CN100467504C - 一种凝胶态锂离子电池聚合物电解质的制备方法及其应用 - Google Patents

一种凝胶态锂离子电池聚合物电解质的制备方法及其应用 Download PDF

Info

Publication number
CN100467504C
CN100467504C CNB2006101239867A CN200610123986A CN100467504C CN 100467504 C CN100467504 C CN 100467504C CN B2006101239867 A CNB2006101239867 A CN B2006101239867A CN 200610123986 A CN200610123986 A CN 200610123986A CN 100467504 C CN100467504 C CN 100467504C
Authority
CN
China
Prior art keywords
ion battery
hours
lithium ion
mass percent
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2006101239867A
Other languages
English (en)
Other versions
CN1986585A (zh
Inventor
卢雷
左晓希
刘建生
李伟善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CNB2006101239867A priority Critical patent/CN100467504C/zh
Publication of CN1986585A publication Critical patent/CN1986585A/zh
Application granted granted Critical
Publication of CN100467504C publication Critical patent/CN100467504C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明提供了一种凝胶态锂离子电池聚合物电解质的制备方法及其应用。该方法如下:将十二烷基硫酸钠加入到去离子水中溶解,再加入甲基丙烯酸甲酯和乙酸乙烯酯及邻苯二甲酸二丙烯酯,搅拌均匀,加入过硫酸钠进行反应;得到的白色乳液倒入Al2(SO4)3溶液中搅拌破乳,然后洗去未反应的单体后,N2吹扫得到白色的PMMA-VAc粉末;溶解于N,-N二甲基甲酰胺中,并加入二乙基碳酸酯得到粘稠的凝胶;将聚烯烃隔膜或聚烯烃无纺布浸于凝胶中然后干燥得到聚合物膜,将聚合物膜浸泡在电解液中,即得到聚合物电解质。本发明工艺简单,时间短,为工艺化生产提供了条件,且得到的聚合物膜有极佳的吸液性和液体保持能力。

Description

一种凝胶态锂离子电池聚合物电解质的制备方法及其应用
技术领域
本发明属于电化学技术领域,特别涉及一种凝胶态锂离子电池聚合物电解质的制备方法及其应用。
背景技术
锂离子电池是20世纪90年代以来,使用液体电解质的锂离子电池自商品化以来取得了巨大的成功。聚合物锂离子电池(PLIB)是在液态锂离子电池基础上逐渐发展起来的一种新型锂离子电池,由于其在形状上可以做到薄行化及任意形状化,可以保证电池内部的充分接触,大大提高拉电池造型设计的灵活性,从而可配合产品需求,做成任意形状和容量的电池,为研究开发提供了极大的便利性;同时由于聚合物电池有较好的安全性和循环寿命,从而引起了人们的广泛关注。目前聚合物锂离子电池主要用于手机,笔记本电脑等方面,随着电子技术的高速发展和人们对移动电源的更高要求,聚合物锂离子电池将在电动汽车,摄像机及军事领域等方面广泛应用。
聚合物电池的关键部件是聚合物电解质。聚合物电解质按其形态可分为凝胶聚合物电解质(GPE)和固态聚合物电解质(SPE),其主要区别在于前者含有液体增塑剂,而后者没有。尽管目前已经开发了很多聚合物电解质,如聚醚系(主要是PEO),聚丙烯腈(PAN)系,聚甲基丙烯酸酯(PMMA)类及聚偏氟乙烯(PVDF)系等,但是聚合物电解质仍然不太理想,存在下列问题:(1)在室温下的电导率偏低;(2)机械强度有待提高。因而采用共混、共聚以及利用增塑剂成微孔等方法合成聚合物电解质来提高聚合物膜的离子电导率及机械强度成了目前的研究方向。凝胶型聚合物电解质由于离子电导率高,电化学稳定性好等优点成为目前的研究热点。目前制备聚合物电解质膜有Bellcore法及相转移法,由于Bellcore法采用溶剂萃取增塑,操作复杂,对环境要求高,给大规模工业化生产带来了困难,而相转移法得到的聚合物膜虽然离子电导率高,但机械性能差,难以适应于电池生产过程;并且目前得到的凝胶型聚合物电解质的力学性能和液体保持性能也难以满足聚合物锂离子电池的高速发展。
发明内容
为了解决上述现有技术的不足,本发明的首要目的在于提供一种凝胶态锂离子电池聚合物电解质的制备方法。
本发明的另一目的在于提供上述凝胶态锂离子电池聚合物电解质在制备聚合物锂离子电池中的应用。
本发明的目的通过下述技术方案来实现:一种凝胶态锂离子电池聚合物电解质的制备方法,包括如下步骤:
(1)在N2气氛下,将质量百分比为1~3%的乳化剂十二烷基硫酸钠加入到质量百分比为60~75%的去离子水中溶解,再加入质量百分比为25~35%的单体MMA(甲基丙烯酸甲酯)和VAc(乙酸乙烯酯)及质量百分比为0.1~0.4%的交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在60~75℃下加入质量百分比为0.1~0.4%的引发剂过硫酸钠进行反应;反应6~10小时后得到白色乳液,将白色乳液倒入质量百分比为2~5%的Al2(SO4)3溶液中搅拌破乳,然后水洗2~5次后,依次用乙醇:去离子水质量比为1:1的溶剂,丙酮:去离子水质量比为1:1的溶剂洗去未反应的单体后,60~80℃下N2吹扫24~36小时,得到白色的PMMA-VAc(聚甲基丙烯酸甲酯—乙酸乙烯酯)粉末。
(2)将质量百分比为1~4%的PMMA-VAc粉末溶解于质量百分比为46~50%的N,-N二甲基甲酰胺(DMF)或丙酮中,并加入质量百分比为46~50%增塑剂二乙基碳酸酯(DEC)得到粘稠的凝胶。
(3)将聚烯烃隔膜(Celgard,Entek,宇部)或聚烯烃无纺布浸于凝胶中5~20分钟后取出,于60~80℃鼓风干燥箱中干燥6~12小时,即得到双面含有聚合物的聚合物膜,将聚合物膜浸泡在电解液中10~50分钟,即可得到凝胶态锂离子电池聚合物电解质。
步骤(2)也可以按下述方法进行:为了进一步增加极片间的接触性及增强聚合物膜的力学性能,将质量百分比1~3%的PMMA-VAc与1~2%的PVDF(聚偏二氟乙烯)或PTFE(聚四氟乙烯)或PVP-VA64(N-乙烯吡咯烷酮(NVP)与乙酸乙烯酯(VAc)的共聚物)共混,并将它们溶解在质量百分比为40~46%的丙酮或N-甲基吡咯烷酮(NMP)等溶剂中,然后加入质量百分比为50~55%的增塑剂二乙基碳酸酯(DEC)得到粘稠的凝胶。
所述步骤(1)中MMA(甲基丙烯酸甲酯)与VAc(乙酸乙烯酯)质量比为9:1~5:5。
凝胶态锂离子电池聚合物电解质在制备聚合物锂离子电池中的应用,按照凝胶态锂离子电池聚合物电解质的制备方法制备聚合物膜,将制备的聚合物膜与正极材料和负极材料采用卷绕工艺组装成电芯,然后将电芯在70~80℃真空干燥箱中干燥20~30小时后取出,再将电芯置于电池,注入电解液(1mol/LLiPF6+EC+DMC+EMC,EC:DMC:EMC=1:1:1,质量比)密封后静置8小时化成,得到聚合物锂离子电池。
为了更好地实现本发明,凝胶态锂离子电池聚合物电解质在制备聚合物锂离子电池中的应用,还可以采用如下方法:按照凝胶态锂离子电池聚合物电解质的制备方法制备聚合物膜,将制备的聚合物膜与正极材料和负极材料采用卷绕工艺组装成电芯,将正极以铝极耳点焊引出,负极以镍极耳点焊引出,然后将电芯在70~80℃真空干燥箱中干燥20~30小时后取出,将烘干的电芯置于铝塑膜袋中,在手套箱中注入电解液(1mol/L LiPF6+EC+DMC+EMC,EC:DMC:EMC质量比为1:1:1)后预封口,然后用真空封口机封口,封口时袋中预留小气囊,静置8小时后化成,待化成结束后,化成产生的气体进入气囊后再次封口,得到软包聚合物锂离子电池。
本发明合成的PMMA-VAc(聚甲基丙烯酸甲酯—醋酸乙烯酯)粉末是结合聚甲基丙烯酸甲酯(PMMA)单元中含有羰基,羰基与碳酸酯增塑剂中的氧有很强的作用,因而吸液能力强,同时与电极界面的稳定性好及MMA原料丰富等优点,但其机械性能差;而聚乙酸乙烯酯(PVAc)有较强的粘结性的特点,用乳液聚合法合成了聚合物:聚甲基丙烯酸甲酯-乙酸乙烯酯—P(MMA-VAc),并以此聚合物制备了聚烯烃膜支撑的新型微孔聚合物电解质。该聚合物电解质膜有极佳的微孔交联结构和吸液率,电化学测试表明,聚合物电解质有良好的离子传输性能和电化学性能,能用作聚合物锂离子电池的电解质。
本发明得到的聚合物电解质有极佳的网状结构(见图1,图2),不仅能吸收大量的电解液,也为锂离子的迁移提供了一个便利的通道,使聚合物电解质的离子电导率大大提高,而整个反应的转化率也高达97.5%。同时将聚合物溶于有机溶剂并加入增塑剂得到凝胶,将PE膜(Celgard,Entek或UBE宇部)或聚烯烃无纺布浸入凝胶数10分钟后取出,不采用传统的真空干燥数十小时流程,而采用鼓风干燥8小时即得到聚合物膜,再用来做卷绕电池,大大节约了时间和成产成本,工艺更加简单。
本发明与现有技术相比,具有如下优点和有益效果:
本发明工艺简单,时间短,为工艺化生产提供了条件,且得到的聚合物膜有极佳的吸液性和液体保持能力。本发明制备的聚合物锂电池,由于聚合物膜与正负极材料间有良好的相容性以及聚合物我电解质有良好的粘结性,能将正负极紧紧结合在一起,从而得到的聚合物锂离子电池电极界面的稳定性好;同时交联剂的加入使聚合物有极佳的交联的网状结构,为锂离子的迁移提供了一个便利的通道,聚合物电解质的离子电导率大大提高,聚合物锂离子电池的循环性能和安全性能也大大提高。
附图说明
图1为聚合物膜的扫描电镜图(放大2000倍)。
图2为聚合物膜的扫描电镜图(放大4000倍)。
图3为聚合物电解质在25℃的交流阻抗图。
图4为聚合物膜的DSC/TG(差热/热重)的曲线图。
图5为加交联剂与不加交联剂的4%聚合物膜的吸液性能比较图。
图6为聚合物电池的不同电流放电曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
凝胶态锂离子电池聚合物电解质的合成方法:
(1)聚合使用的单体MMA和VAc均为分析纯。实验前先将单体蒸馏除去阻聚剂对苯二酚,其中VAc蒸馏提纯在常压下进行,温度为72℃;80℃减压蒸馏提纯MMA。聚合试验具体方法如下:在N2气氛下,将质量百分比为1.5%的乳化剂十二烷基硫酸钠加入到68.2%去离子水中溶解,再加入30%单体MMA和VAc(MMA与VAc质量比为9:1)及0.1%交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在65℃下加入0.2%的引发剂过硫酸钠进行反应;反应8小时后得到白色乳液,将乳液倒入3%的Al2(SO4)3溶液中搅拌破乳,通过3次的水洗,依次用乙醇:去离子水为1:1(质量比)的溶剂,丙酮:去离子水为1:1(质量比)的溶剂洗去未反应的单体后,60℃下N2吹扫36小时得到白色PMMA-VAc粉末。
(2)将4%的PMMA-VAc粉末溶解于46%的N,-N二甲基甲酰胺(DMF)中,并加入50%的增塑剂二乙基碳酸酯(DEC)得到粘稠的凝胶;
(3)将聚烯烃隔膜浸于凝胶中10分钟后取出,于70℃鼓风干燥箱中干燥8小时,即得到双面含有聚合物的聚合物膜(如图1、图2所示)。将聚合物膜浸泡在电池注液40分钟,即得到凝胶态锂离子电池聚合物电解质。
本发明的凝胶态锂离子电池聚合物电解质在制备聚合物锂离子电池中的应用,聚合物锂离子电池的制备方法如下:
方法1:将步骤(3)中合成的聚合物膜依次按正极材料(LiCoO2,LiMn2O4或LiFePO4)、聚合物膜及负极材料(人造石墨或MCMB(焦炭相碳素微球))采用卷绕工艺组装成电芯,将电芯在70℃真空干燥箱中干燥30小时后取出,再在手套箱中将电芯置于2032扣式电池,注入电解液(1mol/L LiPF6+EC+DMC+EMC,EC:DMC:EMC质量比为1:1:1)密封后静置8小时化成用来测试。
方法2:将正极以铝极耳点焊引出,负极以镍极耳点焊引出,其余电芯制备同上。将电芯在80℃真空干燥箱中干燥20小时后取出,将烘干的电芯置于铝塑膜袋中,在手套箱中注入电解液(1mol/L LiPF6+EC+DMC+EMC,EC:DMC:EMC质量比为1:1:1)后预封口,然后用真空封口机封口,封口时袋中预留小气囊,静置8小时后化成,待化成结束后,化成产生的少量气体进入气囊后再次封口,得到软包聚合物锂离子电池,用来测试。
其中正负极制作工艺如下:将正极LiCoO2、LiMn2O4或LiFePO4、乙炔黑、PVDF、N-甲基吡咯烷酮(NMP)按质量比92.0:3.5:4.5:70.0混匀,在15μm的铝箔上双面涂布;负极片:将碳材料、乙炔黑、PVDF、NMP按质量比90.0:3.0:7.0:60.0混匀,在10μm的铜箔上双面涂布,将涂布好的电极在120℃真空干燥,除去NMP,辊压后剪成100~130mm×10~13mm正极片与100~130mm×10~13mm负极片。
聚合物膜的吸液性能的测定:
把已称重的微孔聚合物膜(W1),在三元溶液(EC+DMC+EMC,EC:DMC:EMC质量比为1:1:1)中浸泡10~50分钟后取出,用滤纸轻轻吸干其表面的电解液,称取其质量(W2),即得聚合物膜干膜对电解液的吸液率为:[(W2-W1)/W1]×100%。实验测得聚合物膜的吸液率高达1000%以上,远远高于其他文献报道(1、Song,M.K;Kim,Y.T;Cho,J.Y;Cho,B.W;Popov,P.N;Rhee,H.W.J Power Sources.2004,125,10.2、Jeong,Y.B;Kin,D.W.J PowerSources.2004,128,256.3、Liang,H.Y;Qiu,X.P;Zhang,S.C;Zhu,W.T;Chen,L.Q.J Appl Electrochemistry.2004,34,1211.)的结果。
聚合物膜的离子电导率用交流阻抗测试:
将聚烯烃多孔膜支撑的凝胶聚合物膜(GPE)夹在两个不锈钢(SS)电极之间,进行交流阻抗试验。线性与实轴的交点即为聚合物电解质的电阻,由此可以得到聚合物电解质的的离子电导率:σ=L/A*R(其中L表示聚合物电解质的厚度,A为电极面积,R为聚合物电解质的电阻)。计算得到室温下聚合物膜的离子电导率σ=1.85×10-3s×cm-1,满足实际需求。如图3所示,为聚合物电解质在25℃的交流阻抗图。
从图4可以看出,制备的聚合物膜在380℃范围内有很好的热稳定性。由此可见,制备的聚合物膜可以安全地应用于锂离子电池。
从图5可以看出,交联剂的加入一来大大提高了聚合物膜的吸液率,同时也提高了聚合物膜的吸液保持率。
图6为以聚合物电解质卷绕成的2032扣式电池以5mA充电,不同电流放电的曲线。从图6可以看出,该聚合物电池有良好的倍率放电性能。
实施例2
凝胶态锂离子电池聚合物电解质的合成方法:
(1)按实施例1预处理单体MMA与VAc。聚合试验具体方法如下:在N2气氛下,将质量百分比为2%的乳化剂十二烷基硫酸钠加入到72.7%去离子水中溶解,再加入25%的单体MMA和VAc(MMA与VAc质量比为7:3)及0.2%交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在60℃下加入0.1%的引发剂过硫酸钠进行反应;反应6小时后得到白色乳液,将乳液倒入2%的Al2(SO4)3溶液中搅拌破乳,通过3次的水洗,乙醇:去离子水为1:1的溶剂,丙酮:去离子水为1:1的溶剂洗后,60℃下N2吹扫30小时得到白色PMMA-VAc粉末。
(2)将4%的PMMA-VAc粉末溶解于50%的DMF溶液中,并加入46%的增塑剂DEC得到粘稠的凝胶。
(3)将聚烯烃隔膜浸于凝胶中5分钟后取出,于60℃鼓风干燥箱中干燥12小时,即得到双面含有聚合物的聚合物膜。将聚合物膜浸泡在电解液15分钟,即得到凝胶态锂离子电池聚合物电解质。
实施例3
凝胶态锂离子电池聚合物电解质的合成方法:
(1)按实施例1预处理单体MMA与VAc。聚合试验具体方法如下:在N2气氛下,将质量百分比为3%的乳化剂十二烷基硫酸钠加入到61.2%去离子水中溶解,再加入35%的单体MMA和VAc(MMA与VAc质量比为5:5)及0.4%交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在75℃下加入引发剂0.4%过硫酸钠进行反应;反应10小时后得到白色乳液,将乳液倒入5%的Al2(SO4)3溶液中搅拌破乳,通过4次的水洗,乙醇:去离子水为1:1的溶剂,丙酮:去离子水为1:1的溶剂洗后,75℃下N2吹扫24小时得到白色PMMA-VAc粉末。
(2)将2%的PMMA-VAc粉末与2%PVP-VA64(N-乙烯吡咯烷酮(NVP)与乙酸乙烯酯(VAc)的共聚物)共混,溶解于46%的NMP(N-甲基吡咯烷酮)中,并加入50%的增塑剂DEC得到粘稠的凝胶。
(3)将聚烯烃无纺布浸于凝胶中20分钟后取出,于70℃鼓风干燥箱中干燥8小时,即得到双面含有聚合物的聚合物膜。将聚合物膜浸泡在电解液45分钟,即得到凝胶态锂离子电池聚合物电解质。
实施例4
(1)按实施例1预处理单体MMA与VAc。聚合试验具体方法如下:在N2气氛下,将质量百分比为1%的乳化剂十二烷基硫酸钠加入到68.6%去离子水中溶解,再加入30%的单体MMA和VAc(MMA与VAc质量比为8:2)及0.2%交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在60℃下加入0.2%的引发剂过硫酸钠进行反应;反应6小时后得到白色乳液,将乳液倒入2%的Al2(SO4)3溶液中搅拌破乳,通过5次的水洗,乙醇:去离子水为1:1的溶剂,丙酮:去离子水为1:1的溶剂洗后,80℃下N2吹扫30小时得到白色PMMA-VAc粉末。
(2)将质量百分比3%的PMMA-VAc粉末与1%的PVDF(聚偏二氟乙烯)共混,并将它们溶解在丙酮(质量百分比为40%)溶剂中,并加入质量百分比为55%增塑剂二乙基碳酸酯(DEC)得到粘稠的凝胶。
(3)将聚烯烃隔膜浸于凝胶中30分钟后取出,于80℃真空干燥箱中真空干燥6小时,即得到双面含有聚合物的聚合物膜。将聚合物膜浸泡在电解液30分钟,即得到凝胶态锂离子电池聚合物电解质。
实施例5
(1)按实施例1预处理单体MMA与VAc。聚合试验具体方法如下:在N2气氛下,将质量百分比为2%的乳化剂十二烷基硫酸钠加入到62.3%去离子水中溶解,再加入35%的单体MMA和Vac(MMA与VAc质量比为5:5)及0.3%交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在75℃下加入引发剂0.4%过硫酸钠进行反应;反应8小时后得到白色乳液,将乳液倒入3%的Al2(SO4)3溶液中搅拌破乳,通过2次的水洗,乙醇:去离子水为1:1的溶剂,丙酮:去离子水为1:1的溶剂洗后,75℃下N2吹扫24小时得到白色PMMA-VAc粉末。
(2)将质量百分比2%的PMMA-VAc粉末与1.5%的PTFE(聚四氟乙烯)共混,并将它们溶解在NMP(质量百分比为43.5%)溶剂中,并加入质量百分比为53%增塑剂二乙基碳酸酯(DEC)得到粘稠的凝胶。
(3)将聚烯烃无纺布浸于凝胶中20分钟后取出,于80℃鼓风干燥箱中干燥6小时,即得到双面含有聚合物的聚合物膜。将聚合物膜浸泡在电解液50分钟,即得到凝胶态锂离子电池聚合物电解质。
上述具体实施方式为本发明的优选实施例,并不能对本发明的权利要求进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1、一种凝胶态锂离子电池聚合物电解质的制备方法,其特征在于包括如下步骤:
(1)在N2气氛下,将质量百分比为1~3%的乳化剂十二烷基硫酸钠加入到质量百分比为61.2~72.7%的去离子水中溶解,再加入质量百分比为25~35%的单体甲基丙烯酸甲酯和乙酸乙烯酯及质量百分比为0.1~0.4%的交联剂邻苯二甲酸二丙烯酯,搅拌均匀,在60~75℃下加入质量百分比为0.1~0.4%的引发剂过硫酸钠进行反应;反应6~10小时后得到白色乳液,将白色乳液倒入质量百分比为2~5%的Al2(SO4)3溶液中搅拌破乳,然后水洗2~5次后,依次用乙醇:去离子水质量比为1:1的溶液,丙酮:去离子水质量比为1:1的溶液洗去未反应的单体后,60~80℃下N2吹扫24~36小时,得到白色的聚甲基丙烯酸甲酯—乙酸乙烯酯粉末;
(2)将质量百分比1~3%的聚甲基丙烯酸甲酯—乙酸乙烯酯粉末与1~2%的N-乙烯吡咯烷酮与乙酸乙烯酯的共聚物共混,并将它们溶解在质量百分比为40~46%的丙酮或N-甲基吡咯烷酮溶剂中,然后加入质量百分比为50~55%的增塑剂二乙基碳酸酯得到粘稠的凝胶;
(3)将聚烯烃隔膜或聚烯烃无纺布浸于凝胶中5~20分钟后取出,于60~80℃鼓风干燥箱中干燥6~12小时,即得到双面含有聚合物的聚合物膜,将聚合物膜浸泡在电解液中10~50分钟,即得到凝胶态锂离子电池聚合物电解质;
所述电解液为LiPF6+EC+DMC+EMC。
2、根据权利要求1所述的一种凝胶态锂离子电池聚合物电解质的制备方法,其特征在于:所述步骤(1)中甲基丙烯酸甲酯与乙酸乙烯酯质量比为9:1~5:5。
3、一种凝胶态锂离子电池聚合物电解质,其是通过权利要求1所述的制备方法制备而成。
4、一种根据权利要求3所述的凝胶态锂离子电池聚合物电解质在制备聚合物锂离子电池中的应用。
5、根据权利要求4所述的应用,其特征在于:将聚合物膜与正极材料和负极材料采用卷绕工艺组装成电芯,然后将电芯在70~80℃真空干燥箱中干燥20~30小时后取出,再将电芯置于电池,注入电解液密封后静置8小时化成,得到聚合物锂离子电池。
6、根据权利要求4所述的应用,其特征在于:将聚合物膜与正极材料和负极材料采用卷绕工艺组装成电芯,将正极以铝极耳点焊引出,负极以镍极耳点焊引出,然后将电芯在70~80℃真空干燥箱中干燥20~30小时后取出,将烘干的电芯置于铝塑膜袋中,在手套箱中注入电解液后预封口,然后用真空封口机封口,封口时袋中预留小气囊,静置8小时后化成,待化成结束后,化成产生的气体进入气囊后再次封口,得到软包聚合物锂离子电池。
CNB2006101239867A 2006-12-01 2006-12-01 一种凝胶态锂离子电池聚合物电解质的制备方法及其应用 Active CN100467504C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101239867A CN100467504C (zh) 2006-12-01 2006-12-01 一种凝胶态锂离子电池聚合物电解质的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101239867A CN100467504C (zh) 2006-12-01 2006-12-01 一种凝胶态锂离子电池聚合物电解质的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN1986585A CN1986585A (zh) 2007-06-27
CN100467504C true CN100467504C (zh) 2009-03-11

Family

ID=38183540

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101239867A Active CN100467504C (zh) 2006-12-01 2006-12-01 一种凝胶态锂离子电池聚合物电解质的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN100467504C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130587B (zh) * 2007-08-03 2012-11-14 重庆弈派因化工产品有限公司 醋酸乙烯基酯-丙烯酸酯共聚物基固体聚合物电解质及膜
CN101226994B (zh) * 2007-12-21 2010-06-30 成都中科来方能源科技有限公司 无纺布增强微孔聚合物隔膜及其制备方法和用途
CN101475663B (zh) * 2009-01-21 2010-10-20 中国科学院长春应用化学研究所 原位聚合制备离子液体型凝胶聚合物电解质及电池的方法
CN101872875A (zh) * 2010-05-27 2010-10-27 西北工业大学 聚烯烃类凝胶聚合物电解质锂离子电池的组装工艺
CN103022557B (zh) * 2012-12-25 2015-10-28 复旦大学 基于无纺布的锂离子电池凝胶聚合物电解质及其制备方法
CN104140502B (zh) * 2013-11-14 2016-12-07 上海泛能新材料科技有限公司 一种锂离子电池隔膜用粘结剂、制备方法及使用该粘结剂的隔膜
CN105811005B (zh) * 2014-12-31 2018-05-08 曙鹏科技(深圳)有限公司 一种聚合物电解质的制备方法及聚合物电解质
CN105119012B (zh) * 2015-07-16 2018-04-10 华南师范大学 一种锂离子电池用凝胶聚合物电解质及其制备方法
CN110112009B (zh) * 2019-05-31 2021-06-01 广州大学 一种电容器复合电解质及其制备方法和应用
CN114976229B (zh) * 2022-05-25 2024-04-19 济南大学 一种制备锂电池用四氟乙烯基聚合物电解质的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Evaluation and characteristics of a blend polymer for a solidpolymer electrolyte. Book Oh ,Yong Roak Kim.Solid State Ionics,Vol.124 . 1999
Evaluation and characteristics of a blend polymer for a solidpolymer electrolyte. Book Oh ,Yong Roak Kim.Solid State Ionics,Vol.124 . 1999 *

Also Published As

Publication number Publication date
CN1986585A (zh) 2007-06-27

Similar Documents

Publication Publication Date Title
CN100467504C (zh) 一种凝胶态锂离子电池聚合物电解质的制备方法及其应用
CN108232293B (zh) 一种有机-无机复合固态电解质的制备方法
CN101740747B (zh) 一种硅负极和含有该硅负极的锂离子电池
CN101621134B (zh) 一种凝胶态聚合物锂离子电池电解质及其制备方法和应用
CN109004173B (zh) 一种锂硫电池正极及其制造方法
CN102074735B (zh) 基于双烯/醚共聚物的锂离子凝胶电解质膜及其制备方法
CN110212242B (zh) 一种多孔凝胶聚合物电解质及其制备方法
JP2000090728A (ja) 均質状の固体ポリマ―アロイ電解質及びその製造方法、それを利用した複合電極、並びにリチウム高分子電池及びリチウムイオン高分子電池並びにそれらの製造方法
CN102522589A (zh) 一种新型具有互穿网络结构凝胶聚合物电解质及其制备方法和应用
CN103413974B (zh) 一种锂离子电池凝胶聚合物电解质的制备方法
CN101381429B (zh) 自支撑的锂离子电池凝胶聚合物电解质、其专用聚合物及其制备方法和应用
CN102104171A (zh) 一种锂离子电池凝胶态聚合物电解质及其制备方法和应用
CN111029515B (zh) 基于磺化氧化石墨烯的单离子聚合物电解质隔膜及其制备方法和应用
CN105355972A (zh) 一种互穿网络结构纳米SiO2类复合电解质及其制备方法
CN111138596A (zh) 聚合物电解质及包括该聚合物电解质的锂离子电池
CN109037769B (zh) 一种复合碳酸交联结构凝胶聚合物电解质的制备方法
CN105161762A (zh) 一种聚合物电解质膜的制备方法及锂离子电池
CN103427113B (zh) 凝胶聚合物电解质和聚合物电池及其制备方法
CN111969184A (zh) 聚合物复合极片及其制备方法和应用
CN101353435A (zh) 一种活化型凝胶态锂离子电池聚合物电解质薄膜及其制备方法和应用
CN110943258A (zh) 一种pvdf-hfp复合木质纤维素凝胶聚合物电解质膜及其制备方法
CN111613832B (zh) 一种五元单体共聚聚合物锂二次电池及其制备方法
CN112448027B (zh) 共混凝胶聚合物电解质及其制备方法、应用
CN104124415A (zh) 复合凝胶聚合物电解质及其制备方法及应用
CN109286040A (zh) 四臂支化聚合离子液体凝胶电解质隔膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant