CN1011174B - 变换器控制设备 - Google Patents

变换器控制设备

Info

Publication number
CN1011174B
CN1011174B CN86108758A CN86108758A CN1011174B CN 1011174 B CN1011174 B CN 1011174B CN 86108758 A CN86108758 A CN 86108758A CN 86108758 A CN86108758 A CN 86108758A CN 1011174 B CN1011174 B CN 1011174B
Authority
CN
China
Prior art keywords
mentioned
frequency
output
active power
converter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN86108758A
Other languages
English (en)
Other versions
CN86108758A (zh
Inventor
宫沢芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN86108758A publication Critical patent/CN86108758A/zh
Publication of CN1011174B publication Critical patent/CN1011174B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • H02M7/527Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation
    • H02M7/529Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation using digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53846Control circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

一个变流器控制设备包含数字式锁相环路振荡器(21a,21b)以便使其与一备用的工业供电电源(5)的基准频率同步。变流器(2a,2b)是由对来自数字式锁相环路的振荡器(21a,21b)的输出脉冲进行分频的程控分频器(22a,22b)的输出触发的。各个程控分频器(22a,22b)的分频比(N)是根据变流器(2a,2b)的有功输出功率的偏移量(ΔP)来加以改变的。

Description

本发明涉及一种控制变换器的设备,该变换器是以与另一供电电源并行的方式和以与一备用的工业用电电源的基准频率同步的方式运行的。
为了改进***的可靠性,往往对不间断的供电电源***采用多个变换器的并行运行***。另外一种类型的供电电源***也被广泛地用于同样的目的,这种***中包括一个转换开关,它连接在以并行方式运行的变换器的输出和备用的工业用电电源(备用电源)之间。在这种供电电源***中,如果这种以并行方式运行的变换器遇到***不能工作,或者当这种变换器因需要维修而被全面地加以检查时,就用这种转换开关进行转换,以便能通过一备用的工业用电电源对负载进行不间断地、连续地供电。在这样一种***中,必须确保各个变换器的输出相位彼此互相匹配并确保变换器的输出在相位上与备用的工业用电电源匹配。根据先前的技术,对上述相位匹配的控制是通过模拟技术加以实现的。
然而,由于运算放大器和其它的有关电路中的偏移,特性的波动,温度漂移和老化等因素,模拟控制设备需要有复杂的电路和/或精确的调节来对这些不足之处加以补偿。而且,为了确保这种设备能长时期稳定运行,有必要在一个比较短的时间间隔周期内,对这种设备进行检修和重新校准,以便能适当地补偿特征的老化。
因此,本发明的一个目的就是提供一种用于控制变换器的设备,以便使这种设备能够与另一个供电电源并行运行并能与备用的工业用电电源的基准频率同步运行,这种设备能够通过采用数字技术使电路 的布局简化并能通过简单的调节使该设备的特征稳定不变。
为了达到上述目的,本发明中的变换器控制设备包含一个用来取代普通的模拟式锁相环路的数字式锁相环路振荡器以便与备用的市电电源等的基准频率保持同步,其中的变换器是由对数字式锁相环路振荡器的输出脉冲进行分频的程控分频器的输出加以触发的。程控分频器的分频比是按照对变换器输出的有效功率偏移来加以改变的。
附图的简要说明:
图1是本发明的一个实施例(数字电路)的方框图;
图2是图1所示的数字式锁相环路振荡器的一个例子;
图3是图1中有效功率偏移检测电路基本电路安排;
图4是图3中的电路的一种变换形式;
图5是表示本发明的另一个实施例(数模混合电路)的方框图;
在下文中,将参照相应的附图,对本发明的最佳实施例作详细描述。在下面的描述中,对整个附图中相同或相似的部件采用相同或相似的参考数字来表示,从而可以避免冗长的解释。
现在参照附图1对本发明的一个实施例中的变换器控制装置加以描述。在图1中,分别用下标a和b来表示第一和第二变换器(图中变换器用INV表示)以便将它们相互区别开来。直流(即DC)电压是由整流器(图中未示出)或由电池组(图中未示出)或由整流器加电池组提供的。这种直流电压分别加到变换器[2a]的直流供电线路[1a]和变换器[2b]的直流供电线路[1b]。变换器[2a]和[2b]把直流供电线路[1a]和[1b]上的电压转换成交流(即AC)电流。交流滤波器[3a]和[3b]分别连接到变换器[2a]和[2b]的交流输出端,以便把变换器的输出转变成正弦波。电路断路器[4a]和[4b]分别连接到交流滤波器[3a]和[3b]的输出电路上以便使变换器[2a]和[2b]以并行的方式加以连接或者使一个变换器(例为2a)与另一个变换器(例如2b)脱开。
借助于静态的转换开关[b](半导体开关)将电路断路器[4a]和[4b]之间的连接点耦连到负载[8](图中用LOAD表示)上。借助于静态的转换开关[7](半导体开关)将负载[8]耦连到备用工业供电电源[5]上。开关[6]和[7]能够不间断地改变负载与变换器的交流输出和备用的工业供电电源[5]的交流供电线之间的连接。
图1中的电路还包括:
用于将备用的工业供电电源[5]的电压相位和滤波器[3a]和[3b]的电压相位进行比较的数字式锁相环路振荡路[21a]和[21b](图中用DPLL表示);
用于将数字式锁相环路振荡器[21a]和[21b]的输出的频率除以N的程控分频器[22a]和[22b];
用于按程控分频器[22a]和[22b]的输出即分频后的频率,产生对变换器[2a]和[2b]进行触发的选通脉冲的环形计数器[12a]和[12b](图中用RING    COUNTER表示);
用于对来自变换器(2a)和(2b)的有功功率的偏移量(图中用△P表示)进行检测的有功功率偏移是检测器(13a)和(13b)(图中用△P    DETECTOR表示);
用于将检测器[13a]和[13b]的模拟输出数据转变成用于程控分频器[22a]和[22b]的数字分频数据的模数转换器[23a]和[23b](图中用ADC表示);
数字式锁相环路振荡器[21a]和[21b]由数字电路组成并产生振荡脉冲,从而使各个变换器的输出相位与备用的工业供电电源[5]的相位相对应。
在实际制作过程中,为了使变换器[2a]和[2b]准确地执行并行操作,有必要采用电压控制以便对无功功率偏移进行校正。然而,由于此类电压控制是普遍使用的,所以本文中就省略了对它的详细解释。 实现上述电压控制的无功功率控制可以参考下列文件。例如:
赛克(Seki)等人:
“采用一个新的数字控制技术的变换器装置的平行运行”《电气工程师协会,电力电子学-功率晶体管和它们的应用》,会议论文27-29,1977年9月(参看图2b)。
在图2中,示出了数字式锁相环路振荡器[21a]和[21b]的细节。图2中“异或”(EXOR)门[211]接收备用工业用电电源[5]的电压和由滤波器[3a]或[3b]输出电压,在运行中用作为相位差检测器。“异或”门[211]的输出提供给“与”门(AND)[214]的一个输入端,再通过反相放大器[216]提供给“与”门[215]的一个输入端。“与”门[214]的另一个输入端接收晶体振荡器[212](图中用OSC)的输出。“与”门[215]的另一个输入端接收晶体振荡器[213]的输出。晶体振荡器[212]的振荡频率与晶体振荡器[213]的振荡频率稍微有点不同。“与”门[214]和[215]的输出提供给“或”门[217]。“或”门[217]提供数字式锁相振荡器[21](即21a和21b)的输出脉冲。
在图2的电路中,来自数字式锁相振荡器[21]的输出脉冲的频率是通过改变负载比来加以改变的。而负载比则是根据“异或”门[211]的输出电平来对晶体振荡器[212]和[213]的输出进行选择的。
程控分频器[22a]和[22b]是这样工作的,即分频比N是按照有功功率偏移量△P在No±△N的范围之内变化,其中当△N=0时,△P=0(△P△N为正时△N增加)。
现在将在下文中描写图1中的设备的运行过程。
根据上文中提到的运行原理,数字式锁相环路振荡器[21a]和[21b]允许它们的输出频率按照各自的变换器的输出和备用工业供电电源[5]的输出之间的相位差而变化,从而使变换器的相位与备用工 业供电电源[5]的相位匹配。也就是说,相位差△θ按照上述相位差被控制频率f积分,从而对相位加以高精度的控制。在这方面要指出的是:
θ=∫fdt=∫SK.△θ·dt    (K是一个常数)。
例如,当有功功率偏移△P对于两个变换器中的第一个单元来说为正值是,也就是说,当第一个单元的有功功率大一些时,通过模数转换器[23a]把偏称量△P转换成数字编码,再把数字编码作为分频比N提供给程控分频器[22a],从而使△P变为正值(N>No)。结果,提供给环形计数器[12a]的信号的频率被降低了,从而使变换器[2a]的输出相位延迟从而使偏移量△P下降。
另一方面,两个变换器中的第二个单元发现△P为负值,在第二个单元中,程控分频器[22b]在运行时允许它的分频比N减少(N<No)。结果,提供给环形计数器[12b]的信号的频率被提高使变换器[2b]的输出相位提前并因此使偏移量△P减小。
这也就是说,可以按照偏移量△P,通过改变各个程控分频器[22a]和[22b]的分频比(N)而控制各个变换器的有功功率,从而使变换器的有功功率成为一适当的数值。
这样构成的控制设备装有数字式锁相环路振荡器,每个振荡器均采用数字技术并对各自的变换器的输出进行频率控制,从而使每个变流器输出的相位与备用工业供电电源的相位一致,该控制设备还装有程控分频器,每个分频器都用来对数字式锁相环路振荡器的输出进行分频和改变其分频比。数字式锁相环路振荡器的输出决定用于各个变流器的环形计数器的基准频率,从而能够对有功功率的偏移量△P加以修正,因此,在通常的模拟控制设备中所碰到的那种为了补偿电压偏移,温度漂移和电路元件的老化所需要的复杂的电路或精确的调节都可以省去。从而可以使稳定的特征在一个持续很久的时间内得到维 持。
图3是图1中的有功功率偏移量检测器[13a]和[13b]的基本电路配置。由交流滤波器[3a](图中用ACFILTER表示)传送过来的变换器[2a]的输出电流Ia和输出电压Va分别由变换器[131a]和测量用变压器[132a]检测。与此相类似,由交流滤波器[3b]传送过来的变换器[2b]的输出电流Ib和输出电压Vb分别由变换器[131b]和测量用变压器[132b]检测。电流Ia和Ib分别经过电路断路器[4A]和[4B]提供给转换开关[6]。
电流Ia和电压Va输入到有功功率检测器[133a],在该检测器中,来自于变换器[2a]的输出的有功功率Pa按照关系式Pa=Va·Iacos φa加以计算,其中φa表示Va和Ia之间的相位差。与此相类似,电流Ib和电压Vb输入到有功功率检测器[133b]中,在该检测器中,来自于变换器[2b]的输出的有功功率Pb根据关系式Pb=Vb·IbCosφb加以计算,其中φb表示Vb和Ib之间的相位差。
在减法器电路[134a]中,从来自于检测器[133a]的有功功率Pa中减去来自于检测器[133b]的有功功率Pb,由此产生了提供给模数转换器[23a]的有功功率偏移量△Pa。与此相类似,在减法器电路[134b]中,从来自检测器[133b]的有功功率Pb中减去来自于检测器[133a]的有功功率Pa,由此产生了提供给模数转换器[23b]的有功功率偏移量△Pb
在图3的电路中,当Pa>Pb时△Pa成为正值而△Pb成为负值。当Pa<Pb时,△Pa成为负值而△Pb成为正值。当Pa=Pb时,△Pa和△Pb成为零。
图3中的电路能用于图1中所示的有功功率偏移量检测器[13a]和[13b]。
图4是图3电路的一种有所改变的形式。在图4中,图3中的检 测器[133a]和[133b]分别被换成等效的直流电压Pa和Pb。Pa的正端与Pb的正端相连。Pa的负端通过电阻Ra和Rb的串联电路连接到Pb的负端上。电阻Ra和Rb之间的连接线点为线路的接地点。
假定直流电流I在Pa、Pb、Rb和Ra的闭合回路中从Pa侧到Pb侧流动。正的电势+I·Rb出现在Pb和Rb之间的接点上,负的电势-I·Ra出现在Pa和Ra之间的接点上。借助于反相放大器,将电势+I·R转换成用于模数转换器[23b]的有功功率偏称量△Pb。借助于反相放大器,电势-I·Ra转换成用于模数转换器[23a]的有功功率偏称量△Pa
在图4的电路中,当Pa>Pb时,△Pa成为正值而△Pb成为负值。当Pa<Pb时,△Pa成为负值而△Pb成为正值。当Pa=Pb时,△Pa和△Pb成为零。
图5是本发明的另一个实施例(模拟/数字混合电路)的方框图。在这个实施例中,模拟锁相环路[11a、11b]是与数字式变换器控制电路[12a,22a,23a;12b,22b,23b]结合在一起的。图5与图1的不同之处仅仅在于:图1中的数字式锁相振荡器[21a]和[21b]被换成模拟式锁相环路[11a]和[11b]。图5中的电路运行方式实质上是与图1中的电路运行方式相同的。按照图5中的电路配置,即使模拟式锁相环路[11a]或[11b]受到电路参数漂移的影响,通过程控分频器[22a]或[22b]也能将此类漂移减低到原来的 1/(N) 。此外,图中的模拟式锁相环路[11a]和[11b],是由相位检测器[111a]和[111b](图中用PHASE DETECTOR表示),低通滤波器[112a]和[112b](图中用LPF表示)和压控振荡器(图中用VCO表示)构成。
顺便提一下,与本发明相类似的技术的下列文件所披露的内容合并到本申请中:
海格(Higa)等人:
“用于对多个变换器进行同步控制的设备”,1977年10月16日颁布的专利号为4,171,517的美国专利。
尽管本文中所描述的实施例是针对并行阵列中的两个变换器的控制设备而言的,但是对于一个变换器或三个及三个以上的并行的变换器也能够获得同样的效果。此外,即使变换器是与变换器不同的供电电源(诸如燃料电池或太阳能电池)并行运行,或者即使变换器与工业用电电源***并行运行,也能够获得同样的效果。此外,与变换器的输出同步的基准频率信号不仅仅限于备用的工业用电电源。例如,此类基准频率信号也能从晶体振荡器获得。
顺便提一下,模拟式锁相环路的电路本身是属于已知的技术。题为“使变换器以并行方式运行的设备”的专利号为1,215,332的日本专利详细地揭示了把变换器的有功功率偏移量反馈给摸拟式锁相环路并据此对偏移量进行修正的构思。
正如上文中所陈述的,根据本发明的控制设备,变换器是以与备用的工业供电电源等并行的方式和以与上述备用的工业供电电源的基准频率同步的方式运行的。据此,就有可能使变换器的运行稳定,不受有关的电路元件或器件的温度漂移、老化等因素的影响。

Claims (9)

1、对变换器电路[2a、3a、12a]进行控制的控制设备,该控制设备可使变换器电路以与预定的基准频率[5]同步和以与另一供电电源[2b,3b,12b]并行的方式运行,上述控制设备包括:
锁相环路装置[11a,21a],该装置耦连在上述变换器电路[2a、3a、12a]上,用于改变上述变换器电路的输出频率以便使上述变换器电路的输出相位与上述预定的基准频率的相位相匹配;
其特征在于,所述控制设备还包括:
程控分频装置[22a],该装置耦连在上述锁相环路装置[11a,21a]和上述变换器电路[2a,3a,12a]上,用于对上述锁相环路装置的输出进行分频以便使上述变换器电路[2a,3a,12a]的输出和上述另一供电电源[2b,3b,12b]的输出之间的有功功率偏移量(△P)减少,上述有功功率偏移量(△P)与上述程控分频装置[22a]的分频比(N)有关;
控制装置[13a,23a],该装置耦连在上述程控分频器装置[22a]和上述变换器电路[2a,3a,12a]上,用于对上述有功功率偏移量(△P)进行检测和改变上述分频比(N)以便使被检测到的有功功率偏移量(△P)的值减少,据此对上述变换器电路[2a,3a,12a]的输出和上述另一供电电源[2b,3b,12b]的输出之间的有功功率进行控制。
2、据权利要求1所述的控制设备,其特征在于,其中,上述另一供电电源[2b,3b,12b]包括上述锁相环路装置[11b,21b],上述程控分频装置[22b]和上述控制装置[13b,23b]。
3、据权利要求2所述的控制设备,其特征在于,其中,上述变换器电路[2a,3a,12a]中被检测到的有功功率偏移量(△Pa)的极性(+)与上述另一供电电源[2b,3b,12b]中被检测到的有功功率偏移量(△Pb)的极性(-)相反。
4、据权利要求3所述的控制设备,其特征在于,其中,上述变换器电路[2a,3a,12a]的控制装置[13a]包括:
用于对上述变换器电路[2a,3a,12a]的输出的第一有功功率(Pa)进行检测的第一有功功率检测装置[131a至133a];
其中,上述另一供电电源[2b,3b,12b]的控制装置[13b]包括:
用于对上述另一供电电源[2b,3b,12b]的输出的第二有功功率(Pb)进行检测的第二有功功率检测装置[131b至133b];
其中,上述变换器电路[2a,3a,12a]的控制装置[13a]进一步包括:
第一偏移量检测装置[134a,Ra],该装置耦连在上述第一和第二有功功率检测装置[131a-133a,131b-133b]上,用于检测上述第一和第二有功功率(Pa;Pb)之间的差值(Pa-Pb)以便提供上述变换器电路[2a,3a,12a]被检测出来的有功功率偏移量(△Pa);
其中,上述另一供电电源[2b,3b,12b]的控制装置[13b]进一步包括:
第二偏移量检测装置[134b,Rb],该装置耦连在上述第一和第二有功功率检测装置[131a-133a;131b-133b)上,用于检测上述第一和第二有功功率(Pa;Pb)之间的差值(Pa-Pb)以便提供上述另一供电电源[2b,3b,12b]被检测出来的有功功率偏移量(△Pb)。
5、据权利要求1至4中任何一项中所述的控制设备,其特征在于,其中上述锁相环路装置[21a]是由数字电路[211-217]构成的。
6、据权利要求5所述的控制设备,其特征在于,其中上述数字电路[211-217]包括:
一“异或”门[211],该“异或”门可对上述预定的基准频率[5]和上述变换器电路[2a,3a,12a]的输出频率作出响应,用于提供上述输入频率的“异或”输出;
第一振荡器[212],用于产生第一频率信号;
第二振荡器[213],用于产生第二频率信号,其频率与上述第一频率信号的频率不同;
一门电路[214-217],该门电路耦连在上述“异或”门[211]、上述第一振荡器[212]和上述第二振荡器[213]上,用于提供控制输出,该控制输出用于改变上述程控分频装置[22a]的分频比(N)以便根据上述“异或”输出的逻辑电平使上述控制输出频率或者具有上述第一频率或者具有上述第二频率。
7、据权利要求1至4中任何一项所述的控制设备,其特征在于,其中上述锁相环路装置[11a]包括一个模拟电路[111a-113a]。
8、据权利要求1、2、3、4、6中任何一项所述的控制设备,其特征在于,其中上述预定的基准频率是从与上述变换器电路[2a,3a,12a]的输出并行连接的交流电源[5]中获得的。
9、据权利要求5中所述的控制设备,其特征在于,其中上述预定的基准频率是从与上述变换器电路[2a,3a,12a]的输出并行连接的交流电源[5]中获得的。
CN86108758A 1985-12-20 1986-12-20 变换器控制设备 Expired CN1011174B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP286931/85 1985-12-20
JP60286931A JPS62147962A (ja) 1985-12-20 1985-12-20 インバ−タの制御装置
JP85-286931 1985-12-20

Publications (2)

Publication Number Publication Date
CN86108758A CN86108758A (zh) 1987-09-09
CN1011174B true CN1011174B (zh) 1991-01-09

Family

ID=17710808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86108758A Expired CN1011174B (zh) 1985-12-20 1986-12-20 变换器控制设备

Country Status (6)

Country Link
US (1) US4733341A (zh)
JP (1) JPS62147962A (zh)
KR (1) KR900005425B1 (zh)
CN (1) CN1011174B (zh)
FR (1) FR2594611B1 (zh)
GB (1) GB2185835B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237208A (en) * 1988-10-25 1993-08-17 Nishimu Electronics Industries Co., Ltd. Apparatus for parallel operation of triport uninterruptable power source devices
US5148043A (en) * 1989-07-25 1992-09-15 Kabushiki Kaisha Toshiba Uninterruptible power supply diagnosing remaining battery capacity during normal external power source operation
JP2708648B2 (ja) * 1991-04-22 1998-02-04 三菱電機株式会社 並列運転制御装置
JP2996542B2 (ja) * 1991-07-03 2000-01-11 本田技研工業株式会社 インバータ式電源装置
TW245848B (zh) * 1991-09-18 1995-04-21 Toshiba Kk
JP2674402B2 (ja) * 1991-12-27 1997-11-12 三菱電機株式会社 交流出力変換器の並列運転制御装置
JP2758782B2 (ja) * 1992-05-22 1998-05-28 三菱電機株式会社 電源装置
US5436512A (en) * 1992-09-24 1995-07-25 Exide Electronics Corporation Power supply with improved circuit for harmonic paralleling
US5559686A (en) * 1994-07-08 1996-09-24 Sundstrand Corporation Stepped waveform inverter control
US5745356A (en) * 1996-06-25 1998-04-28 Exide Electronics Corporation Independent load sharing of AC power systems connected in parallel
EP1104591A4 (en) * 1998-05-19 2005-02-09 Sure Power Corp POWER SUPPLY SYSTEM
US6169334B1 (en) 1998-10-27 2001-01-02 Capstone Turbine Corporation Command and control system and method for multiple turbogenerators
US6118680A (en) * 1999-05-28 2000-09-12 Peco Ii Methods and apparatus for load sharing between parallel inverters in an AC power supply
US6522030B1 (en) 2000-04-24 2003-02-18 Capstone Turbine Corporation Multiple power generator connection method and system
US6178103B1 (en) 2000-05-10 2001-01-23 Ford Global Technologies, Inc. Method and circuit for synchronizing parallel voltage source inverters
US6370048B1 (en) * 2001-03-23 2002-04-09 The Boeing Company AC power system with redundant AC power sources
US7405494B2 (en) * 2004-07-07 2008-07-29 Eaton Corporation AC power supply apparatus, methods and computer program products using PWM synchronization
JP2007266923A (ja) * 2006-03-28 2007-10-11 Fujitsu Ltd クロック供給装置
US7593243B2 (en) * 2006-10-09 2009-09-22 Honeywell International Inc. Intelligent method for DC bus voltage ripple compensation for power conversion units
CN101465432A (zh) * 2007-12-17 2009-06-24 思柏科技股份有限公司 具燃料电池输出控制的混合电力装置
ITTO20090375A1 (it) * 2009-05-13 2010-11-14 Rosa Mario La Sorgente da fonte solare con funzione di filtro attivo e di alimentazione di continuita'
CN102484393B (zh) 2009-09-16 2015-11-25 东芝三菱电机产业***株式会社 功率转换***及不间断供电电源***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1043871A (en) * 1976-03-11 1978-12-05 Mervyn B. Broughton Digital controller for thyristors
US4171517A (en) * 1977-01-25 1979-10-16 Tokyo Shibaura Electric Company, Limited Apparatus for synchronization control of a plurality of inverters
US4176392A (en) * 1977-12-14 1979-11-27 The United States Of America As Represented By The Secretary Of The Army Series induction/parallel inverter power stage and power staging method for DC-DC power converter
CA1198887A (en) * 1981-08-24 1986-01-07 Howard A. Whitehead Fluid pervious thermoplastic containing web with fused barrier lines positioned in registry on the web
DE3326120A1 (de) * 1983-07-20 1985-01-31 Telefunken electronic GmbH, 7100 Heilbronn Anordnung zum schalten einer niederohmigen last
JPH0681510B2 (ja) * 1983-09-28 1994-10-12 三菱電機株式会社 同期式pwmインバータの基準信号作成回路
JPS60249832A (ja) * 1984-05-25 1985-12-10 株式会社東芝 インバ−タの保護方法
US4587604A (en) * 1985-02-06 1986-05-06 Reliance Electric Company Power supply employing low power and high power series resonant converters

Also Published As

Publication number Publication date
GB8630349D0 (en) 1987-01-28
CN86108758A (zh) 1987-09-09
FR2594611A1 (fr) 1987-08-21
GB2185835A (en) 1987-07-29
KR870006703A (ko) 1987-07-14
US4733341A (en) 1988-03-22
GB2185835B (en) 1989-10-18
FR2594611B1 (fr) 1990-12-28
JPS62147962A (ja) 1987-07-01
KR900005425B1 (ko) 1990-07-30

Similar Documents

Publication Publication Date Title
CN1011174B (zh) 变换器控制设备
CN102868310B (zh) 具有ac输出的电力转换电路
US4251735A (en) Dual speed control circuit for power flow through an inverter
Wang et al. A series active power filter adopting hybrid control approach
CN102510120B (zh) 一种基于虚拟阻抗的微网逆变器电压电流双环下垂控制方法
CN104160577B (zh) 功率变换器电路,电源***和方法
CN102904568B (zh) 一种自适应并网变流器单相软锁相环
CN101425795B (zh) 一种精确锯齿波发生电路
CN103346688B (zh) 一种提高并网逆变器低载荷运行下电流质量的控制方法
Kherbachi et al. ARM based implementation of SOGI-FLL method for power calculation in single-phase power system
Bellini et al. Performances of a PLL based digital filter for double-conversion UPS
Bellini et al. Robust PLL algorithm for three-phase grid-connected converters
JP4053359B2 (ja) Pll回路およびその設計方法
Ahmed et al. A Single-Phase Grid-Connected Inverter using Phase Control Method
Arunkumar et al. Parameter optimization of three phase boost inverter using genetic algorithm for linear loads
Pan et al. Fractional-order sliding mode control strategy for quasi-Z source photovoltaic grid-connected inverter
Batchvarov et al. Interleaved converters based on hysteresis current control
Ali et al. Sensorless microcontroller-based zero-crossing detection system for AC signals using a rounding function
Hussein et al. An enhanced implementation of SRF and DDSRF-PLL for three-phase converters in weak grid
Yao et al. A wireless load sharing controller to improve the performance of parallel-connected inverters
Shi et al. Performance analysis of parallel inverter based on virtual oscillator control
Ding et al. Research and application of high frequency isolated quasi-Z-source inverter
Takamatsu et al. Digital control method for single phase utility interactive inverter using deadbeat control with FPGA based hardware controller
JPS638714B2 (zh)
Youssef et al. Performance of the resonant converters under the self-sustained oscillation based control techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term