CN101084322A - 具有优良磁性的无取向电工钢板及其制造方法 - Google Patents

具有优良磁性的无取向电工钢板及其制造方法 Download PDF

Info

Publication number
CN101084322A
CN101084322A CNA2005800440091A CN200580044009A CN101084322A CN 101084322 A CN101084322 A CN 101084322A CN A2005800440091 A CNA2005800440091 A CN A2005800440091A CN 200580044009 A CN200580044009 A CN 200580044009A CN 101084322 A CN101084322 A CN 101084322A
Authority
CN
China
Prior art keywords
steel
hot
temperature
steel plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800440091A
Other languages
English (en)
Other versions
CN100529115C (zh
Inventor
崔栽荣
裴秉根
朴种泰
金在宽
朴哲民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020040109644A external-priority patent/KR101130725B1/ko
Priority claimed from KR1020050125221A external-priority patent/KR100721818B1/ko
Priority claimed from KR1020050125220A external-priority patent/KR100721864B1/ko
Priority claimed from KR1020050125223A external-priority patent/KR100721865B1/ko
Priority claimed from KR1020050125222A external-priority patent/KR100721926B1/ko
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN101084322A publication Critical patent/CN101084322A/zh
Application granted granted Critical
Publication of CN100529115C publication Critical patent/CN100529115C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及通过使用钢的相变而控制热轧织构来制造具有优良磁性的电工钢板的技术。更特定的,本发明涉及通过控制合金成分元素和优化热轧条件而即使在已热轧板退火不进行时也能具有降低的铁损和增加的磁通密度的无取向电工钢板,以及其制造方法。更特定地,本发明提供了具有优良磁性的同时可以省略已热轧板的退火的无取向电工钢板,钢板包括0.005wt%或更低的C,1.0至3.0wt%的Si,0.1至2.0wt%的Mn,0.1wt%或更低的P,0.1至1.5wt%的Al,和剩余的Fe和其他不可避免的杂质,其中元素Mn和Al满足-0.2<m(=Mn-Al)<1.0,且提供了用于钢板的钢锭,当再加热时钢锭在从Ar1至…的温度范围下具有奥氏体+铁素体两相区域。

Description

具有优良磁性的无取向电工钢板及其制造方法
技术领域
本发明涉及用作例如马达、变压器和磁屏蔽的电气设备铁芯的无取向电工钢板。更特定地,本发明涉及通过控制合金成分元素和优化热轧条件而即使在热轧板退火不进行时也能具有降低的铁损和增加的磁通密度的无取向电工钢板,以及其制造方法。
背景技术
无取向电工钢板是电气设备中将电能转化为机械能所要求的重要零件。为减少能量,要求了钢板的磁性的改变,即降低铁损和增加磁通密度。铁损意味着在能量转化中作为热的能量损失,且磁通密度表达为生成电力的力。如果铁损低则可以降低能量损失,且如果磁通密度高则电气设备的铜损可以降低,因此使得可以降低电气设备的尺寸。
为制造具有低铁损和高磁通密度的材料,需要改进最终的退火钢板的织构,且织构改进很大程度上受成分设计和热轧的影响。因此,需要建立正确的成分***和优化热轧条件。
为此目的,在常规的制造过程中,进行热轧板的退火以均化热轧后板的织构且使得晶粒粗大。然而,对热轧板的退火过程因为另外的加工也作为成本增加的主要原因。进来,对于电工钢板的需求持续增加,生产率改进和成本降低的需求日益显著。因此,对省略作为成本增加的主要原因的热轧板退火加工的技术的研究正在活跃的进行中。
日本专利公开公报No 6-220537披露了用于制造具有改进的磁性的无取向电工钢板而不进行热轧板退火的技术。在根据此专利文献的技术中,包括1.8wt%或更低的Si+Al的钢板受到热终轧,其中在从奥氏体到铁素体转化开始温度+20℃%至从奥氏体到铁素体转化终止温度-20℃的范围内轧制压下率(rolling reduction ratio)被限制到40%或更低,且终轧变形率限制为至少50s-1。根据专利中的披露,如果以上条件满足,则由从奥氏体到铁素体的转化所导致的变形阻力将降低,使得轧制将更稳定且磁性也将提高。然而,预料到的是由于低的Si含量,转化温度将更低,使得晶粒细化。披露的技术也用于制造具有大约7.00的铁损(W15/50)的电工钢板,且被认为有利于改进热轧板的形状而非改进磁性。
另外一个现有技术的例子是日本专利公开公报No 2000-297326。在现有技术中,轧制道次参数(rolling pass parameter)(Z)被限制以改进磁性。然而,轧制道次参数值应为16或更低,而其波动范围应为2.0或更低,且为此目的,热轧的变形率应低且轧制温度应增加。然而,因为轧制温度或变形率取决于热轧机的能力确定,因此不容易应用不同的条件。为满足以上条件也存在必须进行两步卷绕的问题,包括在高温下的卷绕和随后的再卷绕。
作为另一个现有技术,日本专利公开公报No 2002-356752披露了通过优化基成分和改进制造过程而不添加特殊元素的改进技术,其中硫化物和氮化物的尺寸和数量特别地受限制。然而,因为获得的观察值范围非常窄,测量在制造过程期间产生的硫化物和氮化物的尺寸和数量包括许多误差。
发明内容
发明要解决的技术任务
完成了本发明以解决以上所述的在现有技术中发生的技术问题,且本发明的目的是通过合适地控制合金元素和无取向电工钢板的轧制过程来提供具有降低的铁损和增加的磁通密度的无取向电工钢板,该无取向电工钢板受到或不受到热轧板退火。
技术解决方案
为解决以上的技术问题,本发明人检查了合金元素的类型对磁性和相变的影响,和热轧条件对磁性的影响,结果发现合金元素中的C、Si、Mn和Al很大程度上影响了磁性和相变,且发现受到热轧的相(奥氏体、铁素体或奥氏体和铁素体的两相区域)、热终轧开始温度和终止温度、终轧道次的压下率等很大程度上影响了磁性。
同样,从研究的结果中本发明人发现,如果热轧板的退火省略,则由热轧导致的变形将存在于已热轧的板内,由热轧轧制导致的变形能将促进在最终退火中{111}织构的产生且在已最终退火的板内提供再结晶成核点从而使得晶粒细小,因此使磁性恶化,且由热轧导致的此变形因为温度的影响在铁素体区域内轧制的情况中比在奥氏体区域内轧制的情况中积累的更多。
因此,本发明人发现,为实现以上目的,需要通过设计具有奥氏体+铁素体两相区域的合金元素且轧制奥氏体区域来降低变形能,且热轧方案应设定为使得它能最小化变形能且使得已热轧的晶粒的颗粒大,因此完成本发明。
在一个方面中,本发明提供了具有优良的磁性的无取向电工钢板,钢板包括0.005wt%或更低的C,1.0至3.0wt%的Si,0.1至2.0wt%的Mn,0.1wt%或更低的P,0.1至1.5wt%的Al,和剩余的Fe和其他不可避免的杂质,其中元素Mn和Al之间的关系满足式子:-0.2<m(=Mn-Al)<1.0,且用于钢板的钢锭当再加热时在从Ar1到1250℃范围内温度下具有奥氏体+铁素体的两相区域。
优选地,钢板另外含有0.007wt%至0.15wt%的从Sb和Sn元素中选择的至少一个元素,且包括在钢板内的杂质包括0.003wt%或更低的S,0.003wt%或更低的N,和0.002wt%或更低的Ti,且钢锭的Ar1温度为960至1060℃。
在另一个方面中,本发明提供了用于制造具有优良的磁性的无取向电工钢板的方法,同时可以省略已热轧的板的退火,方法包括如下步骤:
将包括0.005wt%或更低的C,1.0至3.0wt%的Si,0.1至2.0wt%的Mn,0.1wt%或更低的P,0.1至1.5wt%的Al,和剩余的Fe和其他不可避免的杂质的钢锭再加热到从Ar1到1250℃的温度范围,其中元素Mn和Al之间的关系满足-0.2<m(=Mn-Al)<1.0的不等式;
将已再加热的钢锭在奥氏体+铁素体两相区域内热轧到大于总热终轧的70%且然后在铁素体单相区域内热轧钢锭到总热终轧的30%或更少,热轧的方式使得在终轧道次内压下率为{20-(960-终轧终止温度)/20}%或更低;
将已热轧的板在650至800℃的温度下卷绕;
将已卷绕的板冷轧到预先确定的厚度;和
将已冷轧的钢板最终退火。
优选地,钢锭另外地包括0.007wt%至0.15wt%的从Sb和Sn元素中选择的至少一个元素,且包括在钢板内的杂质包括0.003wt%或更低的S,0.003wt%或更低的N,和0.002wt%或更低的Ti。同样,最终退火步骤优选地在10至40℃/sec的温度升高率下进行,且钢锭的Ar1温度为960至1060℃。另外,热终轧的开始温度为Ar1+50℃或更高,且热终轧的终止温度为Ar1-80℃或更高。
有利效果
根据本发明,通过控制合适成分元素的含量和热轧条件,可以使用高温度下的相变使得已热轧的板的晶粒尺寸均匀。优选地,通过控制热轧中的压下率来降低在已热轧的板内的变形能的积累,能够抑制在冷轧后的最终退火中对磁性不利的{111}织构的晶核形成,且因此可以制造具有优良的磁性的无取向电工钢板。
附图说明
图1至图7是使用FactSage程序计算的发明的钢和对比的钢的相变图,其中:
图1是通过将Mn的含量固定到0.3%且将Al的含量固定到0.6%且改变Si的含量获得的相变图;
图2是通过将Mn和Al的含量固定到0.4%且改变Si的含量获得的相变图;
图3是通过将Mn的含量固定到1.6%且将Al的含量固定到0.8%且改变Si的含量获得的相变图;
图4是通过将Mn的含量固定到1.6%且将Al的含量固定到0.4%且改变Si的含量获得的相变图;
图5是通过将Mn的含量固定到1.6%且将Al的含量固定到0.2%且改变Si的含量获得的相变图;
图6是通过将Mn的含量固定到0.6%且将Al的含量固定到0.4%且改变Si的含量获得的相变图;
图7是通过将Mn的含量固定到0.8%且将Al的含量固定到0.4%且改变Si的含量获得的相变图。
具体实施方式
下文中将详细描述本发明。
Si和Al是铁素体形成元素,且C和Mn是奥氏体形成元素。因此为形成奥氏体+铁素体两相区域,需要降低Si和Al的含量且增加C和Mn的含量。然而,Si和Al是具有高电阻率的元素,因此如果它们被降低过多则铁损可能恶化。因此,需要设定合适的成分***。而且,如果C元素增加,奥氏体部分也将增加,但C元素将导致在最终的退火板中磁老化,使磁性恶化。因此,在最终的退火中要求另外的脱碳过程。
同样,在杂质元素中,N和S与Al和Mn结合从而分别形成细小的氮化物和硫化物AlN和MnS,从而它们抑制了晶粒的生长且促进了对磁性不利的{111}面的织构。为降低N元素的此影响,优选地的是通过控制杂质来降低N元素或尽可能多地添加Al元素。此Al元素抑制了由N元素形成细的AlN以帮助晶粒生长且增加电阻率,因此降低铁损。为降低S元素的影响,优选地尽可能多地添加Mn,且此Mn元素抑制了由S元素形成细的MnS以帮助晶粒生长。
根据C、Si、Al和Mn的含量确定奥氏体部分,且当C、Al和Mn的含量固定时,可以通过控制Si的含量来控制奥氏体部分。因此需要将Si的含量设定为适合于形成两相区域,在此情况中,如果Si的含量过低,则铁损将因为电阻率的下降而恶化,且将在再加热期间形成奥氏体单相,以促进AlN和MnS沉淀物的固溶,使得在热轧和卷绕中细小的再沉淀物的个数增加而恶化磁性。另一方面,如果Si含量过高,则它将在再加热期间形成铁素体单相而增加由热轧导致的变形能的积累,使得最终的退火后造成晶粒细化且促进了对磁性不利的{111}织构的产生,因此使得磁性恶化。为此,设计中使Mn/Al的比值被控制为足以保证奥氏体区域,然后Si的含量被控制为使得钢的熔渣在再加热期间具有奥氏体+铁素体的两相区域,同时Ar1温度达到960至1060℃。
下文中将描述根据本发明的限制元素含量的原因。
C:0.005wt%或更低
已知因为C元素导致在最终的产品中的磁老化使得产品在使用期间的磁性恶化,因此低的C元素含量通常对于磁性是有利的。因此,通过在精炼钢的步骤中降低C元素的含量且使它在钢锭中的量为0.005wt%或更低而改进磁性。如果在钢锭内包含的C元素的量为0.005wt%或更高,则冷轧板在最终退火前必须经受去碳退火,在此情况中将使用湿气氛退火,且因此将在板表面形成氧化物层而对磁性有害。为此,包含在钢锭内的C元素的量为0.005wt%或更低。当包含在最终产品内的C元素的量如可能为0.003wt%或更低时,则在最终产品内的磁老化将被抑制。
Si:1.0至3.0wt%
Si元素是增加电阻率以降低铁损内的涡流损耗的元素,但如果Si元素的添加量超过3.0wt%,则它将导致钢难以冷轧且具有不发生相变的铁素体单相。为此,Si元素优选地限制为3.0wt%或更低。
Mn:0.1至2.0wt%
Mn元素是奥氏体形成元素,它增加了电阻率且改进了织构,且如果Mn元素的添加量高于2.0wt%则磁性的改进效果将饱和。为此原因,Mn元素优选地限制为0.1至2.0wt%。
P:0.1wt%或更低
P元素是增加电阻率的元素,它在晶粒内偏析且形成了织构。如果进行热轧板的退火,则P元素的添加量应到至少0.01wt%以显示其效果,且如果以大量添加P元素,则它将使得冷轧困难且增加偏析而恶化磁性。为此,P元素的量优选地限制到0.1wt%或更低。如果热轧板不进行退火,则P元素将在晶界上不均匀分布,从而不能获得以上的效果且将干涉晶粒的生长。因此,P元素的含量优选地被最小化。
Al:0.1至1.5wt%
Al元素是铁素体形成元素,它对于增加电阻率以降低涡流损耗有效。如果添加量为0.1wt%或更低,则其添加效果将不显示,且如果其添加量为高于1.5wt%,则由于添加的Al的量,磁性改进将不充分,且冷轧特性将恶化。为此,Al元素的含量优选地限制到0.1至1.5wt%。因为Al元素是铁素体形成元素,它的添加考虑到Mn的含量以设计其中发生合适的相变的钢。同样,当Al的添加量为0.2至1.0wt%时,其效果将进一步增加。这是因为Al的添加很大程度上降低了氧的效果且将细小的AlN沉淀物转化为粗大的AlN沉淀物。
-0.2<m(=Mn-Al)<1.0
如果m低于-0.2,则奥氏体区域将过小,使得不能形成具有合适的或较大面积的奥氏体区域,且如果m为1.0或更大,则奥氏体区域将过大,使得过度地增加了具有合适的Ar1温度的Si的含量。为此,将m限制在-0.2至1.0之间。
除以上元素外,本发明的钢还包括剩余的Fe和其他不可避免的杂质。
在本发明中,为何将Si的含量控制为使得奥氏体+铁素体两相在再加热期间形成而Ar1温度达到960至1060℃的原因是:如果Ar1温度过高,则因为设备原因,热终轨将不能在Ar1-80℃或更高的温度结束,使得在铁素体区域内的轧制压下量(rolling reduction)增加,从而增加了由热轧导致的变形能而促进了{111}织构的产生,且如果Ar1温度过低,则在从奥氏体到铁素体的相变期间将形成具有小晶粒的显微图,从而恶化了磁性。当热终轧在两相区域内进行时,晶粒将因由奥氏体到铁素体的相变的放热反应而粗大,由于相变能,遍及热轧板获得均匀的晶粒。如果热轧终了温度高且在终轧道次时的压下率低,则可以在板厚度方向内获得更粗大的且均匀的晶粒。
Sb和Sn:0.007至0.15wt%
Sb元素和Sn元素是在晶界内偏析的元素且抑制了不利于磁性的{222}织构,且这些元素在钢片的表面上集中以抑制钢的氮化。因此,这些元素抑制了细小晶粒的形成且允许形成均匀的晶粒。如果这些元素的添加量为0.007wt%或更低,则它们的效果将不充分,且如果这些元素的添加量为0.15wt%或更高,则它们将抑制晶粒的生长,使得冷轧困难且降低了磁性改进的长度。为此,这些元素的含量优选地限制为0.007至0.15wt%。
S:0.003wt%或更低
S元素形成了细小的沉淀物MnS而恶化了磁性,因此其添加量有利地尽可能低。如果其添加量为高于0.003wt%,则它将高度恶化磁性。为此,S元素的含量优选地限制为0.003wt%或更低。
N:0.003wt%或更低
N元素形成了细小的长AlN沉淀物且与Nb结合形成细小的NbN沉淀物。为此,其包含量尽可能低,且在本发明中将它优选地限制为0.003wt%或更低。
Nb:0.002%或更低
Nb元素形成NbN沉淀物从而抑制了晶粒的生长且形成了对于磁性不利的{222}面的织构。为此,将它限制为0.002wt%或更低。同样,因为它与元素C结合而形成了细小的碳化物,如果可能,则需要降低C元素的含量在钢锭内的含量。因为此Nb元素的添加量的影响非常大,因此考虑到磁性,所包含的Nb元素的量优选地为0.002wt%或更低。
Ti:0.002wt%或更低
Ti元素形成了细小的沉积物TiC和TiN从而抑制了晶粒的生长且形成了对于钢板的磁性不利的{222}面的织构。因此,Ti元素限制为0.002wt%或更低。
在下文中将描述根据本发明的制造方法。
本发明的方法包括:将具有以上所述的元素组成的钢锭再加热到Ar1至1250℃的温度;在奥氏体+铁素体两相区域内对已再加热的钢锭开始热终轧且在铁素体相内终止热终轧;将已轧制板在650至800℃下卷绕;对已热轧的板进行或不进行退火;将所得到的板酸洗;和将已酸洗的板冷轧且最终退火。
在本发明中,为最小化由热轧所导致的变形能且为使得晶粒生长,热终轧在奥氏体+铁素体两相区域内在Ar1+50℃或更高的温度下开始,且在铁素体区域内在Ar1-80℃或更高的温度下终止。
总热终轧的70%或更多在两相区域内进行,进行在铁素体单相区域内的轧制压下量至总的热终轧的30%或更少,且在Ar1-80℃或更高的温度下进行在终轧道次中的轧制压下量至{20-(960-终轧终止温度)/20}%或更低。通过采取此热终轧方案,可以实现本发明的目的。
也发现的是,如果热轧以此轧制方案进行,则将使在已热轧的板表面上的晶粒粗大以改进磁性。
为何具有以上所述的组成的钢锭在Ar1~1250℃或更高的温度下被再加热且然后热轧的原因是:如果再加热温度过高,则AlN或MnS的固溶物将增加,且AlN和MnS在奥氏体区域内的可固溶性将比在铁素体区域内的可固溶性更高,且在热轧和卷绕期间固溶的AlN和MnS的细小再沉淀物将干涉晶粒的生长。同样,为何设计为使得Ar1温度达到960至1060℃的原因是:如果Ar1温度过高,则铁素体区域将被扩大到使得不能显示出在两相区域内轧制的效果,且热终轧将因为设备问题而不会在Ar1-80℃或更高的温度下终止从而增加了在铁素体区域内的轧制压下量,使得将增加由热轧导致的变形能从而促进了{111}织构的形成,且如果Ar1温度过低,则在从奥氏体到铁素体的相变期间将形成小的晶粒从而使磁性恶化。同样,为何热终轧在奥氏体+铁素体两相区域内在Ar1+50℃或更高的温度下开始的原因是:如果热终轧开始温度过低,则终轧道次的温度将低从而干涉了晶粒的生长,且为此热终轧开始温度设定为Ar1+50℃或更高的温度,且如果热终轧在两相区域内进行,则晶粒将因为由奥氏体到铁素体的相变的放热反应而粗化,且因相变可以获得遍及已热轧板的均匀晶粒。
同样,为何进行在铁素体单相内的轧制压下量至总热终轧的30%或更低且在Ar1-80℃或更高的温度下进行在终轧道次内的轧制比至{20-(960-终轧终止温度)/20}%或更低的原因是:如果终轧道次在铁素体区域内受到弱的轧制压下量,则将存在小的残余应力,使得在650℃或更高的温度下的卷绕将促进晶粒生长。
如以上所述制造的热轧板在650至800℃的温度下卷绕,且然后在空气中盘绕状态下或在非氧化性气氛中被冷却。如果卷绕温度高于800℃,则在冷却步骤内的氧化将增加从而不利地影响酸洗,为此,卷绕温度优选地限制为800℃或更低。同样,如果卷绕温度为650℃或更低,则晶粒的生长将不足,为此在从650℃至800℃的范围内卷绕板。
已卷绕的板直接冷轧而不进行热轧板退火。然而,如果需要,已卷绕的板也可以在将它退火后以酸来酸洗且冷轧。
冷轧可以通过单步冷轧过程或包括第一冷轧、中间退火和第二冷轧的两步冷轧过程进行。
已冷轧到希望的厚度的钢板受到800℃到Ar1+50℃的温度下、10至40℃/sec的温度升高率的最终退火。如果最终退火温度为800℃或更低,则晶粒的生长将不充分,且如果高于Ar1+50℃,则板表面的温度将过度地增加从而使板形状差且导致表面缺陷,且晶粒可能因从铁素体到奥氏体的过度的相变变得细小。
为何温度升高率限制为10至40℃/sec的原因是:此温度范围导致在材料织构内有利于磁性的{200}面的形成的增加。如果温度升高率为10℃/sec或更低,则将形成{222}和{112}织构从而恶化磁性,如果温度升高率高于40℃/sec,则板的形状变差。
同样,退火在无湿度的干燥的非氧化性气氛内进行。如果存在湿气,则在湿气内的氧将与钢的C元素结合从而导致钢被去碳,但氧元素将与钢板的Si、Al等元素结合以形成钢板内的氧化物层从而使磁性恶化,为此,退火在干燥的还原气氛内进行。已退火的板涂敷以隔离涂层膜,然后运输到使用者处。隔离涂层膜可以由有机材料、无机材料、有机/无机复合材料和其他隔离涂层材料形成。
下文中将通过例子详细描述本发明。
[例1]
具有如在以下的表1中示出的组成的钢锭的每一种在1180℃的温度下再加热且热轧到2.5mm,然后卷绕且在空气中在720℃的温度下冷却。已卷绕和冷却的钢板用酸来酸洗,然后冷轧到0.5mm的厚度。已冷轧的钢板在1000℃的温度(钢1和2)和900℃的温度下(钢3、4、5)、在30%的氢和70%的氮的混合气体气氛内最终退火90秒。已退火的钢被切割,然后检查磁性,且结果在以下的表2中示出。
图1至图5示出了由Si、Al和Mn的含量变化导致的每种钢的相变。图1至图5示出了使用FactSage程序计算的随温度(y轴)和Si含量(x轴)变化的相变化。m(=Mn-Al)的值对于钢1为-0.3,对于钢2为0,对于钢3为0.8,对于钢4为1.2且对于钢5为1.4。
钢1和2具有类似的电阻率,但钢2因为成分比的不同具有更高的奥氏体部分。结果,在钢1的情况中,在铁素体区域内的压下率被增加。所以热轧板的晶粒尺寸细小且是细长的,使磁性恶化。钢3、4和5具有类似的电阻率;然而,由于Si、Al和Mn的含量,在再加热步骤中,钢3具有两相区域,且钢4和5具有奥氏体单相区域。同样,钢3具有990℃的最高转化温度。钢4和5具有在再加热中的奥氏体相,且也具有过度地低的转化温度,使得热轧板的晶粒是细小的,且因此使得磁性差。因此,为提供本发明中意图的合适的织构,需要设定满足关系-0.2<m<1.0和具有960至1060℃的Ar1温度的成分***和在再加热时的两相区域。在以上的关系中,如果m为-0.2或更低,则奥氏体区域将过度地降低从而使得不可能实现两相区域,且如果m为1.0或更高,则奥氏体区域将过度地增加,导致具有合适的Ar1温度的Si成分的过度的增加。
表1
    钢   C    Si     Mn     Al     P     Fe
    1   0.0025    1.0     0.30     0.60     0.010     Bal
    2   0.0026    1.30     0.40     0.40     0.010     Bal
    3   0.0025    1.60     1.60     0.80     0.011     Bal
    4   0.0026    2.0     1.60     0.40     0.010     Bal
    5   0.0023    2.4     1.60     0.20     0.009     Bal
表2
再加热中的相 m Ar1   W15/50(W/kg) B50(T) 标记
    1  gamma+alpha   -0.3  1055   3.98   1.733     对比
    2  gamma+alpha   0  1017   3.65   1.755     发明
    3  gamma+alpha   0.8  990   2.72   1.693     发明
    4  gamma   1.2  918   2.91   1.671     对比
    5  gamma   1.4  916   2.80   1.668     对比
W15/50:当以1.5特斯拉在50Hz下磁化时发生的损失。
B50:当在50Hz下施加5000A/m的磁场时发生的磁通密度。
[例2]
具有如在以下的表3中示出的组成的钢锭的每个在1180℃的温度下再加热且热轧到2.5mm,然后卷绕且在空气中在720℃的温度下冷却。已卷绕和冷却的钢板以酸来酸洗,然后冷轧到0.5mm的厚度。已冷轧的钢板在1000℃的温度在30%的氢和70%的氮的混合气体气氛内最终退火90秒。已退火的钢被切割,然后检查磁性,且结果在以下的表4中示出。
表3
    钢   C   Si   Mn   Al     P     Fe
    6   0.0025   1.2   0.6   0.4     0.010     余量
    7   0.0026   1.6   0.6   0.4     0.010     余量
    8   0.0025   1.9   0.6   0.4     0.011     余量
    9   0.0026   1.4   0.8   0.4     0.010     余量
    10   0.0024   1.7   0.8   0.4     0.010     余量
    11   0.0025   2.2   0.8   0.4     0.010     余量
    12   0.0017   2.02   0.12   0.21     0.01     余量
表4
再加热中的相 m Ar1   W15/50(W/kg) B50(T) 标记
    6   Gamma  0.2   973   3.65   1.734     对比
    7   gamma+alpha  0.2   1030   3.04   1.743     发明
    8   gamma+alpha  0.2   1100   3.20   1.711     对比
    9   Gamma  0.4   970   3.55   1.726     对比
    10   gamma+alpha  0.4   1005   2.87   1.735     发明
    11   Alpha  0.4   -   3.05   1.674     对比
    12   Alpha  -0.09   -   33   1.725     对比
W15/50:当以1.5特斯拉在50Hz下磁化时发生的损失。
B50:当在50Hz下施加5000A/m的磁场时发生的磁通密度。
图6和图7示出了每个钢的相变。图6和图7示出了使用FactSage程序计算的随温度(y轴)和Si含量(x轴)变化的相变化。
图6示出了对于钢6、7和8的结果,钢6、7和8包含0.6wt%的Mn和0.4wt%的Al,且分别具有1.2wt%、1.6wt%和1.9wt%的Si。如在图6中示出,当在1180℃下再加热时,钢6具有奥氏体(gamma)单相区域,且钢7和钢8具有奥氏体+铁素体两相区域。Ar1温度在表4中示出。
图7示出了对于钢9、10和11的结果,钢9、10和11包含0.8wt%的Mn和0.4wt%的Al,且分别具有1.4wt%、1.7wt%和2.2wt%的Si。如在图7中示出,当在1180℃下再加热时,钢9具有奥氏体(gamma)单相区域,钢10具有奥氏体+铁素体两相区域,且钢11具有铁素体单相区域。Ar1温度在表4中示出。
如从以上的表4中可见,根据本发明的制造条件、使用满足了本发明的成分和热轧条件的发明的钢(7和10)制造的发明的材料与对比的钢(钢6、8、9和11)相比具有低的铁损和高的磁通密度。钢6具有比钢7和8更低的Si的含量,因此在奥氏体单相内热轧。结果,钢6的磁通密度维持在类似于钢7和8的水平,但铁损显著地增加。钢8具有在再加热时的两相区域,但热终轧因高的Ar1温度主要在铁素体区域内进行,从而导致了磁通密度的降低。钢9具有在再加热时的奥氏体单相区域,且热终轧在两相区域内进行;然而,因为Ar1温度低,所以已热终轧的板的晶粒细小,导致铁损增加和磁通密度降低。
钢12是在日本专利公开公报No 2000-297326中披露的现有例子,该例子是在再加热时具有铁素体单相区域的组成。如果它以类似于钢1至9的条件被热轧,则它将显示如下的比本发明的材料的特性差的特性:Z参数:大约15.5;铁损:3.5W/kg;和磁通密度:1.725 T。
在以上的表3中示出的钢7、10和12的钢的钢锭在1180℃的温度下被再加热且热轧到2.5mm,然后卷绕且在空气中在720℃的温度下冷却。已卷绕和冷却的钢板在1000℃的温度退火5分钟,然后以酸酸洗,然后冷轧到0.5mm的厚度。使已冷轧的钢板在1000℃的温度在30%的氢和70%的氮的混合气体气氛内最终退火90秒。已退火的钢被切割,然后检查磁性,且结果在以下的表5中示出。如从表5中可见,如果对热轧钢板进行退火,则将获得更优良的磁性。
表5
再加热中的相 m Ar1   W15/50(W/kg) B50(T) 标记
    7  gamma+alpha   0.2   1030   2.82   1.757     发明
    10  gamma+alpha   0.4   1005   2.67   1.745     发明
    12  Alpha   -0.09   -   3.23   1.736     对比
W15/50:当以1.5特斯拉在50Hz下磁化时发生的损失。
B50:当在50Hz下施加5000A/m的磁场时发生的磁通密度。
[例3]
将用于钢7和10的钢锭在1180℃的温度下再加热,热轧到2.5mm且然后卷绕,同时如在以下的表6中所示改变热终轧条件,且然后如在表6中所示卷绕。已热轧的板以酸来酸洗,然后冷轧到0.5mm的厚度。已冷轧的钢板在1000℃的温度下在30%的氢和70%的氮的混合气体气氛内退火90秒。已退火的钢被切割,然后检查磁性,且结果在以下的表6中示出。
表6
    No.   钢     在两相区域内的轧制占总热终轧的比(%)   终轧道次温度(℃)   终轧道次压下率(%)   卷绕温度(℃)     铁损(W15/50)(W/kg)   磁通密度(B50)(特斯拉) 标记
    1   7     93.5   960   9.7   720     3.04   1.753 发明
    2   7     80.6   965   10.0   720     3.08   1.751 发明
    3   7     65.9   967   10.4   720     3.47   1.730 对比
    4   7     90.2   952   10.1   720     3.10   1.755 发明
    5   7     90.5   887   11.3   720     3.25   1.733 对比
    6   7     92.0   961   30.0   720     3.21   1.735 对比
    7   7     92.7   970   50.3   720     3.46   1.723 对比
    8   7     89.7   965   10.8   680     3.15   1.749 发明
    9   7     89.7   965   10.8   620     3.34   1.735 对比
    10   10     92.7   968   10.7   720     2.87   1.735 发明
    11   10     80.8   972   11.2   720     2.86   1.733 发明
    12   10     66.1   971   11.5   720     3.02   1.721 对比
    13   10     91.1   950   10.6   720     2.84   1.731 发明
    14   10     90.3   890   10.2   720     3.09   1.718 对比
    15   10     93.5   967   30.6   720     3.17   1.722 对比
    16   10     92.2   966   50.0   720     3.25   1.705 对比
    17   10     91.0   968   10.7   680     2.92   1.733 发明
    18   10     91.0   968   10.7   620     3.17   1.728 对比
W15/50:当以1.5特斯拉在50Hz下磁化时发生的损失。
B50:当在50Hz下施加5000A/m的磁场时发生的磁通密度。
与发明的钢材料1、2、10和11相比,对比的钢材料3和12在两相区域内具有低的轧制压下量且在铁素体区域内具有高的轧制压下量,因此热轧板具有因热轧导致的很大的变形能。同样,非再结晶区域大,从而在冷轧后的最终退火中形成了{111}织构。同样,再结晶晶粒是小的,从而导致铁损的增加和磁通密度的下降。对比的钢材料5和14的终轧道次温度低于发明的钢材料4和13,使得抑制了晶粒的生长从而使磁性恶化。在对比钢材料6、7、15和16的情况中,终轧道次的压下率高,使得在钢材料表面上的晶粒细小,且因热轧的变形能的积累增加,从而使磁性恶化。特别地,磁通密度有很大地降低。对比材料9和18的卷绕温度低于发明的钢材料,使得热轧板的晶粒的生长不充分从而使磁性恶化。然而,卷绕温度的影响低于其他条件。
[例4]
具有在以下的表7中示出的组成的钢锭在1180℃的温度下再加热,然后受到热终轧,热终轧的方式使得总压下率的80%在奥氏体-铁素体两相区域内进行而剩余的压下率在铁素体单相区域内进行,但终轧道次在960℃的温度下进行到10%。然后将热轧板在720℃的温度下卷绕。已卷绕的钢板受到冷轧和最终退火。已退火的钢被切割,然后检查磁性,且结果在以下的表8中示出。
表7
  钢  C  Si  Mn   Al  P  Sn  Sb  Fe
  13  0.0026  1.6  0.6   0.4  0.010  0.005  -  Bal
  14  0.0024  1.6  0.6   0.4  0.010  0.03  -  Bal
  15  0.0025  1.6  0.6   0.4  0.009  0.09  -  Bal
  16  0.0022  1.6  0.6   0.4  0.010  0.20  -  Bal
  17  0.0024  1.7  0.8   0.4  0.011  -  0.004  Bal
  18  0.0023  1.7  0.8   0.4  0.010  -  0.02  Bal
  19  0.0026  1.7  0.8   0.4  0.010  -  0.07  Bal
  20  0.0023  1.7  0.8   0.4  0.010  -  0.20  Bal
表8
再加热中的相 m Ar1   W15/50(W/kg) B50(T)     标记
    13     gamma+alpha  0.2  1030   3.04   1.743     对比
    14     gamma+alpha  0.2  1030   2.99   1.752     发明
    15     gamma+alpha  0.2  1030   2.93   1.756     发明
    16     gamma+alpha  0.2  1030   3.26   1.750     对比
    17     gamma+alpha  0.4  1005   2.87   1.735     对比
    18     gamma+alpha  0.4  1005   2.83   1.743     发明
    19     gamma+alpha  0.4  1005   2.81   1.747     发明
    20     gamma+alpha  0.4  1005   3.12   1.745     对比
W15/50:当以1.5特斯拉在50Hz下磁化时发生的损失。
B50:当在50Hz下施加5000A/m的磁场时发生的磁通密度。
如从表8中可见,与对比钢13、16、17和20相比,包含发明的范围内的Sn和Sb的量的钢14、15、18和19在铁损和磁通密度上是优良的。
[例5]
具有在以下的表9中示出的组成的钢锭在1180℃的温度下再加热,且然后受到热终轧,热终轧的方式使得总压下率的80%在奥氏体一铁素体两相区域内进行而剩余的压下率在铁素体单相区域内进行,但终轧道次在960℃的温度下进行到10%。然后将热轧板在720℃的温度下卷绕。已卷绕的钢板受到冷轧和最终退火。已退火的钢被切割且然后检查磁性,且结果在以下的表10中示出。
表9
 钢  C  Si  Mn  Al  P   S   N   Nb   Ti  Fe
 21  0.0026  1.6  0.6  0.4  0.010   0.002   -  Bal
 22  0.0024  1.6  0.6  0.4  0.010   0.005   -  Bal
 23  0.0025  1.6  0.6  0.4  0.009   0.002  Bal
 24  0.0022  1.6  0.6  0.4  0.010   0.005  Bal
 25  0.0025  1.6  0.6  0.4  0.010   -   0.001  Bal
 26  0.0024  1.6  0.6  0.4  0.010   -   0.003  Bal
 27  0.0021  1.6  0.6  0.4  0.010   -   0.001  Bal
 28  0.0027  1.6  0.6  0.4  0.010   -   0.003  Bal
表10
再加热中的相 m Ar1   W15/50(W/kg) B50(T) 标记
  21  gamma+alpha  0.2  1030   3.03     1.742     发明
  22  gamma+alpha  0.2  1030   3.38     1.731     对比
  23  gamma+alpha  0.2  1030   3.07     1.739     发明
  24  gamma+alpha  0.2  1030   3.35     1.733     对比
  25  gamm+alpha  0.2  1030   3.10     1.741     发明
  26  gamma+alpha  0.2  1030   3.41     1.723     对比
  27  gamma+alpha  0.2  1030   3.05     1.745     发明
  28  gamma+alpha  0.2  1030   3.36     1.726     对比
W15/50:当以1.5特斯拉在50Hz下磁化时发生的损失。
B50:当在50Hz下施加5000A/m的磁场时发生的磁通密度。
如从表10中可见,与对比钢22、24、26和28相比,包含发明的范围内的S、N、Nb和Ti的量的钢21、23、25和27在铁损和磁通密度上是优良的。
[例6]
检查在以下的表11中示出的钢在例3的条件中的磁性,同时改变温度升高率,且结果在表12中示出。
表11
 钢  C   Si   Mn   Al   P   S   N  Ti  Fe
 A  0.0026   1.6   0.6   0.4   0.010   0.002   0.001  0.001  Bal
 B  0.0024   1.7   0.8   0.4   0.010   0.002   0.002  0.001  Bal
表12
  No.     钢     温度升高率   W15/50   B50(T)   形状     标记
  1     A     5   3.31   1.721   good     对比
  2     A     15   3.13   1.735   good     发明
3 A     30   3.07   1.745   good     发明
  4     A     50   3.09   1.737   bad     对比
  5     B     5   3.22   1.714   good     对比
  6     B     15   2.82   1.731   good     发明
  7     B     30   2.80   1.735   good     发明
  8     B     50   3.05   1.726   bad     对比
如从以上的表12中可见,具有根据本发明的组成的钢2、3、6和7在磁性和板形状上是优良的。

Claims (12)

1.一种具有优良的磁性同时省略了已热轧板的退火的无取向电工钢板,钢板包括0.005wt%或更低的C,1.0至3.0wt%的Si,0.1至2.0wt%的Mn,0.1wt%或更低的P,0.1至1.5wt%的Al,和剩余的Fe和其他不可避免的杂质,其中用于钢板的钢锭当再加热时在从Ar1至1250℃的温度下具有奥氏体+铁素体的两相区域。
2.根据权利要求1所述的钢板,其中组成了钢板的成分中的元素Mn和Al满足-0.2<Mn-Al<1.0。
3.根据权利要求1或2所述的钢板,该钢板另外地含有0.007wt%至0.15wt%的从Sb和Sn元素中选择的至少一个元素。
4.根据权利要求1或2所述的钢板,其中包括在钢板内的杂质包括0.003wt%或更低的S,0.003wt%或更低的N,0.002wt%或更低的Nb,和0.002wt%或更低的Ti。
5.根据权利要求1至4的任一项所述的钢板,钢锭的Ar1温度为960至1060℃。
6.一种用于制造具有优良的磁性同时省略了已热轧板的退火的无取向电工钢板的方法,该方法包括如下步骤:
将包括0.005wt%或更低的C,1.0至3.0wt%的Si,0.1至2.0wt%的Mn,0.1wt%或更低的P,0.1至1.5wt%的Al,和剩余的Fe和其他不可避免的杂质的钢锭再加热到从Ar1到1250℃的温度范围;
以使得总热终轧的70%或更多在奥氏体+铁素体两相区域内进行且剩余的压下率在铁素体单相区域内进行的方式来热轧已再加热的钢锭,其中终轧道次内压下率变成{20-(960-终轧终止温度)/20}%或更低;
将已热轧的钢板在650至800℃的温度下卷绕;
将已卷绕的钢板冷轧到预先确定的厚度;和
将已冷轧的钢板最终退火。
7.根据权利要求6所述的方法,其中组成了钢板的成分中的元素Mn和Al满足-0.2<Mn-Al<1.0。
8.根据权利要求6或7所述的方法,其中钢锭另外地含有0.007wt%至0.15wt%的从Sb和Sn元素中选择的至少一个元素。
9.根据权利要求6或7所述的方法,其中包括在钢板内的杂质包括0.003wt%或更低的S,0.003wt%或更低的N,0.002wt%或更低的Nb,和0.002wt%或更低的Ti。
10.根据权利要求6或7所述的方法,其中最终退火步骤在10至40℃/sec的温度升高率下进行。
11.根据权利要求6至10的任一项所述的方法,其中钢锭的Ar1温度为960至1060℃。
12.根据权利要求6至10的任一项所述的方法,其中热终轧的开始温度为Ar1+50℃或更高,且热终轧的终止温度为Ar1-80℃或更高。
CNB2005800440091A 2004-12-21 2005-12-20 具有优良磁性的无取向电工钢板及其制造方法 Expired - Fee Related CN100529115C (zh)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
KR1020040109644 2004-12-21
KR1020040109644A KR101130725B1 (ko) 2004-12-21 2004-12-21 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR1020050125221A KR100721818B1 (ko) 2005-12-19 2005-12-19 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR1020050125222 2005-12-19
KR1020050125220A KR100721864B1 (ko) 2005-12-19 2005-12-19 자기적 특성이 우수한 무방향성 전기강판의 제조방법
KR1020050125223 2005-12-19
KR1020050125223A KR100721865B1 (ko) 2005-12-19 2005-12-19 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR1020050125220 2005-12-19
KR1020050125222A KR100721926B1 (ko) 2005-12-19 2005-12-19 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR1020050125221 2005-12-19
PCT/KR2005/004400 WO2006068399A1 (en) 2004-12-21 2005-12-20 Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN101084322A true CN101084322A (zh) 2007-12-05
CN100529115C CN100529115C (zh) 2009-08-19

Family

ID=36601957

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800440091A Expired - Fee Related CN100529115C (zh) 2004-12-21 2005-12-20 具有优良磁性的无取向电工钢板及其制造方法

Country Status (5)

Country Link
US (1) US7846271B2 (zh)
EP (1) EP1838882A4 (zh)
JP (1) JP4804478B2 (zh)
CN (1) CN100529115C (zh)
WO (1) WO2006068399A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020127A1 (zh) * 2008-08-20 2010-02-25 宝山钢铁股份有限公司 涂层半工艺无取向电工钢板及制造方法
CN102906289A (zh) * 2009-12-28 2013-01-30 Posco公司 具有优良磁性的无取向电工钢板及其制备方法
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN103667879A (zh) * 2013-11-27 2014-03-26 武汉钢铁(集团)公司 磁性能和机械性能优良的无取向电工钢及生产方法
CN105008568A (zh) * 2013-02-22 2015-10-28 杰富意钢铁株式会社 无取向性电磁钢板制造用热轧钢板及其制造方法
CN105463310A (zh) * 2015-12-07 2016-04-06 本钢板材股份有限公司 一种无取向硅钢生产方法
CN110177897A (zh) * 2017-01-17 2019-08-27 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
CN113969371A (zh) * 2020-07-24 2022-01-25 宝山钢铁股份有限公司 一种定子、转子铁芯同时套裁用无取向电工钢板及其制造方法
CN114058953A (zh) * 2021-10-25 2022-02-18 马鞍山钢铁股份有限公司 一种适宜缠绕式加工的低铁损无取向硅钢及其生产方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2012DN03845A (zh) * 2009-10-28 2015-08-28 Nippon Steel & Sumitomo Metal Corp
CN102443734B (zh) * 2010-09-30 2013-06-19 宝山钢铁股份有限公司 无瓦楞状缺陷的无取向电工钢板及其制造方法
PL2778244T3 (pl) 2011-11-11 2020-08-10 Nippon Steel Corporation Sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej
PL2612942T3 (pl) 2012-01-05 2015-03-31 Thyssenkrupp Steel Europe Ag Elektrotechniczna stalowa taśma lub blacha o ziarnie niezorientowanym, element wytwarzany z niej i sposób wytwarzania elektrotechnicznej stalowej taśmy lub blachy o ziarnie niezorientowanym
CN103290190A (zh) * 2012-03-02 2013-09-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN103305748A (zh) * 2012-03-15 2013-09-18 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法
KR101974674B1 (ko) * 2012-03-29 2019-05-03 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 그 제조 방법
CN104520458B (zh) 2012-08-08 2017-04-12 杰富意钢铁株式会社 高强度电磁钢板及其制造方法
CN102925795A (zh) * 2012-10-23 2013-02-13 鞍钢股份有限公司 无取向电工钢中低牌号产品控制横纵向电磁性能的生产方法
CN102921725B (zh) * 2012-11-12 2015-03-04 武汉钢铁(集团)公司 一种采用硅当量控制无取向硅钢热轧板的轧制方法
CN103849810A (zh) * 2012-12-03 2014-06-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
JP6057082B2 (ja) 2013-03-13 2017-01-11 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP5995002B2 (ja) 2013-08-20 2016-09-21 Jfeスチール株式会社 高磁束密度無方向性電磁鋼板およびモータ
US10229777B2 (en) 2013-10-31 2019-03-12 General Electric Company Graded magnetic component and method of forming
US9634549B2 (en) 2013-10-31 2017-04-25 General Electric Company Dual phase magnetic material component and method of forming
US10229776B2 (en) 2013-10-31 2019-03-12 General Electric Company Multi-phase magnetic component and method of forming
KR101596448B1 (ko) * 2013-12-24 2016-02-23 주식회사 포스코 무방향성 전기강판 및 이의 제조방법
KR102192991B1 (ko) 2014-04-23 2020-12-18 삼성전자주식회사 가변적인 디지털 필터를 포함하는 아날로그-디지털 컨버터 및 이를 포함하는 이미지 센서
JP6236470B2 (ja) 2014-08-20 2017-11-22 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP5920548B1 (ja) * 2014-08-21 2016-05-18 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2016063098A1 (en) * 2014-10-20 2016-04-28 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
JP6048699B2 (ja) 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
RU2686424C1 (ru) * 2015-08-04 2019-04-25 ДжФЕ СТИЛ КОРПОРЕЙШН Способ получения листа неориентированной электротехнической стали, имеющего превосходные магнитные свойства
RU2694299C1 (ru) * 2015-10-02 2019-07-11 ДжФЕ СТИЛ КОРПОРЕЙШН Лист нетекстурированной электротехнической стали и способ его получения
WO2018079059A1 (ja) 2016-10-27 2018-05-03 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN106636590B (zh) * 2016-12-02 2018-04-03 燕山大学 一种可替代调质处理的中碳钢热机械处理方法
KR102108231B1 (ko) * 2017-12-26 2020-05-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US10931157B2 (en) 2018-05-07 2021-02-23 General Electric Company Unitary structure having magnetic and non-magnetic phases
CN116867916A (zh) * 2021-02-19 2023-10-10 日本制铁株式会社 无取向性电磁钢板用热轧钢板、无取向性电磁钢板用热轧钢板的制造方法、以及无取向性电磁钢板的制造方法
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
CN115094311B (zh) * 2022-06-17 2023-05-26 湖南华菱涟源钢铁有限公司 生产无取向电工钢的方法和无取向电工钢

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198428A (ja) * 1988-02-01 1989-08-10 Sumitomo Metal Ind Ltd 磁気特性の優れた無方向性電磁鋼板の製造方法
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
JP3348802B2 (ja) * 1993-06-30 2002-11-20 新日本製鐵株式会社 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP4091673B2 (ja) * 1997-03-10 2008-05-28 新日本製鐵株式会社 磁束密度が高い無方向性電磁鋼板の製造方法
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP4258028B2 (ja) * 1997-09-09 2009-04-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
DE19807122C2 (de) * 1998-02-20 2000-03-23 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech
JP2000219917A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
DE10015691C1 (de) * 2000-03-16 2001-07-26 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
DE10156059A1 (de) * 2001-11-16 2003-05-28 Thyssenkrupp Electrical Steel Ebg Gmbh Verfahren zur Herstellung von nichtkornorientiertem Elektroblech
CN1131333C (zh) * 2001-11-27 2003-12-17 武汉钢铁(集团)公司 高磁感系列无取向电工钢及生产方法
KR100530069B1 (ko) * 2001-12-20 2005-11-22 주식회사 포스코 응력제거소둔 후 철손이 낮고 자속밀도가 높은 무방향성전기강판의 제조방법
DE10221793C1 (de) * 2002-05-15 2003-12-04 Thyssenkrupp Electrical Steel Ebg Gmbh Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
WO2004050934A1 (ja) * 2002-12-05 2004-06-17 Jfe Steel Corporation 無方向性電磁鋼板およびその製造方法
CN1258610C (zh) * 2003-05-12 2006-06-07 宝山钢铁股份有限公司 无瓦楞状缺陷的无取向电工钢板及其制造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020127A1 (zh) * 2008-08-20 2010-02-25 宝山钢铁股份有限公司 涂层半工艺无取向电工钢板及制造方法
CN102906289B (zh) * 2009-12-28 2016-03-23 Posco公司 具有优良磁性的无取向电工钢板及其制备方法
CN102906289A (zh) * 2009-12-28 2013-01-30 Posco公司 具有优良磁性的无取向电工钢板及其制备方法
CN105008568B (zh) * 2013-02-22 2017-06-13 杰富意钢铁株式会社 无取向性电磁钢板制造用热轧钢板及其制造方法
CN105008568A (zh) * 2013-02-22 2015-10-28 杰富意钢铁株式会社 无取向性电磁钢板制造用热轧钢板及其制造方法
US10026534B2 (en) 2013-02-22 2018-07-17 Jfe Steel Corporation Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN103667879A (zh) * 2013-11-27 2014-03-26 武汉钢铁(集团)公司 磁性能和机械性能优良的无取向电工钢及生产方法
CN103667879B (zh) * 2013-11-27 2016-05-25 武汉钢铁(集团)公司 磁性能和机械性能优良的无取向电工钢及生产方法
CN105463310A (zh) * 2015-12-07 2016-04-06 本钢板材股份有限公司 一种无取向硅钢生产方法
CN110177897A (zh) * 2017-01-17 2019-08-27 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
TWI710647B (zh) * 2017-01-17 2020-11-21 日商杰富意鋼鐵股份有限公司 無方向性電磁鋼板
CN110177897B (zh) * 2017-01-17 2021-06-29 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
US11286537B2 (en) 2017-01-17 2022-03-29 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
CN113969371A (zh) * 2020-07-24 2022-01-25 宝山钢铁股份有限公司 一种定子、转子铁芯同时套裁用无取向电工钢板及其制造方法
CN113969371B (zh) * 2020-07-24 2022-09-20 宝山钢铁股份有限公司 一种定子、转子铁芯同时套裁用无取向电工钢板及其制造方法
CN114058953A (zh) * 2021-10-25 2022-02-18 马鞍山钢铁股份有限公司 一种适宜缠绕式加工的低铁损无取向硅钢及其生产方法

Also Published As

Publication number Publication date
JP4804478B2 (ja) 2011-11-02
CN100529115C (zh) 2009-08-19
US7846271B2 (en) 2010-12-07
JP2008524449A (ja) 2008-07-10
US20080121314A1 (en) 2008-05-29
EP1838882A4 (en) 2011-03-02
EP1838882A1 (en) 2007-10-03
WO2006068399A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
CN100529115C (zh) 具有优良磁性的无取向电工钢板及其制造方法
KR101903008B1 (ko) 무방향성 전기강판 및 그 제조방법
KR20170075592A (ko) 무방향성 전기강판 및 그 제조방법
KR102278897B1 (ko) 무방향성 전기강판 및 그 제조방법
CN104039998A (zh) 无取向磁性钢板及其制造方法
KR20140077223A (ko) 방향성 전기 강판의 제조 방법
JP6879341B2 (ja) 無方向性電磁鋼板の製造方法
KR102134311B1 (ko) 무방향성 전기강판 및 그 제조방법
KR101110257B1 (ko) 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법
JPH06279858A (ja) 磁気特性と表面性状が優れた無方向性電磁鋼板の製造方法
CN115003845B (zh) 无取向电工钢板及其制造方法
WO2022004752A1 (ja) 方向性電磁鋼板の製造方法
JP2001131717A (ja) 打ち抜き性に優れた低鉄損無方向性電磁鋼板
KR100240984B1 (ko) 0.5밀리 두께의 방향성 전기강판 제조방법
JPH0617548B2 (ja) 耐発錆性に優れた無方向性電磁鋼板
WO2024095666A1 (ja) 無方向性電磁鋼板の製造方法
KR100721865B1 (ko) 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
JPH11172382A (ja) 磁気特性に優れた電磁鋼板およびその製造方法
JPWO2020149333A1 (ja) 一方向性電磁鋼板の製造方法
KR20240098445A (ko) 무방향성 전기강판 및 그 제조방법
JPH09125145A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
KR20240098949A (ko) 무방향성 전기강판 및 그 제조방법
JP2023507592A (ja) 無方向性電磁鋼板およびその製造方法
KR100721926B1 (ko) 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR20240098950A (ko) 무방향성 전기강판 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090819

Termination date: 20111220