CN101145349A - 穿隧磁阻元件及其制造方法 - Google Patents

穿隧磁阻元件及其制造方法 Download PDF

Info

Publication number
CN101145349A
CN101145349A CNA2007100894451A CN200710089445A CN101145349A CN 101145349 A CN101145349 A CN 101145349A CN A2007100894451 A CNA2007100894451 A CN A2007100894451A CN 200710089445 A CN200710089445 A CN 200710089445A CN 101145349 A CN101145349 A CN 101145349A
Authority
CN
China
Prior art keywords
pinned magnetic
layer
magnetic layer
magnetoresistive element
tunnel barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100894451A
Other languages
English (en)
Inventor
驹垣幸次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN101145349A publication Critical patent/CN101145349A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明提供了穿隧磁阻元件及其制造方法。通过对第一钉扎磁层进行平滑处理而使得非磁性中间层变得平滑,可获得磁阻元件中的第一钉扎磁层与第二钉扎磁层之间的稳定反铁磁交换耦合。通过顺次层叠底层、反铁磁层、第一钉扎磁层、非磁性中间层、第二钉扎磁层、隧道势垒层、自由磁层以及保护层来制造所述磁阻元件。在将所述非磁性中间层层叠在所述第一钉扎磁层上之前对所述第一钉扎磁层进行平滑处理。通过使得隧道势垒层变得平滑,即使当厚度减小时也能获得稳定磁阻特性。在这种情况下,即使隧道势垒层要求晶体特性也能获得优异的磁阻特性。

Description

穿隧磁阻元件及其制造方法
技术领域
本发明涉及穿隧磁阻元件及其制造方法,更具体地涉及穿隧磁阻元件的膜结构。
背景技术
为了改善硬盘驱动器(HDD)以使其具有更高容量和更小的尺寸,需要高灵敏度、高输出的薄膜磁头。甚至巨磁阻(GMR)元件的性能特性也必须进一步加以改善。为此,正在继续开发穿隧磁阻(TMR)元件,期望穿隧磁阻元件提供的电阻变化率是GMR元件的电阻变化率的两倍以上。
传统穿隧磁阻元件的薄膜结构在图1中示出。穿隧磁阻元件具有底层1、反铁磁层2、利用来自反铁磁层2的交换耦合力钉扎住的第一钉扎磁层3、非磁性层4、用于与第一钉扎层3反铁磁交换耦合的第二钉扎磁层5、隧道势垒层6、自由磁层7以及保护层8。
通常,如图1所示,由于能够容易地形成更薄的反铁磁层,所以经由非磁性中间层4在第一钉扎磁层3与第二钉扎磁层5之间采用了反铁磁交换耦合。当利用磁阻元件作为磁头时,使用光刻胶作为掩模,利用离子研磨工艺来形成元件。因此,如图2所示,元件的截面变成包括锥形部分9的梯形形状。
图2示出从垂直于与介质相对的表面的方向观察的元件的截面。在此,必须缩窄磁头的芯宽度以实现更高的密度。因此,磁头的芯的宽度依据限定了芯宽度的自由磁层的宽度是在梯形形状的上边附近的区域处还是在梯形形状的下边附近的区域处而不同。通常,反铁磁层2层叠于第一钉扎磁层3的下侧,使得自由磁层7位于上边附近的区域处,以便实现图2所示的窄芯宽度。
在此,通过将隧道势垒层形成得更薄来降低元件电阻,使得穿隧磁阻元件能够传递更大电流并且获得更大输出电压。更低的元件电阻也能防止出现静电击穿。
然而,隧道势垒层的厚度是1nm或小于1nm。当形成更薄的隧道势垒层时,不能确保平滑度,并且在部分隧道势垒层中会产生针孔。当感生电流流过针孔时,不再能获得高输出。因此,必须形成更薄的隧道势垒层以获得更高的输出,但隧道势垒层的平滑度对实现这种更高输出和更薄隧道势垒层是至关重要的。
为了解决这种情况,在形成隧道势垒层之前通过反溅射(inversesputtering)使第二钉扎磁层5变平滑,并且通过将隧道势垒层层叠在这种平滑磁层上来实现隧道势垒层本身的平滑度。就是说,通过使得隧道势垒层的下层的表面变得平滑,即使在隧道势垒层上也能获得异常平滑的表面。
通常使用Al2O3层作为穿隧磁阻元件的隧道势垒层,但也可以使用MgO层作为势垒层以获得更高磁阻特性。Al2O3层是非晶层,而MgO层是晶层。层的晶体结构对于获得优异穿隧磁阻效应非常重要。为了利用MgO层获得优异穿隧磁阻效应,虽然使用了MgO层,但用作MgO层的下层的第二钉扎磁层必须是非晶层。
由于需要高记录密度,所以要求磁头中的磁屏蔽之间的间隙是窄隙。因为穿隧磁阻元件被保持在磁屏蔽之间,所以即使在穿隧磁阻元件中,减少厚反铁磁层的厚度以形成窄隙也是很重要的。作为通常的反铁磁层,使用显示出大交换耦合力和高截止温度(blocking temperature)的Pt-Mn合金。然而,用作反铁磁层的层相对较厚,例如10到20nm。另一方面,当该层由Ir-Mn合金形成时,即使其厚度约5到10nm时也可使用。因此,当在此考虑窄隙时,Ir-Mn合金作为反铁磁层具有更高的潜力。然而,已知Ir-Mn合金的表面比Pt-Mn合金的表面粗糙。
图6示出当对第二钉扎磁层进行反溅射时,TMR比(%)与RA(Ωμm2)之间的关系。用于实验的穿隧磁阻膜的膜结构是由5nm厚的Ta底层、2nm厚的Ru底层、10nm厚的IrMn反铁磁层、2.5nm厚的CoFe第一钉扎层、0.8nm厚的Ru非磁性层、3nm厚的CoFeB第二钉扎层、1nm厚的MgO隧道势垒层、3nm厚的CoFeB自由层、5nm厚的Ta保护层以及10nm厚的Ru保护层构成的。反溅射是在10-2Pa的Ar气大气压下的真空室中进行的。当如上所述采用MgO层作为隧道势垒层时,会妨害MgO的配向。如果如在现有技术的情况下通过反溅射等对第二钉扎磁层进行平滑,则妨害了MgO的配向而无法获得优异磁阻特性。然而,当减少隧道势垒层的厚度并且由于采用了反铁磁层(或者尤其是利用Ir-Mn合金作为反铁磁层)所以膜的表面粗糙度相当大时,平滑处理是必要的。
第一钉扎磁层与第二钉扎磁层之间的反铁磁交换耦合主要依赖于由这种第一钉扎磁层和第二钉扎磁层所夹的非磁性中间层的厚度。由于非磁性中间层的厚度仅为1nm或小于1nm,所以当膜厚度波动时,不能再获得第一钉扎磁层与第二钉扎磁层之间的优异交换耦合。就是说,当使用Ir-Mn合金作为反铁磁层时,非磁性中间层的膜表面中的粗糙度增加,并且不能获得优异的交换耦合。
因此,本发明的目的是提供一种穿隧磁阻元件及其制造方法,其能够实现层厚度的减小,以解决上述各种问题并且获得优异磁阻特性。
发明内容
根据本发明的一个方面,磁阻元件是通过顺次层叠底层、反铁磁层、第一钉扎磁层、非磁性中间层、第二钉扎磁层、隧道势垒层、自由磁层以及保护层而形成的。在层叠非磁性中间层之前对第一钉扎磁层进行平滑处理。由于使第一钉扎磁层平滑,所以此后层叠的非磁性中间层也是平滑的,并且能够获得第一钉扎磁层与第二钉扎磁层之间的稳定反铁磁交换耦合。此外,还对层叠在上面的隧道势垒层进行平滑处理,以使可以在不产生一个或者更多个针孔的情况下减小厚度。
进行平滑处理使得中心线平均粗糙度Ra为0.3nm或小于0.3nm。当中心线平均粗糙度Ra是0.3nm或小于0.3nm时,平滑表面可与当例如使用Pt-Mn合金作为反铁磁层时相比,并且因此能够获得优异的磁阻特性。
此外,反铁磁层优选地由Ir-Mn合金形成。当使用Ir-Mn合金作为反铁磁层时,与当使用例如Pt-Mn合金时相比,形成反铁磁层之后的膜表面的平滑度很差。此外,即使在膜上层叠非磁性中间层,也不能获得第一钉扎磁层与第二钉扎磁层之间的稳定反铁磁交换耦合。然而,通过对第一钉扎磁层进行平滑处理能够获得第一钉扎磁层与第二钉扎磁层之间的稳定反铁磁交换耦合。另外,当使用Ir-Mn合金作为反铁磁层时,对隧道势垒层进行平滑处理能够提供性能上的显著改进。
隧道势垒层优选地由MgO层形成。当使用MgO作为隧道势垒层时,由于其晶体结构对磁阻特性具有较大影响,所以需要进行另外的平滑处理。然而,当对第二钉扎磁层进行平滑处理时,不能获得MgO的优异晶体结构。因此,通过对第一钉扎磁层进行平滑处理能够获得MgO的优异晶体结构。
通过顺次层叠底层、反铁磁层、第一钉扎磁层、非磁性中间层、第二钉扎磁层、隧道势垒层、自由磁层以及保护层,并且通过在层叠非磁性中间层之前对第一钉扎磁层进行平滑处理,来执行磁阻元件的制造方法。利用该制造方法能够获得上述磁阻元件。
在所述平滑处理之后,层叠非磁性中间层之前,可以再次层叠第一钉扎磁层。换言之,第一钉扎磁层的厚度可从所需厚度减小,并且随后通过再次形成第一钉扎磁层而增加到所需厚度。
可利用气体团簇离子束或者反溅射处理来进行对第一钉扎磁层的平滑处理。作为平滑手段,采用能够在相同真空条件中执行的气体团簇离子束或者反溅射处理以防止膜特性的劣化。
可使用Ir-Mn合金作为反铁磁层,同时可使用MgO层作为隧道势垒层。在上述条件下,本发明可提供改善的性能。
本发明中的磁阻及其制造方法可提供具有第一钉扎磁层与第二钉扎磁层之间的优异反铁磁交换耦合、实现隧道势垒层的厚度的减小、并且获得更高磁阻的磁阻元件。
附图说明
将参照附图来说明本发明。
图1是常规穿隧磁阻元件的膜结构的截面图。
图2是图1中的磁阻元件的锥形形状的截面图。
图3(a)至图3(d)是示出本发明的第一实施例中的磁阻元件及其制造方法的图。
图4(a)至图4(e)是示出本发明的第二实施例中的磁阻元件及其制造方法的图。
图5是示出本发明中的第一钉扎磁层的反溅射时间、TMR比(%)以及RA(Ωμm2)之间的关系的图。
图6是示出当对现有技术中的第二钉扎磁层进行反溅射时,TMR比(%)与RA(Ωμm2)之间的关系的图。
图7(a)是具有本发明的磁阻元件的盘驱动器的图,并且图7(b)是具有本发明的磁阻元件的磁头滑动器的图。
具体实施方式
图3(a)至图3(d)示出了制造本发明的磁阻元件的方法的第一实施例。图3(a)至图3(d)是磁阻元件的截面图。如图3(a)所示,Ta底层1形成在由Al2O3-TiC制成的基板10上,并且随后形成Ir-Mn合金的反铁磁层2。在此,反铁磁层2具有比由通常使用的Pt-Mn合金制成的反铁磁层更高的表面粗糙度。因此如图3(b)所示,层叠在Ir-Mn合金上的第一钉扎磁层也因为作为下层的Ir-Mn合金的影响而具有更高的表面粗糙度。
此后,如图3(c)所示,利用气体团簇离子束或者反溅射方法对第一钉扎磁层的表面进行光滑处理。接着,如图3(d)所示,利用溅射法在光滑的第一钉扎磁层3上连续层叠Ru非磁性中间层4、Co-Fe合金的第二钉扎磁层5、MgO隧道势垒层6、Co-Fe合金的自由磁层7以及Ta保护层8。在此,更加希望的是通过照射气体团簇离子束或者反溅射,将第一钉扎磁层3形成为具有远大于预定厚度的厚度,以便获得优异的磁阻特性。
当在磁头中使用本发明的穿隧磁阻元件时,例如在Al2O3-TiC的基板上层叠Al2O3制成的绝缘层和NiFe的屏蔽层之后,层叠该穿隧磁阻元件。在第二实施例中也是如此。
当Al2O3用于隧道势垒层时,由于Al2O3形成非晶层,所以即使利用气体团簇离子束或者反溅射法对作为下层的第二钉扎磁层进行了平滑处理,也不会对隧道势垒层的磁阻特性有任何影响。然而当采用MgO作为隧道势垒层时,因为MgO的晶层和晶体结构对于获得优异的磁阻特性非常重要,所以如果将第二钉扎磁层用作下层并且利用气体团簇离子束或者反溅射方法对其进行平滑处理,则不能获得优异的磁阻特性。
然而,根据本发明,由于利用气体团簇离子束或者反溅射方法对第一钉扎磁层进行平滑处理,所以MgO可连续地形成在第二钉扎磁层上作为隧道势垒层并且由此/获得优异的磁阻特性。
图5示出了第一钉扎磁层的反溅射时间、TMR比(%)以及RA(Ωμm2)之间的关系。用于实验的穿隧磁阻膜具有由如下层构成的结构:5nm厚的Ta底层、2nm厚的Ru底层、10nm厚的IrMn反铁磁层、2.5nm厚的CoFe第一钉扎磁层、0.8nm厚的Ru的非磁性层、3nm厚的CoFeB第二钉扎层、1nm厚的MgO隧道势垒层、3nm厚的CoFeB自由层、5nm厚的Ta保护层以及10nm厚的Ru保护层。在10-2Pa的Ar气大气压下的真空室中进行反溅射。反溅射时间的数据0(min)表示当未对磁阻元件进行反溅射时,无法获得优异的磁阻特性。
此外,尤其是当使用Ir-Mn合金作为反铁磁层时,在连续形成反铁磁层、第一钉扎磁层以及非磁性中间层的情况下,反铁磁层的表面粗糙度影响了非磁性中间层。然而,根据本发明,由于也对Ru非磁性中间层进行光滑处理,所以可获得第一钉扎磁层与第二钉扎磁层之间的优异反铁磁交换耦合。
如上所述制造的对第一钉扎磁层进行光滑处理的磁阻元件显示出优异的磁阻特性。
也可利用反溅射来对反铁磁层和非磁性中间层进行光滑处理。然而,在此情况下,不能获得反铁磁层与第一钉扎磁层之间的优异交换耦合以及第一钉扎磁层与第二钉扎磁层之间的优异反铁磁交换耦合。
图4(a)至图4(e)示出了本发明的磁阻元件的制造方法的第二实施例。如图4(a)所示,Ta底层1形成在Al2O3-TiC基板10上,在Ta底层1上形成有Al2O3-TiC反铁磁层2。由于反铁磁层2的表面粗糙度更高,所以层叠其上的第一钉扎磁层3的表面也具有更高的粗糙度,如图4(b)所示。因此,如图4(c)所示,利用气体团簇离子束或者反溅射方法对第一钉扎磁层3的表面进行光滑处理。如上所述的制造方法与第一实施例中的制造方法相同。
通过延长利用气体团簇离子束或者反溅射方法使第一钉扎磁层3的表面变得平滑所需的气体团簇离子束照射时间或者反溅射时间,可将第一钉扎磁层3形成为具有小于预定厚度的厚度。如图4(d)所示,通过再次溅射第一钉扎磁层3,可将厚度增加到预定厚度,并且如图4(e)所示,此后利用溅射方法连续层叠Ru非磁性中间层4、Co-Fe合金第二钉扎磁层5、MgO隧道势垒层6、Co-Fe合金自由磁层7以及Ta保护层8。通过延长气体团簇离子束的照射时间和反溅射时间能够使得第一钉扎磁层变得足够平滑。
本发明的磁阻元件可用在硬盘驱动器中,其示例在图7(a)中示出。硬盘驱动器20包括至少一个转盘存储介质22。盘22通过主轴马达(未示出)转动。由音圈马达等操纵的致动器臂24以跨盘22的大体径向方式在盘22上移动悬臂26。
磁头滑动器28位于悬臂26的远端并且包括读取/写入元件30。读取/写入元件30中的读取头是本发明的磁阻元件。当盘转动并且致动器沿盘上的预定轨道移动磁阻元件时,通过磁阻元件读取盘22上记录的信息。控制***32包括足以响应于来自主机(未示出)的命令来控制盘转动、致动器移动以及读取/写入操作的控制器、存储器等。
尽管以上关于具体装置和应用描述了本发明的原理,但应该理解,此描述仅仅是通过示例的方式来进行的,而并非是对本发明的范围的限制。

Claims (13)

1.一种磁阻元件,该磁阻元件包括顺次层叠的如下多个层:
底层;
反铁磁层;
第一钉扎磁层;
非磁性中间层;
第二钉扎磁层;
隧道势垒层;
自由磁层;以及
保护层,
所述磁阻元件是通过如下处理而制成的:顺次层叠所述多个层,并且在将所述非磁性中间层层叠在所述第一钉扎磁层上之前,对所述第一钉扎磁层进行平滑处理。
2.根据权利要求1所述的磁阻元件,其中,执行所述平滑处理以提供0.3nm或小于0.3nm的中心线平均粗糙度Ra。
3.根据权利要求1或2所述的磁阻元件,其中,所述反铁磁层由Ir-Mn合金形成。
4.根据权利要求3所述的磁阻元件,其中,所述隧道势垒层由MgO形成。
5.一种磁阻元件的制造方法,所述制造方法包括以下步骤:顺序层叠底层、反铁磁层、第一钉扎磁层、非磁性中间层、第二钉扎磁层、隧道势垒层、自由磁层以及保护层;并且在层叠所述非磁性中间层之前对所述第一钉扎磁层进行平滑处理。
6.根据权利要求5所述的制造方法,其中,在层叠所述非磁性中间层之前,再次层叠第一钉扎磁层。
7.根据权利要求5或6所述的制造方法,其中,通过气体团簇离子束或反溅射方法执行所述平滑处理。
8.根据权利要求5或6所述的制造方法,其中,所述反铁磁层由Ir-Mn合金形成。
9.根据权利要求8所述的制造方法,其中,所述隧道势垒层由MgO形成。
10.一种盘驱动器,该盘驱动器包括:
转动盘介质;
用于在所述盘上径向地移动读取/写入元件的致动器;以及
控制***,
所述读取/写入元件具有用于读取的磁阻元件,所述磁阻元件包括如下一种磁阻元件,该磁阻元件包括顺次层叠的如下多个层:
底层;
反铁磁层;
第一钉扎磁层;
非磁性中间层;
第二钉扎磁层;
隧道势垒层;
自由磁层;以及
保护层,
该磁阻元件是通过如下处理而制成的:顺次层叠所述多个层,并且在将所述非磁性中间层层叠在所述第一钉扎磁层上之前,对所述第一钉扎磁层进行平滑处理。
11.根据权利要求10所述的盘驱动器,其中,执行所述平滑处理以提供0.3nm或小于0.3nm的中心线平均粗糙度Ra。
12.根据权利要求11所述的盘驱动器,其中,所述反铁磁层由Ir-Mn合金形成。
13.根据权利要求12所述的盘驱动器,其中,所述隧道势垒层由MgO形成。
CNA2007100894451A 2006-09-11 2007-03-23 穿隧磁阻元件及其制造方法 Pending CN101145349A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006244977 2006-09-11
JP2006244977A JP2008066612A (ja) 2006-09-11 2006-09-11 トンネル磁気抵抗効果素子及びその製造方法。

Publications (1)

Publication Number Publication Date
CN101145349A true CN101145349A (zh) 2008-03-19

Family

ID=39169373

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100894451A Pending CN101145349A (zh) 2006-09-11 2007-03-23 穿隧磁阻元件及其制造方法

Country Status (4)

Country Link
US (1) US20080062582A1 (zh)
JP (1) JP2008066612A (zh)
KR (1) KR20080023619A (zh)
CN (1) CN101145349A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223414A (zh) * 2014-06-18 2016-01-06 中国科学院苏州纳米技术与纳米仿生研究所 一种高灵敏度的新型微波探测器
CN115595541A (zh) * 2021-06-28 2023-01-13 北京超弦存储器研究院(Cn) 一种可基于溅射功率调整ra值原理的隧穿磁电阻和磁性随机存储器的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164863B2 (en) * 2008-03-26 2012-04-24 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-plane (CPP) read sensor with multiple ferromagnetic sense layers
JP2012009804A (ja) * 2010-05-28 2012-01-12 Toshiba Corp 半導体装置及びその製造方法
US8325448B2 (en) * 2011-02-11 2012-12-04 Headway Technologies, Inc. Pinning field in MR devices despite higher annealing temperature
JP5318137B2 (ja) 2011-03-22 2013-10-16 株式会社東芝 多層膜の製造方法
US9082888B2 (en) * 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9123879B2 (en) 2013-09-09 2015-09-01 Masahiko Nakayama Magnetoresistive element and method of manufacturing the same
US9231196B2 (en) 2013-09-10 2016-01-05 Kuniaki SUGIURA Magnetoresistive element and method of manufacturing the same
US9385304B2 (en) 2013-09-10 2016-07-05 Kabushiki Kaisha Toshiba Magnetic memory and method of manufacturing the same
US9368717B2 (en) 2013-09-10 2016-06-14 Kabushiki Kaisha Toshiba Magnetoresistive element and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801383A (en) * 1995-11-22 1998-09-01 Masahiro Ota, Director General, Technical Research And Development Institute, Japan Defense Agency VOX film, wherein X is greater than 1.875 and less than 2.0, and a bolometer-type infrared sensor comprising the VOX film
JP3331397B2 (ja) * 1999-07-23 2002-10-07 ティーディーケイ株式会社 トンネル磁気抵抗効果素子
JP2001247958A (ja) * 2000-03-07 2001-09-14 Nec Corp ボロメータ材料の作製方法及びボロメータ素子
KR100596196B1 (ko) * 2004-01-29 2006-07-03 한국과학기술연구원 볼로메타용 산화물 박막 및 이를 이용한 적외선 감지소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223414A (zh) * 2014-06-18 2016-01-06 中国科学院苏州纳米技术与纳米仿生研究所 一种高灵敏度的新型微波探测器
CN115595541A (zh) * 2021-06-28 2023-01-13 北京超弦存储器研究院(Cn) 一种可基于溅射功率调整ra值原理的隧穿磁电阻和磁性随机存储器的制备方法
CN115595541B (zh) * 2021-06-28 2024-07-19 北京超弦存储器研究院 一种可基于溅射功率调整ra值原理的隧穿磁电阻和磁性随机存储器的制备方法

Also Published As

Publication number Publication date
JP2008066612A (ja) 2008-03-21
KR20080023619A (ko) 2008-03-14
US20080062582A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
CN101145349A (zh) 穿隧磁阻元件及其制造方法
US7446984B2 (en) Magnetic random access memory (MRAM) having increased reference layer anisotropy through ion beam etch of magnetic layers
EP2673807B1 (en) Magnetic element with improved out-of-plane anisotropy for spintronic applications
US7791844B2 (en) Magnetoresistive sensor having a magnetically stable free layer with a positive magnetostriction
JP5815204B2 (ja) Tmr素子およびその形成方法
US9437225B2 (en) Reader designs of shield to shield spacing improvement
US7408747B2 (en) Enhanced anti-parallel-pinned sensor using thin ruthenium spacer and high magnetic field annealing
US7440241B2 (en) Magnetoresistive head using longitudinal biasing method with 90-degree magnetic interlayer coupling and manufacturing method thereof
US8373948B2 (en) Tunnel magnetoresistance (TMR) structures with MGO barrier and methods of making same
US7652854B2 (en) Magneto-resistive or tunneling magneto-resistive element having a shielding film of an amorphous layer above a crystalline layer, and method for manufacturing the same
CN102483931B (zh) 具有复合磁屏蔽的磁性传感器
JP4388093B2 (ja) 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置
US20090322319A1 (en) Magnetoresistive sensor with tunnel barrier and method
JP2010074170A (ja) Tmr素子およびその形成方法
JP2006019743A (ja) 磁気メモリ構造およびトンネル磁気抵抗効果型再生ヘッドならびにそれらの製造方法
US8004374B2 (en) Increased anisotropy induced by direct ion etch for telecommunications/electronics devices
JP2008235528A (ja) 磁気抵抗効果素子、磁性積層構造体、及び磁性積層構造体の製造方法
JP2009140952A (ja) Cpp構造磁気抵抗効果素子およびその製造方法並びに記憶装置
JPWO2007105459A1 (ja) 磁気抵抗効果型薄膜磁気ヘッド及びその製造方法
US20140133052A1 (en) Magnetoresistive sensor having reduced read gap and strong pinned layer stability
JP2001094173A (ja) 磁気センサー、磁気ヘッド及び磁気ディスク装置
JP2009064528A (ja) 磁気抵抗効果ヘッド及びその製造方法
JP2006210794A (ja) 磁気抵抗効果素子、その製造方法、及び、磁気記録装置
JP2009004692A (ja) 磁気抵抗効果素子及びその製造方法
JP2005101441A (ja) 磁気抵抗多層膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080319