是一般正常的高电阻元件(例如MOS电容器或是施加负偏压的PN接面)允许电流通过的电压,当大于击穿电压的电压通过例如100和150的元件时,会使元件产生巨大且无法恢复的损坏,使元件在商业上无法使用,而需要退换,因此,非常需要增加元件的击穿电压。
图2示出设计增加元件200击穿电压的横向能量MOSFET,在此图示中,为简明,并未于图示中示出场介电层。如图2所示,在元件200中,将多个分隔区201放置于高压N阱区103中,因此,高压N阱区中可形成有轮替导电率的区域,此种结构即为本领域所已知的超级接面(superjunction),分隔区201用以增加漂移区域的水平空乏能力,而允许漂移区有高的掺杂浓度,如此,可增加元件的击穿电压且有效的减少元件的导通电阻。
然而,上述已知技术***很难达到维持高电压和低导通电阻,因此,需要提供改进的横向能量MOSFET,其在高压下有高击穿电压且有低导通电阻。
发明内容
本发明的目的为提供改进的横向能量MOSFET,其在高压下有高击穿电压且有低导通电阻。
本发明提供一种半导体元件的制造方法,包括下列步骤。首先,提供半导体基底,具有第一层,形成延伸漂移区于部分第一层的上部区中,延伸漂移区具有第一导电类型。其后,形成第二层于延伸漂移区和基底上方,形成第一区置于第二层中和延伸漂移区上方,第一区为第一导电类型。接着,形成第二区于第二层中且实质上在平面中邻接第一区,平面实质上平行于基底的主要表面,第二区为第二导电类型。接下来,形成场介电层于部分第一区上方,形成栅极介电层和栅极导电层,其中栅极介电层和栅极导电层从部分场介电层上方延伸至部分第二区上方。
根据本发明的半导体元件的制造方法,其中所述第一导电类型是N型导电类型,且所述第二导电类型是P型导电类型。
根据本发明的半导体元件的制造方法,其中所述第一导电类型是P型导电类型,且所述第二导电类型是N型导电类型。
根据本发明的半导体元件的制造方法,其中所述第一层是外延成长于所述基底上。
根据本发明的半导体元件的制造方法,其中所述基底、所述延伸漂移区和所述第一区的尺寸根据缩减表面场设定,以形成单一缩减表面场结构。
本发明提供一种横向扩散(lateral diffuse)金属氧化物半导体元件(LDMOS)的制造方法,包括下列步骤。首先,提供基底,具有第一层,形成延伸漂移区于部分第一层的顶部区中,延伸漂移区具有第一导电类型。其后,形成第二层于延伸漂移区和基底上方,于第二层中形成第一区,第一区大体上对准延伸漂移区,且第一区为第一导电类型。接下来,于第二层中形成第二区,第二区与第一区有接面,第二区为第二导电类型,形成漏极区于第一区中,漏极区为第一导电类型。其后,形成源极区于第二区中,源极区为第一导电类型,形成场环(field ring)于第一区中,场环介于漏极区和第二区间,但不实质上邻接两者,场环为第二导电类型。后续,形成场介电层于部分第一区上方,形成栅极介电层和栅极导电层,其中栅极介电层和栅极导电层从部分场介电层上方延伸至部分第二区上方。
根据本发明的横向扩散金属氧化物半导体元件的制造方法,其中所述第一层是外延成长于所述基底上。
根据本发明的横向扩散金属氧化物半导体元件的制造方法,其中所述第一导电类型是P型导电类型,且所述第二导电类型是N型导电类型。
根据本发明的横向扩散金属氧化物半导体元件的制造方法,其中所述第一导电类型是N型导电类型,且所述第二导电类型是P型导电类型。
根据本发明的横向扩散金属氧化物半导体元件的制造方法,其中所述基底、所述延伸漂移区和所述场环的尺寸根据缩减表面场设定,以形成双重缩减表面场结构。
本发明提供一种横向扩散超级接面(lateral diffuse superjunction)金属氧化物半导体元件(LDMOS)的制造方法,包括下列步骤。首先,提供基底,具有第一层,形成延伸漂移区于部分基底中,延伸漂移区具有第一导电类型。接着,形成第二层于延伸漂移区和基底上方,于第二层中形成第一区,第一区大体上对准延伸漂移区,且第一区为第一导电类型。后续,于第二层中形成第二区,第二区与第一区有接面,第二区为第二导电类型,形成漏极区于第一区中,漏极区为第一导电类型。接下来,形成源极区于第二区中,源极区为第一导电类型,形成多个分隔区于第一区中,分隔区为第二导电类型,如此,分隔区和第一区形成交替导电类型的区域。其后,形成场介电层于部分第一区上方,形成栅极介电层和栅极导电层,其中栅极介电层和栅极导电层从部分场介电层上方延伸至部分第二区上方。
根据本发明的横向扩散超级接面金属氧化物半导体元件的制造方法,其中所述第一导电类型是P型导电类型,且所述第二导电类型是N型导电类型。
根据本发明的横向扩散超级接面金属氧化物半导体元件的制造方法,其中所述第一导电类型是N型导电类型,且所述第二导电类型是P型导电类型。
根据本发明的横向扩散超级接面金属氧化物半导体元件的制造方法,其中所述第一层是外延成长于所述基底和所述延伸漂移区上。
附图说明
图1A示出已知横向能量MOSFET元件的剖面图。
图1B示出具有场环的已知横向能量MOSFET元件的剖面图。
图2示出已知横向能量超级接面MOSFET元件的透视图。
图3A~图3G示出本发明实施例包括横向漂移区的横向能量MOSFET元件的制造方法。
图4A~图4D示出本发明一个实施例具有场环的包括横向漂移区的横向能量MOSFET元件的制造方法。
图5A~图5E示出本发明一个实施例包括横向漂移区的横向能量超级接面MOSFET元件的制造方法。
图6显示本发明一个实施例和传统半导体元件的有关于漂移区深度和阻抗关系的比较曲线图。
图7为显示本发明一个实施例和传统半导体元件的有关于漂移区深度和击穿电压关系的比较曲线图。
其中,附图标记说明如下:
100~元件;        101~P型基底;
103~高压N阱区;   105~N+漏极;
107~场介电层;    109~场环;
110~栅极;        111~栅极介电层;
113~P层;         115~高压P阱区;
117~N+源极;              119~P+区域;
121~介电层;              150~元件;
200~元件;                201~分隔区;
301~基底;                303~N+埋藏层(NBL);
305~掺杂半导体材料;      305~P型外延层;
307~高压N阱区;           309~高压P阱区;
311~第一场介电层;        313~第二场介电层;
314~栅极介电层;          315~栅极导电层;
317~漏极区;              319~源极区;
321~P+区;                401~场环;
501~分隔区。
具体实施方式
以下详细讨论本发明较佳实施例的制造和使用,然而,根据本发明的概念,其可包括或运用于更广泛的技术范围,须注意的是,实施例仅用以揭示本发明制造和使用的特定方法,并不用以限定本发明。
本发明涉及横向能量MOSFET,其在高压下有高击穿电压且有低导通电阻,本发明的实施例可用于横向能量MOSFET,特别是当元件在高压下,在此讨论的实施例中,高压可为约800V的电压,然而,在本发明的另一实施例中,施加的电压可超过800V,以下揭示此元件的制造方法。
图3A~图3G示出本发明一个实施例包括横向漂移区的横向能量MOSFET元件的制造方法,首先公开本发明的一个实施例,请参照图3A,提供基底301,基底301可包括主体硅、掺杂或是未掺杂的硅或是绝缘层上有硅(silicon on insulator,以下可简称SOI)基底,一般来说,绝缘层上有硅基底包括半导体材料层(例如硅、锗、硅锗、绝缘层上有硅SOI、绝缘层上有硅锗SGOI或是上述的组合),本发明也可采用另外的基底,例如,多层基底、层次基底(gradient substrate)或是复合轴向(hybrid orientation)基底。
形成N+埋藏层303(N+buried layer,以下可简称NBL)于部分基底301中,且N+埋藏层303接近基底301的顶部表面,形成N+埋藏层303的方法较佳为注入N型掺杂物于基底301的上部区域中,举例来说,形成N+埋藏层303的注入工艺的掺杂物为例如磷的N型掺杂物,其浓度约介于3×1015~3×1016之间,且注入电压约为20~200Kev,然而,本实施例可采用其它的N型掺杂物,例如砷、氮、锑或上述的组合或是其它可用相类似的物质。N+埋藏层303的N型掺杂物可通过加热至约1000℃~1200℃的温度区渗入基底301中,所形成的N+埋藏层303的厚度较佳介于2μm~10μm之间,举例来说,其厚度更佳约为6μm。
图3B示出本发明较佳实施例,其包括掺杂半导体材料305,形成于基底301和N+埋藏层303上方,掺杂半导体材料305较佳包括例如硅的P型半导体,且掺杂半导体材料305较佳是由外延形成,然而,本发明也可采用其它方法形成掺杂半导体材料305。在此实施例中,掺杂半导体材料以P型外延层标示,较佳者,P型外延层305的厚度约介于2μm~5μm之间,且更佳者,在一个实施例中,P型外延层的厚度约为4μm,然而,本发明也可采用其它厚度的P型外延层305。在本发明的一个实施例中,P型外延层可掺杂硼,但本发明不限于此,P型外延层也可以掺杂镓、铝、铟上述的组合或是其它材料。
图3C示出本发明实施例高压N阱区307的形成,高压N阱区307的形成的方法可采用离子注入例如磷的N型掺杂物,其工艺条件可如下:N型掺杂物的浓度约为3×1015~3×1016,施加电压约为180Kev,然而,本发明不限于此,本发明也可采用其它的N型掺杂物,例如砷、氮、锑或是上述的组合。在一个实施例中,高压N阱区307的深度约介于4μm~10μm,其较佳的厚度约为4μm。
图3D示出本发明一个实施例高压P阱区309的形成,较佳者,高压P阱区309实质上邻接高压N阱区307,如此,可于两阱间产生接面(junction)。可通过将至少部分P外延层305掺杂例如硼的P型掺杂物形成高压P阱区309,其注入浓度可例如为1×1015~2×1016,注入能量可约为100Kev。在一个实施例中,高压P阱区309的深度约介于2μm~6μm,其较佳的厚度约为4μm,然而,本发明不限于此,本发明也可采用其它的P型掺杂物,例如镓、铝、铟上述的组合或是其它材料。
图3E示出本发明一个实施例第一场介电层311和一组第二场介电层313的形成,如图3E所示,形成第一场介电层311于部分高压N阱区307上方,形成第二场介电层313于部分高压P阱区309和P外延层305上方。在本发明的一个实施例中,第一场介电层311和第二场介电层313同时形成。第一场介电层311和第二场介电层313可包括氧化硅,其形成方法可包括以下步骤:图形化掩模层(未示出),暴露预定形成第一场介电层311和第二场介电层313的基底301,接着,在含氧的环境下加热基底301至约980℃,之后,移除掩模层。第一场介电层311和第二场介电层313的较佳厚度约为3000埃~7000埃之间,其较佳厚度例如为5000埃,然而,本发明不限于此,第一场介电层311和第二场介电层313可以为其它的厚度,或由其它材料所组成。
图3F示出本发明一个实施例栅极介电层314和栅极导电层315的形成,栅极介电层314设置于场介电层311的上部部分上方,且延伸覆盖部分高压P阱区309。栅极导电层315设置于栅极介电层314上方,栅极导电层315可以为例如掺杂多晶硅、金属、金属合金或是相类似的物质所组成,另外,栅极导电层315的表面可进行硅化工艺。
图3G示出于高压P阱区309中形成源极区319和于高压N阱区307中形成漏极区317,可采用离子注入工艺形成源极区319和漏极区317,其工艺条件可例如:掺杂物为例如磷的N型掺杂物、掺杂浓度约介于1×1019~2×1020之间,注入能量约为80Kev,然而,本发明不限于此,可发明也可采用其它N型掺杂物,例如,砷、氮、锑或是上述的组合或相类似的物质。
图3G另示出于高压P阱区309形成P+区321,举例而说,其P型掺杂物可以是硼,掺杂浓度约介于1×1019~2×1020之间,注入能量约为70Kev,然而,本发明不限于此,本发明也可采用其它P型掺杂物,例如镓、铝、铟或是上述的组合或相类似的物质。
另外,本发明可应用缩减表面场(reduced surface field,以下可简称RESRUF)技术设定基底301、NBL 303和高压N阱区307的尺寸和浓度,如此基底301、NBL 303和高压N阱区307形成本领域所知的单一缩减表面场(RESUF)结构,此结构减少高压P阱区309和高压N阱区307接面的电场,且可增加整个元件的击穿电压。
图4A~图4D示出本发明另一实施例的横向能量MOSFET,其将场环(field ring)制作于漂移区。在本实施例中,初始步骤和图3A至图3D相类似,其中相类似的标号是指相类似的单元,然而,图4A示出将部分高压N阱区307掺杂相反类型的P型掺杂物以形成场环401,在本实施例中,可通过掺杂例如硼的P型掺杂物于高压N阱区307形成场环401,其掺杂深度可约介于0.4μm~2μm,较佳深度约为1μm,然而,本发明不限于此,本发明也可采用其它P型掺杂物,例如镓、铝、铟或是上述的组合或相类似的物质。
图4B示出本发明一个实施例形成第一场介电层311和一组第二场介电层313,第一场介电层311形成于场环401和部分高压N阱区307上方,如图4B所示,第二场介电层313形成于部分高压P阱区309和P外延层305上方,第一场介电层311和第二场介电层313可采用以上图3E所述的方法形成。
图4C示出本发明一个实施例形成栅极介电层314和栅极导电层315,如图4C所示,栅极介电层314设置于场介电层311的顶部表面,且延伸覆盖部分高压P阱区309。栅极导电层315设置于栅极介电层314上方,栅极导电层315和栅极介电层314可采用以上图3F所述的方法形成。
图4D示出本发明一个实施例于高压P阱区309形成源极区319和于高压N阱区307形成漏极区317,源极区和漏极区的形成可参考以上图3G部分叙述。图4D另揭示于高压P阱区形成P+区321,同样的,P+区321的形成可参考以上图3G部分叙述。
另外,本发明可应用(reduced surface field,以下可简称RESUF)技术设定基底301、NBL303和高压N阱区307的尺寸和浓度,如此基底301、NBL303和高压N阱区307形成单一此技术所知的RESUF结构,此结构减少高压P阱区309和高压N阱区307接面的电场,且可增加整个元件的击穿电压。
图5A~图5E示出本发明另一实施例,其横向能量超级接面(superjunction)MOSFET制作于延伸漂移区,在本实施例中,初始步骤和图3A至图3D相类似,其中相类似的标号是指相类似的单元,图5A示出在形成场介电层311之前,于高压N阱区307中形成分隔区501以形成本领域所知的超级接面MOSFET,在此实施例中,分隔区501是P型导电区,其可通过注入P型掺杂物形成,注入的工艺条件可例如:掺杂物为硼,掺杂浓度约介于1×1015~2×1016之间,注入能量约为70KeV,且之后进行热趋入工艺。然而,本发明不限于此,本发明也可采用其它P型掺杂物,例如镓、铝、铟或是上述的组合或相类似的物质。在一个范例中,分隔区501的深度可约介于0.5μm~5μm,较佳深度约为3μm。
图5B示出沿图5A的5B-5B’剖面线的剖面图,示出此剖面的超级接面分隔区501,在此图示中可看出分隔区501分隔的形成于高压N阱区307中,以形成具有相反导电率的区域。分隔区501较佳大体上延伸穿过P外延层305且不延伸入NBL 303中。
图5C示出本发明一个实施例在形成分隔区501后形成第一场介电层311和一组第二场介电层313,图5C示出沿图5A在形成第一场介电层311和第二场介电层313后沿5C-5C’剖面线的剖面图。形成第一场介电层311于部分高压N阱区307和部分分隔区501上方,如图5C所示,形成第二场介电层313于部分高压P阱区309和P外延层305上方,第一场介电层311可采用以上图3E所讨论的方法形成。
图5D示出本发明一个实施例在形成栅极介电层314和栅极导电层315的元件,如图5D所示,栅极介电层314设置于场介电层311的顶部表面,且延伸覆盖部分高压P阱区309。栅极导电层315设置于栅极介电层314上方,栅极介电层314和栅极导电层315可采用以上图3F所述的方法形成。
图5E示出本发明一个实施例于高压P阱区309形成源极区319和于高压N阱区307,漏极区317,源极区319和漏极区317的形成方法可参考以上图3G部分叙述。
图5E另示出于高压P阱区形成P+区321,同样的,P+区321的形成可参考以上图3G部分叙述。
图6为曲线图,显示本发明一个实施例和传统半导体元件的有关于漂移区深度和阻抗关系的比较,如图所示,当漂移区深度增加4μm~10μm约可转换成元件导通电阻约65%的改进。
图7为曲线图,显示本发明一个实施例和传统半导体元件的有关于漂移区深度和击穿电压关系的比较,如图所示,当漂移区深度增加4μm~10μm约可转换成元件击穿电压较已知横向能量MOSFET约改进15%。
以上的实施例仅用以本发明的范例,举例来说,当讨论P型横向能量MOSFET的实施例时,另一实施例可以是N型横向能量MOSFET,其包括N型沟道区、P型源极漏极区和P型延伸漂移区,虽然本发明已以较佳实施例公开如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的变化与修改,因此本发明的保护范围当视后附的权利要求所界定者为准。

Claims (14)

1.一种半导体元件的制造方法,包括:
提供半导体基底,具有第一层;
形成延伸漂移区于部分第一层的上部区中,所述延伸漂移区具有第一导电类型;
形成第二层于所述延伸漂移区和所述基底上方;
形成第一区,设置于所述第二层中和所述延伸漂移区上方,所述第一区为所述第一导电类型;
形成第二区,设置于所述第二层中且实质上在平面中邻接所述第一区,所述平面实质上平行于所述基底的主要表面,所述第二区为第二导电类型;
形成场介电层于部分第一区上方;及
形成栅极介电层和栅极导电层,其中所述栅极介电层和所述栅极导电层从部分场介电层上方延伸至部分第二区上方。
2.如权利要求1所述的半导体元件的制造方法,其中所述第一导电类型是N型导电类型,且所述第二导电类型是P型导电类型。
3.如权利要求1所述的半导体元件的制造方法,其中所述第一导电类型是P型导电类型,且所述第二导电类型是N型导电类型。
4.如权利要求1所述的半导体元件的制造方法,其中所述第一层是外延成长于所述基底上。
5.如权利要求1所述的半导体元件的制造方法,其中所述基底、所述延伸漂移区和所述第一区的尺寸根据缩减表面场设定,以形成单一缩减表面场结构。
6.一种横向扩散金属氧化物半导体元件的制造方法,包括:
提供基底,具有第一层;
形成延伸漂移区于部分第一层的顶部区中,所述延伸漂移区具有第一导电类型;
形成第二层于所述延伸漂移区和所述基底上方;
于所述第二层中形成第一区,所述第一区大体上对准所述延伸漂移区,且所述第一区为第一导电类型;
于所述第二层中形成第二区,所述第二区与所述第一区有一接面,所述第二区为第二导电类型;
形成漏极区于所述第一区中,所述漏极区为所述第一导电类型;
形成源极区于所述第二区中,所述源极区为所述第一导电类型;
形成场环于所述第一区中,所述场环介于所述漏极区和所述第二区间,但不实质上邻接两者,所述场环为所述第二导电类型;
形成场介电层于部分第一区上方;及
形成栅极介电层和栅极导电层,其中所述栅极介电层和所述栅极导电层从部分场介电层上方延伸至部分第二区上方。
7.如权利要求6所述的横向扩散金属氧化物半导体元件的制造方法,其中所述第一层是外延成长于所述基底上。
8.如权利要求6所述的横向扩散金属氧化物半导体元件的制造方法,其中所述第一导电类型是P型导电类型,且所述第二导电类型是N型导电类型。
9.如权利要求6所述的横向扩散金属氧化物半导体元件的制造方法,其中所述第一导电类型是N型导电类型,且所述第二导电类型是P型导电类型。
10.如权利要求6所述的横向扩散金属氧化物半导体元件的制造方法,其中所述基底、所述延伸漂移区和所述场环的尺寸根据缩减表面场设定,以形成双重缩减表面场结构。
11.一种横向扩散超级接面金属氧化物半导体元件的制造方法,包括:
提供基底,具有第一层;
形成延伸漂移区于部分基底中,所述延伸漂移区具有第一导电类型;
形成第二层于所述延伸漂移区和所述基底上方;
于所述第二层中形成第一区,所述第一区大体上对准所述延伸漂移区,且所述第一区为第一导电类型;
于所述第二层中形成第二区,所述第二区与所述第一区有接面,所述第二区为第二导电类型;
形成漏极区于所述第一区中,所述漏极区为第一导电类型;
形成源极区于所述第二区中,所述源极区为第一导电类型;
形成多个分隔区于所述第一区中,所述多个分隔区为第二导电类型,如此,所述多个分隔区和所述第一区形成交替导电类型的区域;
形成场介电层于部分第一区上方;及
形成栅极介电层和栅极导电层,其中所述栅极介电层和所述栅极导电层从部分场介电层上方延伸至部分第二区上方。
12.如权利要求11所述的横向扩散超级接面金属氧化物半导体元件的制造方法,其中所述第一导电类型是P型导电类型,且所述第二导电类型是N型导电类型。
13.如权利要求11所述的横向扩散超级接面金属氧化物半导体元件的制造方法,其中所述第一导电类型是N型导电类型,且所述第二导电类型是P型导电类型。
14.如权利要求11所述的横向扩散超级接面金属氧化物半导体元件的制造方法,其中所述第一层是外延成长于所述基底和所述延伸漂移区上。
CNA2007101033125A 2006-10-13 2007-05-18 半导体元件的制造方法 Pending CN101162697A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/581,178 US7476591B2 (en) 2006-10-13 2006-10-13 Lateral power MOSFET with high breakdown voltage and low on-resistance
US11/581,178 2006-10-13

Publications (1)

Publication Number Publication Date
CN101162697A true CN101162697A (zh) 2008-04-16

Family

ID=38820350

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101033125A Pending CN101162697A (zh) 2006-10-13 2007-05-18 半导体元件的制造方法

Country Status (4)

Country Link
US (2) US7476591B2 (zh)
EP (1) EP1914797B1 (zh)
KR (1) KR100878509B1 (zh)
CN (1) CN101162697A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626032B (zh) * 2008-07-09 2010-12-08 台湾积体电路制造股份有限公司 半导体结构
CN101685833B (zh) * 2008-07-09 2011-06-29 台湾积体电路制造股份有限公司 半导体结构
CN101834204B (zh) * 2009-02-27 2012-03-14 台湾积体电路制造股份有限公司 半导体装置及其制造方法
CN102651318A (zh) * 2011-02-23 2012-08-29 旺宏电子股份有限公司 高压晶体管的制造方法
CN102769037A (zh) * 2011-05-06 2012-11-07 汉磊科技股份有限公司 减少表面电场的结构及横向扩散金氧半导体元件
CN102769028A (zh) * 2011-05-03 2012-11-07 旺宏电子股份有限公司 半导体结构及其制造方法
CN103258845A (zh) * 2012-02-21 2013-08-21 旺宏电子股份有限公司 半导体结构及其形成方法
CN105070759A (zh) * 2015-08-31 2015-11-18 上海华虹宏力半导体制造有限公司 Nldmos器件及其制造方法
US9299773B2 (en) 2012-02-20 2016-03-29 Macronix International Co., Ltd. Semiconductor structure and method for forming the same
CN105448995A (zh) * 2015-12-31 2016-03-30 上海华虹宏力半导体制造有限公司 Nldmos器件及工艺方法
CN107910358A (zh) * 2017-11-06 2018-04-13 上海华虹宏力半导体制造有限公司 Ldmos及其制造方法
CN111969043A (zh) * 2020-08-28 2020-11-20 电子科技大学 高压三维耗尽超结ldmos器件及其制造方法
CN112530805A (zh) * 2019-09-19 2021-03-19 无锡华润上华科技有限公司 横向双扩散金属氧化物半导体器件及制作方法、电子装置
CN114122113A (zh) * 2022-01-27 2022-03-01 江苏游隼微电子有限公司 一种高可靠的mosfet功率半导体器件结构

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989890B2 (en) 2006-10-13 2011-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral power MOSFET with high breakdown voltage and low on-resistance
US9484451B2 (en) 2007-10-05 2016-11-01 Vishay-Siliconix MOSFET active area and edge termination area charge balance
TWI487105B (zh) * 2009-12-16 2015-06-01 Macronix Int Co Ltd 側向功率金屬氧化物半導體場效應電晶體結構及其製造方法
CN102110712B (zh) * 2009-12-23 2012-06-27 旺宏电子股份有限公司 侧向功率金属氧化物半导体场效应晶体管结构及制造方法
US8247992B2 (en) * 2010-03-23 2012-08-21 Green Mark Technology Inc. LED driver circuit
DE102010014370B4 (de) * 2010-04-09 2021-12-02 X-Fab Semiconductor Foundries Ag LDMOS-Transistor und LDMOS - Bauteil
US8772871B2 (en) * 2010-08-20 2014-07-08 Freescale Semiconductor, Inc. Partially depleted dielectric resurf LDMOS
TWI405271B (zh) * 2010-12-30 2013-08-11 Anpec Electronics Corp 製作具有超級介面之功率半導體元件之方法
US8367511B2 (en) 2011-03-07 2013-02-05 Macronix International Co., Ltd. Manufacturing method for high voltage transistor
US9431249B2 (en) * 2011-12-01 2016-08-30 Vishay-Siliconix Edge termination for super junction MOSFET devices
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US20130270636A1 (en) * 2012-04-17 2013-10-17 Broadcom Corporation Transistor Having An Isolated Body For High Voltage Operation
US8853780B2 (en) * 2012-05-07 2014-10-07 Freescale Semiconductor, Inc. Semiconductor device with drain-end drift diminution
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9653459B2 (en) * 2012-07-03 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. MOSFET having source region formed in a double wells region
US9070576B2 (en) 2012-09-07 2015-06-30 Freescale Semiconductor Inc. Semiconductor device and related fabrication methods
US8748981B2 (en) * 2012-09-07 2014-06-10 Freescale Semiconductor, Inc. Semiconductor device and related fabrication methods
US8779555B2 (en) * 2012-12-06 2014-07-15 Taiwan Semiconductor Manufacturing Co., Ltd. Partial SOI on power device for breakdown voltage improvement
US9698024B2 (en) 2012-12-06 2017-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Partial SOI on power device for breakdown voltage improvement
KR101976481B1 (ko) 2012-12-20 2019-05-10 삼성전자주식회사 반도체 소자 및 그의 제조 방법
US9490322B2 (en) 2013-01-23 2016-11-08 Freescale Semiconductor, Inc. Semiconductor device with enhanced 3D resurf
US9070766B1 (en) * 2014-01-27 2015-06-30 Macronix International Co., Ltd. Semiconductor device and method of forming the same
US9543379B2 (en) 2014-03-18 2017-01-10 Nxp Usa, Inc. Semiconductor device with peripheral breakdown protection
WO2015171873A1 (en) * 2014-05-07 2015-11-12 Cambridge Electronics, Inc. Transistor structure having buried island regions
US9245754B2 (en) 2014-05-28 2016-01-26 Mark E. Granahan Simplified charge balance in a semiconductor device
US9508596B2 (en) 2014-06-20 2016-11-29 Vishay-Siliconix Processes used in fabricating a metal-insulator-semiconductor field effect transistor
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
EP3183754A4 (en) 2014-08-19 2018-05-02 Vishay-Siliconix Super-junction metal oxide semiconductor field effect transistor
US9385229B2 (en) 2014-09-24 2016-07-05 Freescale Semiconductor, Inc. Semiconductor device with improved breakdown voltage
US9306060B1 (en) 2014-11-20 2016-04-05 Freescale Semiconductor Inc. Semiconductor devices and related fabrication methods
KR102272382B1 (ko) 2014-11-21 2021-07-05 삼성전자주식회사 반도체 소자
US9871135B2 (en) 2016-06-02 2018-01-16 Nxp Usa, Inc. Semiconductor device and method of making
US9905687B1 (en) 2017-02-17 2018-02-27 Nxp Usa, Inc. Semiconductor device and method of making
US10510831B2 (en) * 2018-02-19 2019-12-17 Globalfoundries Singapore Pte. Ltd. Low on resistance high voltage metal oxide semiconductor transistor
CN110459602A (zh) * 2019-08-31 2019-11-15 电子科技大学 具有纵向浮空场板的器件及其制造方法
CN110518059B (zh) * 2019-08-31 2021-01-22 电子科技大学 具有电荷平衡耐压层的纵向浮空场板器件及其制造方法
CN117766588B (zh) * 2024-02-22 2024-04-30 南京邮电大学 具有延伸漏结构的超结双soi-ldmos器件及制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306652A (en) * 1991-12-30 1994-04-26 Texas Instruments Incorporated Lateral double diffused insulated gate field effect transistor fabrication process
US5322804A (en) * 1992-05-12 1994-06-21 Harris Corporation Integration of high voltage lateral MOS devices in low voltage CMOS architecture using CMOS-compatible process steps
US5378912A (en) * 1993-11-10 1995-01-03 Philips Electronics North America Corporation Lateral semiconductor-on-insulator (SOI) semiconductor device having a lateral drift region
JP3250419B2 (ja) * 1994-06-15 2002-01-28 株式会社デンソー 半導体装置およびその製造方法
US6800903B2 (en) 1996-11-05 2004-10-05 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
JP3382163B2 (ja) * 1998-10-07 2003-03-04 株式会社東芝 電力用半導体装置
JP2000252465A (ja) 1999-03-03 2000-09-14 Sony Corp 半導体装置およびその製造方法
US6265752B1 (en) * 1999-05-25 2001-07-24 Taiwan Semiconductor Manufacturing, Co., Inc. Method of forming a HVNMOS with an N+ buried layer combined with N well and a structure of the same
TW521437B (en) * 2000-10-19 2003-02-21 Sanyo Electric Co Semiconductor device and process thereof
US6486034B1 (en) * 2001-07-20 2002-11-26 Taiwan Semiconductor Manufacturing Company Method of forming LDMOS device with double N-layering
JP3935042B2 (ja) * 2002-04-26 2007-06-20 株式会社東芝 絶縁ゲート型半導体装置
KR100867574B1 (ko) * 2002-05-09 2008-11-10 페어차일드코리아반도체 주식회사 고전압 디바이스 및 그 제조방법
US7719054B2 (en) 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
US6919598B2 (en) * 2003-03-10 2005-07-19 Zia Hossain LDMOS transistor with enhanced termination region for high breakdown voltage with low on-resistance
US6924531B2 (en) * 2003-10-01 2005-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. LDMOS device with isolation guard rings
US6873011B1 (en) 2004-02-24 2005-03-29 System General Corp. High voltage and low on-resistance LDMOS transistor having equalized capacitance
US7202531B2 (en) 2004-04-16 2007-04-10 Matsushita Electric Industrial Co., Ltd. Semiconductor device
TWI229933B (en) 2004-06-25 2005-03-21 Novatek Microelectronics Corp High voltage device for electrostatic discharge protective circuit and high voltage device
US8080848B2 (en) 2006-05-11 2011-12-20 Fairchild Semiconductor Corporation High voltage semiconductor device with lateral series capacitive structure
US7508032B2 (en) 2007-02-20 2009-03-24 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage device with low on-resistance
US7893490B2 (en) 2007-04-30 2011-02-22 Taiwan Semiconductor Manufacturing Company, Ltd. HVNMOS structure for reducing on-resistance and preventing BJT triggering
US8168466B2 (en) 2007-06-01 2012-05-01 Semiconductor Components Industries, Llc Schottky diode and method therefor
US7709908B2 (en) 2007-08-10 2010-05-04 United Microelectronics Corp. High-voltage MOS transistor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101685833B (zh) * 2008-07-09 2011-06-29 台湾积体电路制造股份有限公司 半导体结构
CN101626032B (zh) * 2008-07-09 2010-12-08 台湾积体电路制造股份有限公司 半导体结构
CN101834204B (zh) * 2009-02-27 2012-03-14 台湾积体电路制造股份有限公司 半导体装置及其制造方法
CN102651318A (zh) * 2011-02-23 2012-08-29 旺宏电子股份有限公司 高压晶体管的制造方法
CN102769028A (zh) * 2011-05-03 2012-11-07 旺宏电子股份有限公司 半导体结构及其制造方法
CN102769028B (zh) * 2011-05-03 2015-01-28 旺宏电子股份有限公司 半导体结构及其制造方法
CN102769037A (zh) * 2011-05-06 2012-11-07 汉磊科技股份有限公司 减少表面电场的结构及横向扩散金氧半导体元件
CN102769037B (zh) * 2011-05-06 2015-02-18 汉磊科技股份有限公司 减少表面电场的结构及横向扩散金氧半导体元件
US9299773B2 (en) 2012-02-20 2016-03-29 Macronix International Co., Ltd. Semiconductor structure and method for forming the same
CN103258845A (zh) * 2012-02-21 2013-08-21 旺宏电子股份有限公司 半导体结构及其形成方法
CN103258845B (zh) * 2012-02-21 2015-09-09 旺宏电子股份有限公司 半导体结构及其形成方法
CN105070759A (zh) * 2015-08-31 2015-11-18 上海华虹宏力半导体制造有限公司 Nldmos器件及其制造方法
CN105448995A (zh) * 2015-12-31 2016-03-30 上海华虹宏力半导体制造有限公司 Nldmos器件及工艺方法
CN107910358A (zh) * 2017-11-06 2018-04-13 上海华虹宏力半导体制造有限公司 Ldmos及其制造方法
CN107910358B (zh) * 2017-11-06 2020-09-25 上海华虹宏力半导体制造有限公司 Ldmos及其制造方法
CN112530805A (zh) * 2019-09-19 2021-03-19 无锡华润上华科技有限公司 横向双扩散金属氧化物半导体器件及制作方法、电子装置
CN112530805B (zh) * 2019-09-19 2022-04-05 无锡华润上华科技有限公司 横向双扩散金属氧化物半导体器件及制作方法、电子装置
CN111969043A (zh) * 2020-08-28 2020-11-20 电子科技大学 高压三维耗尽超结ldmos器件及其制造方法
CN114122113A (zh) * 2022-01-27 2022-03-01 江苏游隼微电子有限公司 一种高可靠的mosfet功率半导体器件结构
CN114122113B (zh) * 2022-01-27 2022-05-03 江苏游隼微电子有限公司 一种高可靠的mosfet功率半导体器件结构

Also Published As

Publication number Publication date
EP1914797B1 (en) 2015-08-12
US20080090347A1 (en) 2008-04-17
US7476591B2 (en) 2009-01-13
EP1914797A2 (en) 2008-04-23
US8129783B2 (en) 2012-03-06
US20090085101A1 (en) 2009-04-02
KR100878509B1 (ko) 2009-01-13
EP1914797A3 (en) 2009-08-12
KR20080033843A (ko) 2008-04-17

Similar Documents

Publication Publication Date Title
CN101162697A (zh) 半导体元件的制造方法
CN102097327B (zh) 双通道沟槽ldmos晶体管和bcd工艺
US10014404B2 (en) MOS-gated power devices, methods, and integrated circuits
US7923804B2 (en) Edge termination with improved breakdown voltage
CN110556388B (zh) 一种可集成功率半导体器件及其制造方法
CN103050509B (zh) 集成高低压器件的半导体芯片
CN103137697A (zh) 功率mosfet及其形成方法
CN104218084B (zh) 半导体功率器件及其制造方法
US20020053695A1 (en) Split buried layer for high voltage LDMOS transistor
WO2016022975A1 (en) Methods and apparatus for ldmos devices with cascaded resurf implants and double buffers
CN106887452A (zh) 在半导体装置中的自调式隔离偏置
KR20150099666A (ko) 수직형 바이폴라 정션 트랜지스터 소자 및 제조 방법
CN107425046B (zh) 一种ldmos器件及其制作方法
CN102354685A (zh) 包括功率二极管的集成电路
CN106024776A (zh) 具有不同沟道宽度的复合半导体器件
CN109888005A (zh) 逆导型超结igbt器件及其制造方法
CN1539169A (zh) 对称沟槽mosfet器件及其制造方法
US20110186907A1 (en) Semiconductor device and method of manufacturing semiconductor device
US8673712B2 (en) Power transistor with high voltage counter implant
CN103633089B (zh) 多晶硅电阻及其制造方法
CN105633078B (zh) 双极结型半导体器件及其制造方法
CN104241358B (zh) 射频ldmos器件及其制造方法
CN103681850A (zh) 功率mosfet及其形成方法
US9231120B2 (en) Schottky diode with leakage current control structures
CN102694020B (zh) 一种半导体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20080416