CN100434840C - 空调装置 - Google Patents

空调装置 Download PDF

Info

Publication number
CN100434840C
CN100434840C CNB200580018953XA CN200580018953A CN100434840C CN 100434840 C CN100434840 C CN 100434840C CN B200580018953X A CNB200580018953X A CN B200580018953XA CN 200580018953 A CN200580018953 A CN 200580018953A CN 100434840 C CN100434840 C CN 100434840C
Authority
CN
China
Prior art keywords
refrigerant
heat exchanger
cold
producing medium
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB200580018953XA
Other languages
English (en)
Other versions
CN1965203A (zh
Inventor
松冈弘宗
下田顺一
佐藤宪二
水谷和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN1965203A publication Critical patent/CN1965203A/zh
Application granted granted Critical
Publication of CN100434840C publication Critical patent/CN100434840C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明可在热源单元和利用单元通过制冷剂连接配管连接的空调装置中,高精度地判定填充在制冷剂回路内的制冷剂量是否适当。在空调装置(1)中,具有压缩机(21)及热源侧热交换器(23)的热源单元(2)与具有利用侧膨胀阀(41、51)及利用侧热交换器(42、52)的利用单元(4、5)通过制冷剂连接配管(6、7)连接,该空调装置(1)可在以下两种模式之间切换地进行运转:根据利用单元(4、5)的运转负荷控制各设备的通常运转模式;以及使利用单元(4、5)进行制冷运转、控制利用侧膨胀阀(41、51)使利用侧热交换器(42、52)出口处的过热度为正值、且控制压缩机(21)的运转负载量使利用侧热交换器(42、52)的蒸发压力为一定的制冷剂量判定运转模式。在制冷剂量判定运转模式下,可检测出热源侧热交换器(23)出口处的过冷度,从而判定填充在制冷剂回路(10)内的制冷剂量是否适当。

Description

空调装置
技术领域
本发明涉及一种判定填充在空调装置的制冷剂回路内的制冷剂量是否适当的功能,尤其是涉及对利用制冷剂连接配管连接热源单元和利用单元的分体型空调装置的制冷剂回路内所填充的制冷剂量是否适当进行判定的功能。
背景技术
一直以来,有一种包括热源单元、利用单元、连接热源单元和利用单元的液态制冷剂连接配管及气态制冷剂连接配管的分体型空调装置。在这种空调装置中,采用预先向热源单元填充规定量的制冷剂,现场施工时再根据连接热源单元和利用单元的液态制冷剂连接配管及气态制冷剂连接配管的长度追加填充不足的制冷剂的方法。但是,连接热源单元和利用单元的液态制冷剂连接配管及气态制冷剂连接配管的长度因设置空调装置的现场的状况不同而不同,故有时很难填充适量的制冷剂。
对此,有一种具有下述功能的空调装置:在现场施工后的试运转时,以在利用侧热交换器中蒸发的制冷剂的过热度为规定值的状态进行制冷运转,检测出在热源侧热交换器中冷凝的制冷剂的过冷度,根据该过冷度值判定填充在制冷剂回路内的制冷剂量是否适当(例如参照专利文献1)。
专利文献1:日本专利特开昭62-158966号公报
发明公开
但是,在上述现有的具有判定制冷剂量是否适当的功能的空调装置中,仅是根据利用单元的运转负荷以在利用侧热交换器中蒸发的制冷剂的过热度为规定值的状态进行制冷运转,故由于在利用侧热交换器中与制冷剂进行热交换的室内空气的温度和在热源侧热交换器中与制冷剂进行热交换的作为热源的室外空气的温度等不同,制冷剂回路内的各部分的压力发生变化,从而判定制冷剂量是否适当时的过冷度的目标值发生变化。因此,很难提高判定制冷剂量是否适当时的判定精度。
尤其是在具有可个别地开关的多个利用单元的多联式空调装置中,由于各利用单元的运转状态不同,故判定制冷剂量是否适当时的判定精度极有可能更差,从而很难采用上述现有的判定制冷剂量是否适当的功能。
另外,在空调装置中,在试运转结束而开始通常运转后,有时会由于意外的原因而导致制冷剂回路内的制冷剂向外部泄漏,从而填充在制冷剂回路内的制冷剂量逐渐减少。此时,也可考虑使用上述现有的判定制冷剂量是否适当的功能来进行制冷剂的泄漏检测,但由于判定精度低,故有可能出现有无泄漏的检测错误。
本发明所要解决的技术问题是:在热源单元和利用单元通过制冷剂连接配管连接的分体型空调装置中,可高精度地判定填充在制冷剂回路内的制冷剂量是否适当。
第一发明的空调装置,包括制冷剂回路和蓄存器。制冷剂回路包括:具有运转负载量可变的压缩机和热源侧热交换器的热源单元、具有利用侧膨胀机构和利用侧热交换器的利用单元、以及连接热源单元与利用单元的液态制冷剂连接配管及气态制冷剂连接配管,可至少进行使热源侧热交换器作为在压缩机中被压缩的制冷剂的冷凝器发挥作用、且使利用侧热交换器作为在热源侧热交换器中冷凝的制冷剂的蒸发器发挥作用的制冷运转。蓄存器连接在压缩机的吸入侧,可根据利用单元的运转负荷来积存制冷剂回路内产生的剩余制冷剂。空调装置可在以下两种模式之间切换地进行运转:根据利用单元的运转负荷来控制热源单元及利用单元的各设备的通常运转模式;以及使利用单元进行制冷运转、控制利用侧膨胀机构使利用侧热交换器出口处的制冷剂的过热度为正值、且控制压缩机的运转负载量使利用侧热交换器中的制冷剂的蒸发压力为一定的制冷剂量判定运转模式。在制冷剂量判定运转模式下,可检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而判定填充在制冷剂回路内的制冷剂量是否适当。
该空调装置是热源单元和利用单元通过制冷剂连接配管连接而构成制冷剂回路、可至少进行制冷运转的分体型空调装置。在此,“至少”是指作为可应用本发明的空调装置除制冷运转外也可进行取暖运转等其他运转。并且,该空调装置可在制冷运转等通常运转(以下称为通常运转模式)与强制地使利用单元进行制冷运转的制冷剂量判定运转模式之间进行切换地运转,可检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而判定填充在制冷剂回路内的制冷剂量是否适当。
并且,该空调装置的热源单元具有运转负载量可变的压缩机。因此,在利用单元进行制冷运转的制冷剂量判定运转模式下,为了使作为蒸发器发挥作用的利用侧热交换器的过热度成为正值(即利用侧热交换器出口处的气态制冷剂处于过热状态)而控制利用侧膨胀机构(以下称为过热度控制),从而可使在利用侧热交换器内流动的制冷剂的状态稳定,且使气态制冷剂可靠地在包含气态制冷剂连接配管在内的连接利用侧热交换器与压缩机的流路内流动,而且,为了使蒸发压力一定而控制压缩机的运转负载量(以下称为蒸发压力控制),从而可使在该流路内流动的制冷剂量稳定。另外,在该空调装置中,用于对制冷剂进行减压的膨胀机构作为利用侧膨胀机构设置在利用单元上,因此,在进行包含制冷剂量判定运转模式在内的制冷运转时,在作为冷凝器发挥作用的热源侧热交换器中冷凝的液态制冷剂在利用侧热交换器的入口稍前位置被减压,从而包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路内被液态制冷剂密封。由此,可使在包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路内流动的液态制冷剂量变得稳定,可提高检测热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量来判定填充在制冷剂回路内的制冷剂量是否适当时的判定精度。
再者,在空调装置中,必须具有用于积存因利用单元的运转负荷不同而产生的剩余制冷剂的容器,但在该空调装置中,如上所述,为了同时实现检测作为冷凝器发挥作用的热源侧热交换器中的过冷度或跟随过冷度变动而变动的运转状态量来判定制冷剂量是否适当的功能,而在热源单元中设有蓄存器。因此,包含气态制冷剂连接配管及蓄存器在内的连接利用侧热交换器与压缩机的流路的容积变大,虽然可能会对判定制冷剂量是否适当的精度产生影响,但通过进行上述过热度控制及蒸发压力控制,即使包含气态制冷剂连接配管及蓄存器在内的连接利用侧热交换器与压缩机的流路的容积变大也可使在该流路内流动的制冷剂量变得稳定。由此,尽管是具有蓄存器的制冷剂回路,也可提高检测热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量来判定填充在制冷剂回路内的制冷剂量是否适当时的判定精度。
如上所述,采用本发明,在热源单元和利用单元通过制冷剂连接配管连接的分体型空调装置中,设置有使利用单元进行制冷运转、且通过利用侧膨胀机构进行过热度控制、利用压缩机进行蒸发压力控制的制冷剂量判定运转模式,可检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而高精度地判定填充在制冷剂回路内的制冷剂量是否适当。
第二发明的空调装置,在第一发明的空调装置的基础上,利用单元设置有多台,在制冷剂量判定运转模式下,使多台利用单元全部进行制冷运转。
该空调装置是具有多台利用单元的多联式空调装置。即,各利用单元可个别地开关,在空调装置进行通常运转时(以下称为通常运转模式),可根据配置各利用单元的空调空间所需的运转负荷改变运转状态。另一方面,由于该空调装置可在通常运转模式与使所有利用单元都进行制冷运转的制冷剂量判定运转模式之间进行切换地运转,故可在将在制冷剂回路内循环的制冷剂量强制地设定为最大的状态后,检测热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量来判定填充在制冷剂回路内的制冷剂量是否适当。
如上所述,采用本发明,在热源单元和多个利用单元通过制冷剂连接配管连接的分体型空调装置中,设置有使所有利用单元都进行制冷运转且通过利用侧膨胀机构进行过热度控制、利用压缩机进行蒸发压力控制的制冷剂量判定运转模式,可检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而高精度地判定填充在制冷剂回路内的制冷剂量是否适当。
第三发明的空调装置,在第一或第二发明的空调装置的基础上,制冷剂量判定运转模式下的运转定期进行。
在该空调装置中,定期地(例如每月一次、在空调空间不需要负荷时等)进行利用单元进行制冷运转且通过利用侧膨胀机构进行过热度控制、利用压缩机进行蒸发压力控制的制冷剂量判定运转模式下的运转,从而可高精度地判定填充在制冷剂回路内的制冷剂量是否适当,因而检测出有没有因意外的原因而导致制冷剂回路内的制冷剂向外部泄漏。
第四发明的空调装置,在第一至第三发明中任一发明的空调装置的基础上,制冷剂量判定运转模式下的运转在向制冷剂回路内填充制冷剂时进行。
在该空调装置中,由于在向制冷剂回路内填充制冷剂时(例如在现场通过液态制冷剂连接配管及气态制冷剂连接配管连接热源单元与利用单元后,根据液态制冷剂连接配管及气态制冷剂连接配管的长度追加填充不足的制冷剂时等)进行利用单元进行制冷运转且通过利用侧膨胀机构进行过热度控制、利用压缩机进行蒸发压力控制的制冷剂量判定运转模式下的运转,从而可高精度地判定填充在制冷剂回路内的制冷剂量是否适当,因而可正确且迅速地进行制冷剂填充作业。
第五发明的空调装置,在第一至第四发明中任一发明的空调装置的基础上,制冷剂回路还包括切换机构。在通常运转模式下,切换机构可在以下两种状态之间进行切换:制冷运转状态;以及使利用侧热交换器作为在压缩机中被压缩的制冷剂的冷凝器发挥作用、且使热源侧热交换器作为在利用侧热交换器中冷凝的制冷剂的蒸发器发挥作用的取暖运转状态。利用侧膨胀机构在制冷运转状态下,控制流经利用侧热交换器的制冷剂流量使作为蒸发器发挥作用的利用侧热交换器出口处的制冷剂的过热度为规定值,在取暖运转状态下,控制流经利用侧热交换器的制冷剂流量使作为冷凝器发挥作用的利用侧热交换器出口处的制冷剂的过冷度为规定值。
该空调装置是可通过切换机构来进行制冷运转及取暖运转的空调装置。并且,在该空调装置中,利用侧膨胀机构在制冷运转状态下控制流经利用侧热交换器的制冷剂流量,使作为蒸发器发挥作用的利用侧热交换器出口处的制冷剂的过热度为规定值,因此,在作为冷凝器发挥作用的热源侧热交换器中冷凝的液态制冷剂充满包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路。另一方面,在取暖运转状态下,利用侧膨胀机构控制流经利用侧热交换器的制冷剂流量,使作为冷凝器发挥作用的利用侧热交换器出口处的制冷剂的过冷度为规定值,因此,在作为冷凝器发挥作用的利用侧热交换器中冷凝的液态制冷剂由利用侧膨胀机构减压后成为气液两相状态,从而充满包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路。即,在该空调装置中,充满包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路的液态制冷剂量在制冷运转时比取暖运转时大,因此,制冷剂回路内所需的制冷剂量由制冷运转时所需的制冷剂量决定。
如上所述,在该可进行制冷运转及取暖运转的空调装置中,由于制冷运转时所需的制冷剂量比取暖运转时所需的制冷剂量大,故可进行使利用单元进行制冷运转且通过利用侧膨胀机构进行过热度控制、利用压缩机进行蒸发压力控制的制冷剂量判定运转模式下的运转,检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而高精度地判定填充在制冷剂回路内的制冷剂量是否适当。
第六发明的空调装置,在第一至第五发明中任一发明的空调装置的基础上,压缩机由变频器控制的电动机驱动。
第七发明的空调装置,在第一至第六发明中任一发明的空调装置的基础上,热源单元还具有将作为热源的空气向热源侧热交换器送入的送风风扇。送风风扇可在制冷剂量判定运转模式下控制向热源侧热交换器供给的空气流量,使热源侧热交换器中的制冷剂的冷凝压力为规定值。
该空调装置包括热源单元,该热源单元具有作为热源使用空气的热源侧热交换器、以及向热源侧热交换器中送入作为热源的空气的送风风扇。并且,送风风扇可控制向热源侧热交换器供给的空气流量。因此,在制冷剂量判定运转模式下,除利用上述利用侧膨胀机构进行过热度控制、利用压缩机进行蒸发压力控制外,为了使冷凝压力为规定值,还控制向热源侧热交换器供给的空气流量(以下称为冷凝压力控制),从而可抑制空气温度的影响,使在热源侧热交换器内流动的制冷剂的状态变得稳定。
由此,在该空调装置中,在制冷剂量判定运转模式下,可更加精确地检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而提高判定填充在制冷剂回路内的制冷剂量是否适当时的判定精度。
第八发明的空调装置,在第七发明的空调装置的基础上,送风风扇由直流电动机驱动。
第九发明的空调装置包括制冷剂回路,该制冷剂回路具有热源单元、利用单元、以及连接热源单元与利用单元的液态制冷剂连接配管及气态制冷剂连接配管。空调装置可定期在以下两种模式之间切换地进行运转:根据利用单元的运转负荷来控制热源单元及利用单元的各设备的通常运转模式;以及检测流经制冷剂回路的制冷剂或热源单元及利用单元的各设备的运转状态量来判定填充在制冷剂回路内的制冷剂量是否适当的制冷剂量判定运转模式。
该空调装置是热源单元和利用单元通过制冷剂连接配管连接而构成制冷剂回路的分体型空调装置。并且,该空调装置可在通常运转模式与检测流经制冷剂回路的制冷剂或热源单元及利用单元的各设备的运转状态量来判定填充在制冷剂回路内的制冷剂量是否适当的制冷剂量判定运转模式之间进行切换地运转。因此,通过定期地(例如每月一次、在空调空间不需要负荷时等)进行上述制冷剂量判定运转模式下的运转,可检测出有没有因意外的原因而导致制冷剂回路内的制冷剂向外部泄漏。
第十发明的空调装置,在第九发明的空调装置的基础上,利用单元具有利用侧膨胀机构和利用侧热交换器。热源单元具有压缩机和热源侧热交换器。制冷剂回路可至少进行使热源侧热交换器作为在压缩机中被压缩的制冷剂的冷凝器发挥作用、且使利用侧热交换器作为在热源侧热交换器中冷凝的制冷剂的蒸发器发挥作用的制冷运转。在制冷剂量判定运转模式下,使利用单元进行制冷运转。
该空调装置是热源单元和利用单元通过制冷剂连接配管连接而构成制冷剂回路、可至少进行制冷运转的分体型空调装置。在此,“至少”是指作为可应用本发明的空调装置除制冷运转外也可进行取暖运转等其他运转。并且,该空调装置可在通常运转模式与强制地使利用单元进行制冷运转的制冷剂量判定运转模式之间进行切换地运转,因而可在一定运转条件下判定填充在制冷剂回路内的制冷剂量是否适当。
第十一发明的空调装置,在第十发明的空调装置的基础上,利用单元设置有多台。在制冷剂量判定运转模式下,使多台利用单元全部进行制冷运转。
该空调装置是具有多台利用单元的多联式空调装置。即,各利用单元可个别地开关,在空调装置处于通常运转模式时,可根据配置各利用单元的空调空间所需的运转负荷改变运转状态。另一方面,由于该空调装置可在上述通常运转模式与使所有利用单元都进行制冷运转的制冷剂量判定运转模式之间进行切换地运转,故可在将在制冷剂回路内循环的制冷剂量强制地设定为最大的状态后,判定填充在制冷剂回路内的制冷剂量是否适当。
第十二发明的空调装置,在第十或第十一发明的空调装置的基础上,压缩机是运转负载量可变的压缩机。制冷剂量判定运转模式是控制利用侧膨胀机构使利用侧热交换器出口处的制冷剂的过热度为正值、且控制压缩机的运转负载量使利用侧热交换器中的制冷剂的蒸发压力为一定的运转。作为运转状态量使用热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量。
在该空调装置中,热源单元具有运转负载量可变的压缩机,因此,在制冷剂量判定运转模式下,为了使作为蒸发器发挥作用的利用侧热交换器的过热度成为正值(即利用侧热交换器出口处的气态制冷剂处于过热状态)而控制利用侧膨胀机构(以下称为过热度控制),从而可使在利用侧热交换器内流动的制冷剂的状态稳定,且使气态制冷剂可靠地在包含气态制冷剂连接配管在内的连接利用侧热交换器与压缩机的流路内流动,而且,为了使蒸发压力一定而控制压缩机的运转负载量(以下称为蒸发压力控制),从而可使在该流路内流动的制冷剂量稳定。另外,在该空调装置中,用于对制冷剂进行减压的膨胀机构作为利用侧膨胀机构设置在利用单元上,因此,在进行包含制冷剂量判定运转模式在内的制冷运转时,在作为冷凝器发挥作用的热源侧热交换器中冷凝的液态制冷剂在利用侧热交换器的入口稍前位置被减压,从而包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路内被液态制冷剂密封。由此,可使在包含液态制冷剂连接配管在内的连接热源侧热交换器与利用侧膨胀机构的流路内流动的液态制冷剂量变得稳定,可检测出热源侧热交换器出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而高精度地判定填充在制冷剂回路内的制冷剂量是否适当。
附图说明
图1是本发明一实施例的空调装置的概略制冷剂回路图。
图2是表示制冷剂量判定运转模式下在制冷剂回路内流动的制冷剂的状态的模式图(省略四通切换阀等)。
图3是制冷剂自动填充运转时的流程图。
图4是表示冷凝器部中的制冷剂量与冷凝器部中的制冷剂的冷凝压力及热源侧热交换器出口处的过冷度的关系的图表。
图5是表示液态制冷剂连接部中的制冷剂量与液态制冷剂连接部中的制冷剂的压力及液态制冷剂连接部中的制冷剂的过冷度的关系的图表。
图6是表示蒸发器部中的制冷剂量与蒸发器部中的制冷剂的蒸发压力及利用侧热交换器出口处的过热度(及干燥度)的关系的图表。
图7是表示气态制冷剂连接部中的制冷剂量与气态制冷剂连接部中的制冷剂的压力及气态制冷剂连接部中的制冷剂的过热度(及干燥度)的关系的图表。
图8是制冷剂泄漏检测运转时的流程图。
图9是空调装置的远程监控***的方框图。
图10是本发明其他实施例的空调装置的概略制冷剂回路图。
(符号说明)
1、101空调装置
2、102热源单元
4、5利用单元
6液态制冷剂连接配管
7气态制冷剂连接配管
10、110制冷剂回路
21压缩机
21a电动机
22、122、71、81四通切换阀、三通切换阀、制冷取暖切换阀(切换机构)
23热源侧热交换器
24蓄存器
27室外风扇(送风风扇)
27a直流风扇电动机(直流电动机)
41、51利用侧膨胀阀(利用侧膨胀机构)
42、52利用侧热交换器
具体实施方式
下面参照附图对本发明的空调装置的实施例进行说明。
(1)空调装置的构成
图1是本发明一实施例的空调装置1的概略制冷剂回路图。空调装置1是通过进行蒸气压缩式制冷循环运转来对大厦等的室内进行制冷、取暖的装置。空调装置1主要包括:一台热源单元2;与该热源单元2并联连接的多台(本实施例中为两台)利用单元4、5;以及连接热源单元2与利用单元4、5的液态制冷剂连接配管6及气态制冷剂连接配管7。即,本实施例的空调装置1的蒸气压缩式制冷剂回路10是通过连接热源单元2、利用单元4、5、液态制冷剂连接配管6及气态制冷剂连接配管7而构成的。
<利用单元>
利用单元4、5通过埋设和悬吊等在大厦等的室内天花板上进行设置,或通过挂壁方式等在室内的壁面上进行设置。利用单元4、5通过液态制冷剂连接配管6及气态制冷剂连接配管7与热源单元2连接,构成制冷剂回路10的一部分。
下面对利用单元4、5的构成进行说明。因为利用单元4与利用单元5的构成相同,故在此仅说明利用单元4的构成,对于利用单元5的构成,取代表示利用单元4各部分的40至50范围内的元件符号,而分别标记50至60范围内的元件符号,省略各部分的说明。
利用单元4主要包括构成制冷剂回路10一部分的利用侧制冷剂回路10a(在利用单元5中为利用侧制冷剂回路10b)。该利用侧制冷剂回路10a主要包括利用侧膨胀阀41(利用侧膨胀机构)和利用侧热交换器42。
在本实施例中,利用侧膨胀阀41是为了调节在利用侧制冷剂回路10a内流动的制冷剂流量等而连接在利用侧热交换器42的液体侧的电动膨胀阀。
在本实施例中,利用侧热交换器42是由传热管和大量翅片构成的交叉翅片式的翅片管型热交换器,是在制冷运转时作为制冷剂的蒸发器发挥作用来对室内的空气进行冷却、在取暖运转时作为制冷剂的冷凝器发挥作用来对室内的空气进行加热的热交换器。
在本实施例中,利用单元4具有向单元内吸入室内空气进行热交换后、作为供给空气向室内供给的室内风扇(未图示),可使室内空气与流经利用侧热交换器42的制冷剂进行热交换。
另外,在利用单元4上设置有各种传感器。在利用侧热交换器42的液体侧设置有用于检测液体状态或气液两相状态的制冷剂的温度的液体侧温度传感器43,在利用侧热交换器42的气体侧设置有用于检测气体状态或气液两相状态的制冷剂的温度的气体侧温度传感器44。在本实施例中,液体侧温度传感器43及气体侧温度传感器44由热敏电阻构成。另外,利用单元4具有控制构成利用单元4的各部分的动作的利用侧控制部45。并且,利用侧控制部45具有为了控制利用单元4而设置的微型计算机和存储器等,从而可与用于个别操作利用单元4的遥控器(未图示)之间进行控制信号等的交换,或者与热源单元2之间进行控制信号等的交换。
<热源单元>
热源单元2设置在大厦等的屋顶上等,通过液态制冷剂连接配管6及气态制冷剂连接配管7与利用单元4、5连接,与利用单元4、5之间构成制冷剂回路10。
下面对热源单元2的构成进行说明。热源单元2主要包括构成制冷剂回路10的一部分的热源侧制冷剂回路10c。该热源侧制冷剂回路10c主要包括:压缩机21、四通切换阀22、热源侧热交换器23、蓄存器24、液体侧开闭阀25、气体侧开闭阀26。
压缩机21是运转负载量可变的压缩机,在本实施例中,是由变频器控制的电动机21a进行驱动的容积式压缩机。在本实施例中,压缩机21仅为一台,但并不局限于此,可根据利用单元的连接台数等并联连接两台以上的压缩机。
四通切换阀22是用于切换制冷剂流动方向的阀,在进行制冷运转时,该四通切换阀22为了使热源侧热交换器23作为在压缩机21中压缩的制冷剂的冷凝器发挥作用、且使利用侧热交换器42、52作为在热源侧热交换器23中冷凝的制冷剂的蒸发器发挥作用,而连接压缩机21的排出侧与热源侧热交换器23的气体侧、且连接压缩机21的吸入侧(具体而言为蓄存器24)与气态制冷剂连接配管7侧(参照图1的四通切换阀22的实线),在进行取暖运转时,该四通切换阀22为了使利用侧热交换器42、52作为在压缩机21中压缩的制冷剂的冷凝器发挥作用、且使热源侧热交换器23作为在利用侧热交换器中冷凝的制冷剂的蒸发器发挥作用,而连接压缩机21的排出侧与气态制冷剂连接配管7侧、且连接压缩机21的吸入侧与热源侧热交换器23的气体侧(参照图1的四通切换阀22的虚线)。
在本实施例中,热源侧热交换器23是由传热管和大量翅片构成的交叉翅片式的翅片管型热交换器,是在制冷运转时作为制冷剂的冷凝器发挥作用、在取暖运转时作为制冷剂的蒸发器发挥作用的热交换器。热源侧热交换器23的气体侧与四通切换阀22连接,液体侧与液态制冷剂连接配管6连接。
在本实施例中,热源单元2具有用于将室外空气吸入单元内并向热源侧热交换器23供给、然后向室外排出的室外风扇27(送风风扇),可使室外空气与流经热源侧热交换器23的制冷剂进行热交换。该室外风扇27是可改变向热源侧热交换器23供给的空气流量的风扇,在本实施例中,是由直流风扇电动27a驱动的螺旋桨式风扇。
蓄存器24连接在四通切换阀22与压缩机21之间,是可根据利用单元4、5的运转负荷积存制冷剂回路10内产生的剩余制冷剂的容器。
液体侧开闭阀25及气体侧开闭阀26是设置在与外部的设备、配管(具体而言为液态制冷剂连接配管6及气态制冷剂连接配管7)连接的连接口上的阀。液体侧开闭阀25与热源侧热交换器23连接。气体侧开闭阀26与四通切换阀22连接。
另外,在热源单元2上设置有各种传感器。具体而言,热源单元2包括:检测压缩机21的吸入压力的吸入压力传感器28;检测压缩机21的排出压力的排出压力传感器29;检测在热源侧热交换器23内流动的制冷剂的温度的热交换温度传感器30;以及在热源侧热交换器23的液体侧检测液体状态或气液两相状态的制冷剂的温度的液体侧温度传感器31。另外,热源单元2具有控制构成热源单元2的各部分的动作的热源侧控制部32。并且,热源侧控制部32具有为了控制热源单元2而设置的微型计算机、存储器和控制电动机21a的变频回路等,从而与利用单元4、5的利用侧控制部45、55之间可进行控制信号等的交换。
如上所述,连接利用侧制冷剂回路10a、10b、热源侧制冷剂回路10c、制冷剂连接配管6、7来构成空调装置1的制冷剂回路10。并且,本实施例的空调装置1可通过四通切换阀22在制冷运转与取暖运转之间切换地进行运转,且可根据各利用单元4、5的运转负荷进行热源单元2及利用单元4、5的各设备的控制。
(2)空调装置的动作
下面对本实施例的空调装置1的动作进行说明。
作为本实施例的空调装置1的运转模式有:根据各利用单元4、5的运转负荷进行热源单元2及利用单元4、5的各设备的控制的通常运转模式;以及使所有利用单元4、5都进行制冷运转且检测出作为冷凝器发挥作用的热源侧热交换器23出口处的制冷剂的过冷度、从而判断填充在制冷剂回路10内的制冷剂量是否适当的制冷剂量判定运转模式。并且,通常运转模式具有制冷运转和取暖运转,制冷剂量判定运转模式具有制冷剂自动填充运转和制冷剂泄漏检测运转。
下面对空调装置1在各运转模式下的动作进行说明。
<通常运转模式>
首先对通常运转模式下的制冷运转进行说明。
进行制冷运转时,四通切换阀22处于图1的实线所示的状态、即压缩机21的排出侧与热源侧热交换器23的气体侧连接且压缩机21的吸入侧与利用侧热交换器52的气体侧连接的状态。另外,液体侧开闭阀25、气体侧开闭阀26打开,利用侧膨胀阀41、51进行开度调节使利用侧热交换器42、52出口处的制冷剂的过热度为规定值。在本实施例中,利用侧热交换器42、52出口处的制冷剂的过热度是通过从气体侧温度传感器44、54检测出的制冷剂温度值中减去液体侧温度传感器43、53检测出的制冷剂温度值得到的,或者是通过将吸入压力传感器28检测出的压缩机21的吸入压力值换算成制冷剂的饱和温度值,从气体侧温度传感器44、54检测出的制冷剂温度值中减去该制冷剂的饱和温度值得到的。另外,在本实施例虽未采用,但也可设置检测在利用侧热交换器42、52内流动的制冷剂温度的温度传感器,从气体侧温度传感器44、54检测出的制冷剂温度值中减去该温度传感器检测出的制冷剂温度值,从而得到利用侧热交换器42、52出口处的制冷剂的过热度。
在该制冷剂回路10的状态下,当起动压缩机21及室外风扇27时,低压气态制冷剂被吸入压缩机21内而压缩成为高压气态制冷剂。然后,高压气态制冷剂经由四通切换阀22被送往热源侧热交换器23,与室外风扇27供给的室外空气进行热交换后而冷凝成为高压液态制冷剂。
接着,该高压液态制冷剂经由液体侧开闭阀25及液态制冷剂连接配管6被送往利用单元4、5。
输送到利用单元4、5的高压液态制冷剂由利用侧膨胀阀41、51减压后成为低压气液两相状态的制冷剂,并被送往利用侧热交换器42、52,在利用侧热交换器42、52与室内空气进行热交换后而蒸发成为低压气态制冷剂。在此,利用侧膨胀阀41、51为了使利用侧热交换器42、52出口处的过热度为规定值而控制在利用侧热交换器42、52内流动的制冷剂流量,从而在利用侧热交换器42、52中蒸发的低压气态制冷剂处于具有规定的过热度的状态。并且,在各利用侧热交换器42、52中流动有流量与设置各利用单元4、5的空调空间所要求的运转负荷对应的制冷剂。
该低压气态制冷剂经由气态制冷剂连接配管7被送往热源单元2,并经由气体侧开闭阀26及四通切换阀22流入蓄存器24中。接着,流入蓄存器24中的低压气态制冷剂被重新吸入压缩机21内。在此,根据利用单元4、5的运转负荷,例如在利用单元4、5中一方的运转负荷较小或停止时、或者利用单元4、5双方的运转负荷都小时等制冷剂回路10内产生剩余制冷剂量时,在蓄存器24中积存有剩余制冷剂。
下面对通常运转模式下的取暖运转进行说明。
进行取暖运转时,四通切换阀22处于图1的虚线所示的状态、即压缩机21的排出侧与利用侧热交换器52的气体侧连接且压缩机21的吸入侧与热源侧热交换器23的气体侧连接的状态。另外,液体侧开闭阀25、气体侧开闭阀26打开,利用侧膨胀阀41、51进行开度调节使利用侧热交换器42、52出口处的制冷剂的过冷度为规定值。在本实施例中,利用侧热交换器42、52出口处的制冷剂的过冷度是通过将排出压力传感器29检测出的压缩机21的排出压力值换算成制冷剂的饱和温度值,从该制冷剂的饱和温度值中减去液体侧温度传感器43、53检测出的制冷剂温度值得到的。另外,在本实施例虽未采用,但也可设置检测在利用侧热交换器42、52内流动的制冷剂温度的温度传感器,从该温度传感器检测出的制冷剂温度值中减去液体侧温度传感器43、53检测出的制冷剂温度值,从而得到利用侧热交换器42、52出口处的制冷剂的过冷度。
在该制冷剂回路10的状态下,当起动压缩机21及室外风扇27时,低压气态制冷剂被吸入压缩机21内而压缩成为高压气态制冷剂,然后经由四通切换阀22、气体侧开闭阀26及气态制冷剂连接配管7被送往利用单元4、5。接着,输送到利用单元4、5的高压气态制冷剂在利用侧热交换器42、52中与室内空气进行热交换后而冷凝成为高压液态制冷剂,然后由利用侧膨胀阀41、51减压而成为低压气液两相状态的制冷剂。在此,利用侧膨胀阀41、51为了使利用侧热交换器42、52出口处的过冷度为规定值而控制在利用侧热交换器42、52内流动的制冷剂流量,从而在利用侧热交换器42、52中冷凝的高压液态制冷剂处于具有规定的过冷度的状态。并且,在各利用侧热交换器42、52中流动有流量与设置各利用单元4、5的空调空间所要求的运转负荷对应的制冷剂。
该低压气液两相状态的制冷剂经由液态制冷剂连接配管6被送往热源单元2,并经由液体侧开闭阀25流入热源侧热交换器23中。接着,流入热源侧热交换器23中的低压气液两相状态的制冷剂与室外风扇27供给的室外空气进行热交换后而冷凝成为低压气态制冷剂,并经由四通切换阀22流入蓄存器24中。接着,流入蓄存器24中的低压气态制冷剂被重新吸入压缩机21内。在此,根据利用单元4、5的运转负荷,例如在利用单元4、5中一方的运转负荷较小或停止时、或者利用单元4、5双方的运转负荷都小时等制冷剂回路10内产生剩余制冷剂量时,与制冷运转时相同在蓄存器24中积存有剩余制冷剂。
<制冷剂量判定运转模式>
首先参照图1~图3对制冷剂量判定运转模式之一的制冷剂自动填充运转进行说明。在此,图2是表示制冷剂量判定运转模式下在制冷剂回路内流动的制冷剂的状态的模式图(省略四通切换阀等)。图3是制冷剂自动填充运转时的流程图。
现以下述情况为例进行说明:在现场通过液态制冷剂连接配管6及气态制冷剂连接配管7连接预先填充有制冷剂的热源单元2和利用单元4、5而构成制冷剂回路10后,根据液态制冷剂连接配管6及气态制冷剂连接配管7的长度向制冷剂回路10内追加填充不足的制冷剂。
首先,打开热源单元2的液体侧开闭阀25及气体侧开闭阀26,使预先填充在热源单元2中的制冷剂充满制冷剂回路10内。
接着,进行制冷剂填充作业的人员通过遥控器(未图示)、或直接对利用单元4、5的利用侧控制部45、55和热源单元2的热源侧控制部32发出指令使其进行制冷剂量判定运转模式之一的制冷剂自动填充运转,从而从下述的步骤S1到步骤S4依次进行制冷剂自动填充运转。
<步骤S1:使利用单元都进行制冷运转>
接收到制冷剂自动填充运转的开始指令后,制冷剂回路10中,热源单元2的四通切换阀22处于图1的实线所示的状态,且利用单元4、5的利用侧膨胀阀41、51处于打开的状态,压缩机21、室外风扇27起动,所有的利用单元4、5都强制地进行制冷运转。
于是,如图2所示,在制冷剂回路10中,在从压缩机21到作为冷凝器发挥作用的热源侧热交换器23的流路中流动有在压缩机21中压缩后排出的高压气体制冷剂(参照图2中的沙状阴影部分),在作为冷凝器发挥作用的热源侧热交换器23内流动有与室外空气进行热交换而从气体状态相变为液体状态的高压制冷剂(参照图2中的沙状阴影部分及涂黑阴影部分,以下称为冷凝器部A),在从热源侧热交换器23到利用侧膨胀阀41、51的包含液态制冷剂连接配管6在内的流路中流动有高压液态制冷剂(参照图2中的涂黑阴影部分,以下称为液态制冷剂连接部B),在作为蒸发器发挥作用的利用侧热交换器42、52内流动有与室内空气进行热交换而从气液两相状态相变为气体状态的低压制冷剂(参照图2中的格子阴影部分及斜线阴影部分,以下称为蒸发器部C),在从利用侧热交换器42、52到压缩机21的包含气态制冷剂连接配管7及蓄存器24在内的流路中流动有低压气态制冷剂(参照图2中的斜线阴影部分,以下称为气态制冷剂连接部D)。
<步骤S2:进行使制冷剂回路各部分中的制冷剂状态稳定的控制>
接着进行下述的设备控制,切换到使在制冷剂回路10内循环的制冷剂状态稳定的运转。具体而言,为了使热源侧热交换器23中的制冷剂的冷凝压力为规定值而控制通过室外风扇27向热源侧热交换器23供给的室外空气的流量(以下称为冷凝压力控制),为了使作为蒸发器发挥作用的利用侧热交换器42、52的过热度成为正值(即利用侧热交换器42、52出口处的气态制冷剂处于过热状态)而控制利用侧膨胀阀41、51(以下称为过热度控制),为了使蒸发压力一定而控制压缩机的运转负载量(以下称为蒸发压力控制)。
在此,如图4所示,进行冷凝压力控制的原因是冷凝器部A中的制冷剂的冷凝压力对冷凝器部A中的制冷剂量有较大影响。并且,该冷凝器部A中的制冷剂的冷凝压力受到室外空气的温度影响而变化较大,故对利用直流风扇电动机27a从室外风扇27向热源侧热交换器23供给的室外空气的流量进行控制,从而使热源侧热交换器23中的制冷剂的冷凝压力为规定值(例如为判定所填充的制冷剂量是否适当时的冷凝压力Pa),使在冷凝器部A内流动的制冷剂的状态稳定,从而处于因过冷度(SC)不同而制冷剂量变化的状态。另外,在本实施例中,由于没有设置直接检测热源侧热交换器23内的制冷剂压力的压力传感器,故在利用室外风扇27进行冷凝压力控制时,代替热源侧热交换器23中的制冷剂的冷凝压力而使用排出压力传感器29检测出的压缩机21的排出压力。
并且,通过进行这种冷凝压力控制,也可使液态制冷剂连接部B中的制冷剂压力变得稳定,故液态制冷剂连接部B处于由液态制冷剂密封而稳定的状态。另外,如图5所示,液态制冷剂连接部B中的制冷剂量不太受液态制冷剂连接部B中的制冷剂压力和制冷剂的过冷度(SC)的变化的影响。
另外,如图6所示,进行蒸发压力控制的原因是蒸发器部C中的制冷剂的蒸发压力对蒸发器部C中的制冷剂量有较大影响。并且,该蒸发器部C中的制冷剂的蒸发压力利用变频器控制的电动机21a来控制压缩机21的运转负载量,从而使利用侧热交换器42、52中的制冷剂的蒸发压力为规定值(例如为判定所填充的制冷剂量是否适当时的蒸发压力Pc),使在蒸发器部C内流动的制冷剂的状态稳定。另外,在本实施例中,由于没有设置直接检测利用侧热交换器42、52内的制冷剂压力的压力传感器,故在利用压缩机21进行蒸发压力控制时,代替利用侧热交换器42、52中的制冷剂的蒸发压力而使用吸入压力传感器28检测出的压缩机21的吸入压力。
再者,如图6所示,与这种蒸发压力控制一起进行过热度控制的原因是利用侧热交换器42、52出口处的制冷剂的干燥度对蒸发器部C中的制冷剂量有较大影响。该利用侧热交换器42、52出口处的制冷剂的过热度通过控制利用侧膨胀阀41、51的开度,从而使利用侧热交换器42、52出口处的制冷剂的过热度(SH)为正值(即利用侧热交换器42、52出口处的气态制冷剂处于过热状态),使在蒸发器部C内流动的制冷剂的状态稳定。该制冷剂量判定运转模式下的过热度控制与通常运转模式下的过热度控制不同,只要使利用侧热交换器42、52出口处的制冷剂的过热度为正值即可。即,在通常运转模式下的过热度控制中,为了根据利用单元4、5的运转负荷来调节流经利用侧热交换器42、52的制冷剂流量,而需要将利用侧热交换器42、52出口处的制冷剂的过热度控制为规定值,但在该制冷剂量判定运转模式下的过热度控制中,如图6所示,为了不影响蒸发器部C中的制冷剂量,而只要不使利用侧热交换器42、52出口处的制冷剂处于湿润状态(即干燥度小于1的状态)即可。
并且,通过进行这种蒸发压力控制及过热度控制,可使气态制冷剂连接部D中的制冷剂压力变得稳定,且可使气态制冷剂可靠地流动,故流经气态制冷剂连接部D的制冷剂的状态也变得稳定。另外,如图7所示,气态制冷剂连接部D中的制冷剂量很大程度上依赖于气态制冷剂连接部D中的制冷剂压力及过热度(SH),但通过进行上述蒸发压力控制及过热度控制而变得稳定。
进行这种使在制冷剂回路10内循环的制冷剂的状态稳定的控制的同时,向制冷剂回路10内追加填充制冷剂。
<步骤S3:过冷度的检测>
接着,检测热源侧热交换器23出口处的过冷度。在本实施例中,热源侧热交换器23出口处的制冷剂的过冷度是通过从热交换温度传感器30检测出的制冷剂温度值中减去液体侧温度传感器31检测出的制冷剂温度值得到的,或者是通过将排出压力传感器29检测出的压缩机21的排出压力值换算成制冷剂的饱和温度值,从该制冷剂的饱和温度值中减去液体侧温度传感器31检测出的制冷剂温度值得到的。
<步骤S4:判定制冷剂量是否适当>
接着,根据步骤S3中检测出的过冷度值来判定制冷剂量是否适当。在此,在进行步骤S3中的过冷度检测时,通过进行步骤S2中的使在制冷剂回路10内循环的制冷剂的状态稳定的控制,使液态制冷剂连接部B、蒸发器部C及气态制冷剂连接部D中的制冷剂量一定,从而仅冷凝器部A中的制冷剂量处于因制冷剂的追加填充而变化的状态。即,与利用单元4、5的形态和液态制冷剂连接配管6及气态制冷剂连接配管7的长度等无关,可根据冷凝器部A中的制冷剂量(具体而言指热源侧热交换器23出口处的制冷剂的过冷度)来判定填充在制冷剂回路10内的制冷剂量是否适当。
首先,在追加填充的制冷剂量少而达不到所需制冷剂量时,在步骤S2中,冷凝器部A中的制冷剂量处于较少的状态。在此,所谓凝器部A中的制冷剂量处于较少的状态是指步骤S3中检测出的过冷度值小于冷凝器部A中的与冷凝压力Pa下的所需制冷剂量对应的过冷度值(以下称为目标过冷度值)。因此,在步骤S3中检测出的过冷度值小于目标过冷度值而制冷剂填充没有结束时,反复进行上述步骤S2及该步骤S3的处理直到过冷度值达到目标过冷度值。
另外,该制冷剂自动填充运转不仅可用于在现场施工后的试运转时的制冷剂填充,还可用于在由于制冷剂的泄漏等而导致填充在制冷剂回路10内的制冷剂量减少时的制冷剂的追加填充。
下面参照图1、图2、图4~图7及图8对制冷剂量判定运转模式之一的制冷剂泄漏检测运转进行说明。在此,图8是制冷剂泄漏检测运转时的流程图。
在此,以下述情况为例进行说明:在进行通常运转模式下的制冷运转或取暖运转时,定期地(例如每月一次、在空调空间不需要负荷时等)切换到制冷剂量判定运转模式之一的制冷剂泄漏检测运转进行运转,从而检测有没有因意外的原因而导致制冷剂回路内的制冷剂向外部泄漏。
<步骤S11:判定通常运转模式是否经过一定时间>
首先,判定上述制冷运转和取暖运转这种通常运转模式下的运转是否经过一定时间(每隔一个月等),在通常运转模式下的运转经过一定时间时,进入下面的步骤S12。
<步骤S12:使利用单元都进行制冷运转>
在通常运转模式下的运转经过一定时间时,与上述制冷剂自动填充运转的步骤S1相同,制冷剂回路10中,热源单元2的四通切换阀22处于图1的实线所示的状态,且利用单元4、5的利用侧膨胀阀41、51处于打开的状态,压缩机21、室外风扇27起动,所有的利用单元4、5都强制地进行制冷运转(参照图2)。
<步骤S13:进行使制冷剂回路各部分中的制冷剂状态稳定的控制>
接着,与上述制冷剂自动填充运转的步骤S2相同,利用室外风扇27进行冷凝压力控制,利用利用侧膨胀阀41、51进行过热度控制,利用压缩机进行蒸发压力控制,从而使在制冷剂回路10内循环的制冷剂的状态变得稳定。
<步骤S14:过冷度的检测>
接着,与上述制冷剂自动填充运转的步骤S3相同,检测热源侧热交换器23出口处的过冷度。
<步骤S15、S16、S17:判定制冷剂量是否适当、返回通常运转模式、显示警告>
接着,与制冷剂自动填充运转的步骤S4相同,根据步骤S14中检测出的过冷度值来判定制冷剂量是否适当。
具体而言,当步骤S14中检测出的过冷度值与目标过冷度值基本相同时(例如检测出的过冷度值与目标过冷度值之差不到规定值时),判定为制冷剂没有泄漏,进行下面的步骤S16的处理,从而返回通常运转模式。
另一方面,当步骤S14中检测出的过冷度值小于目标过冷度值时(例如检测出的过冷度值与目标过冷度值之差在规定值以上时),判定为有制冷剂泄漏产生,进行步骤S17的处理,显示告知检测到制冷剂泄漏的警告后,进行步骤S16的处理,从而返回通常运转模式。
另外,该制冷剂泄漏检测运转是在强制地形成适合于判定填充在制冷剂回路10内的制冷剂量是否适当的制冷剂状态并使该状态稳定后、判定制冷剂量是否适当的,故在判定制冷剂量是否适当时,没有必要参照前次的判定结果等。因此,不需要设置预先存储制冷剂量的时间变化的存储器等。
另外,如图9所示,也可构建远程监控***,即,将该可进行制冷剂泄漏检测运转的空调装置1可通信地与空调控制器61连接,并通过网络62向信息管理中心的远程服务器63发送空调装置1的包含制冷剂泄漏检测运转结果等设备异常信息在内的各种运转数据,远程服务器63将包含设备异常信息在内的各种运转数据向管辖空调装置1的服务站的信息终端64发送。由此,可将空调装置1的制冷剂泄漏检测运转结果向空调装置1的管理者等报告,在检测出制冷剂泄漏时可提供派遣服务人员等的服务。
(3)空调装置的特征
本实施例的空调装置1具有以下特征。
(A)
本实施例的空调装置1是热源单元2和利用单元5通过制冷剂连接配管6、7连接而构成制冷剂回路10、可进行制冷取暖切换运转(即至少可进行制冷运转)的分体型空调装置。并且,该空调装置1是包括多台具有利用侧膨胀阀41、51的利用单元4、5的多联式空调装置。即,各利用单元4、5可个别地开关,在空调装置1进行通常运转时(以下称为通常运转模式),可根据配置各利用单元4、5的空调空间所需的运转负荷改变运转状态。另一方面,由于该空调装置1可在上述通常运转模式与使所有利用单元4、5都进行制冷运转的制冷剂量判定运转模式之间进行切换地运转,故可在将在制冷剂回路10内循环的制冷剂量强制地设定为最大的状态后,检测热源侧热交换器23出口处的制冷剂的过冷度来判定填充在制冷剂回路10内的制冷剂量是否适当。
(B)
并且,该空调装置1的热源单元2具有运转负载量可变的压缩机21。因此,在所有利用单元4、5都进行制冷运转的制冷剂量判定运转模式下,为了使作为蒸发器发挥作用的利用侧热交换器42、52的过热度成为正值(即利用侧热交换器42、52出口处的气态制冷剂处于过热状态)而控制利用侧膨胀阀41、51(以下称为过热度控制),从而可使在蒸发器部C内流动的制冷剂的状态稳定,且使气态制冷剂可靠地在气态制冷剂连接部D内流动,而且,为了使蒸发压力一定而控制压缩机21的运转负载量(以下称为蒸发压力控制),从而可使在气态制冷剂连接部D内流动的制冷剂量稳定。另外,在该空调装置1中,用于对制冷剂进行减压的膨胀机构作为利用侧膨胀阀41、51设置在利用单元4、5上,因此,在进行包含制冷剂量判定运转模式在内的制冷运转时,在作为冷凝器发挥作用的热源侧热交换器23中冷凝的液态制冷剂在利用侧热交换器42、52的入口稍前位置被减压,从而液态制冷剂连接部B内被液态制冷剂密封。由此,可使在液态制冷剂连接部B内流动的制冷剂量变得稳定,结果是,仅需判定冷凝器部A中的制冷剂量是否适当即可,可与利用单元4、5的形态和液态制冷剂连接配管6及气态制冷剂连接配管7的长度等无关地判定填充在制冷剂回路10内的制冷剂量是否适当,因此,可提高检测热源侧热交换器23出口处的制冷剂的过冷度来判定填充在制冷剂回路10内的制冷剂量是否适当时的判定精度。另外,作为本实施例的压缩机21采用由变频器控制的电动机21a进行驱动的压缩机。
(C)
另外,本实施例的空调装置1可通过作为切换机构的四通切换阀22来进行制冷运转及取暖运转。并且,在该空调装置1中,利用侧膨胀阀41、51在制冷运转状态下控制流经利用侧热交换器42、52的制冷剂流量,以使作为蒸发器发挥作用的利用侧热交换器42、52出口处的制冷剂的过热度为规定值,因此,在作为冷凝器发挥作用的热源侧热交换器23中冷凝的液态制冷剂充满液态制冷剂连接部B内。另一方面,在取暖运转状态下,利用侧膨胀阀41、51控制流经利用侧热交换器42、52的制冷剂流量,以使作为冷凝器发挥作用的利用侧热交换器42、52出口处的制冷剂的过冷度为规定值,因此,在作为冷凝器发挥作用的利用侧热交换器42、52中冷凝的液态制冷剂由利用侧膨胀阀41、51减压后成为气液两相状态,从而充满液态制冷剂连接部B内。即,在该空调装置1中,充满液态制冷剂连接部B内的液态制冷剂量在制冷运转时比取暖运转时大,因此,制冷剂回路10内所需的制冷剂量由制冷运转时所需的制冷剂量决定。
如上所述,在本实施例的空调装置1中,由于制冷运转时所需的制冷剂量比取暖运转时所需的制冷剂量大,故使所有利用单元4、5都进行制冷运转、且通过进行由利用侧膨胀阀41、51进行的过热度控制以及由压缩机21进行的蒸发压力控制的制冷剂量判定运转模式,检测热源侧热交换器23出口处的制冷剂的过冷度,从而高精度地判定填充在制冷剂回路10内的制冷剂量是否适当。
(D)
另外,本实施例的空调装置1包括热源单元2,该热源单元2具有作为热源使用空气的热源侧热交换器23、以及向热源侧热交换器23送入作为热源的空气的室外风扇27。并且,室外风扇27可控制向热源侧热交换器23供给的空气流量。因此,在制冷剂量判定运转模式下,除利用上述利用侧膨胀阀41、51进行过热度控制、利用压缩机21进行蒸发压力控制外,为了使冷凝压力为规定值还控制向热源侧热交换器23供给的空气流量(以下称为冷凝压力控制),从而可抑制室外空气温度的影响,使在热源侧热交换器23内流动的制冷剂的状态变得稳定。
由此,在该空调装置1中,在制冷剂量判定运转模式下,可更加精确地检测出热源侧热交换器23出口处的制冷剂的过冷度,从而提高判定填充在制冷剂回路10内的制冷剂量是否适当时的判定精度。另外,作为本实施例的室外风扇27采用由直流电动机驱动的风扇。
(E)
再者,在多联式空调装置中,必须具有用于积存因利用单元4、5的运转负荷不同而产生的剩余制冷剂的容器,但在该空调装置1中,如上所述,为了同时实现检测作为冷凝器发挥作用的热源侧热交换器23中的过冷度来判定制冷剂量是否适当的功能,而在热源单元2中设有蓄存器24。因此,包含气态制冷剂连接配管7及蓄存器24在内的连接利用侧热交换器42、52与压缩机21的流路(即气态制冷剂连接部D)的容积变大,虽然可能会对判定制冷剂量是否适当的精度产生影响,但通过进行上述过热度控制及蒸发压力控制,即使气态制冷剂连接部D的容积变大也可使在气态制冷剂连接部D内流动的制冷剂量变得稳定。由此,尽管是具有蓄存器24的制冷剂回路10,也可提高检测热源侧热交换器23出口处的制冷剂的过冷度来判定填充在制冷剂回路10内的制冷剂量是否适当时的判定精度。
(F)
在本实施例的空调装置1中,定期地(例如每月一次、在空调空间不需要负荷时等)使所有利用单元4、5都进行制冷运转,且进行由利用侧膨胀阀41、51进行的过热度控制、由压缩机21进行的蒸发压力控制等的制冷剂量判定运转模式之一的制冷剂泄漏检测运转,从而可高精度地判定填充在制冷剂回路10内的制冷剂量是否适当,因而检测出有没有因意外的原因而导致制冷剂回路10内的制冷剂向外部泄漏。
另外,该制冷剂泄漏检测运转是强制地形成适合于判定填充在制冷剂回路10内的制冷剂量是否适当的制冷剂状态并使该状态稳定后、判定制冷剂量是否适当的,故在判定制冷剂量是否适当时,没有必要参照前次的判定结果等。因此,不需要设置预先存储制冷剂量的时间变化的存储器等。
(G)
在本实施例的空调装置1中,由于在向制冷剂回路10内填充制冷剂时(例如在现场通过液态制冷剂连接配管6及气态制冷剂连接配管7连接热源单元2与利用单元4、5后,根据液态制冷剂连接配管6及气态制冷剂连接配管7的长度追加填充不足的制冷剂时等)使所有利用单元4、5都进行制冷运转,且进行由利用侧膨胀阀41、51进行的过热度控制、由压缩机21进行的蒸发压力控制等的制冷剂量判定运转模式之一的制冷剂自动填充运转,从而可高精度地判定填充在制冷剂回路10内的制冷剂量是否适当,因而可正确且迅速地进行制冷剂填充作业。
(4)变形例1
在上述空调装置1中,通过检测热源侧热交换器23出口处的制冷剂的过冷度来判定制冷剂自动填充时及制冷剂泄漏检测时的制冷剂量是否适当,但也可不使用过冷度本身,而是检测跟随过冷度变动而变动的其他运转状态量来判定制冷剂量是否适当。
例如,在进行上述过热度控制及蒸发压力控制(最好还进行冷凝压力控制)时,当热源侧热交换器23出口处的制冷剂的过冷度较大时,由利用侧膨胀阀41、51膨胀后向利用侧热交换器42、52中流入的制冷剂的干燥度降低,故出现进行过热度控制的利用侧膨胀阀41、51的开度变小的倾向。利用这种特性,也可取代热源侧热交换器23出口处的制冷剂的过冷度,而使用作为跟随过冷度变动而变动的其他运转状态量之一的利用侧膨胀阀41、51的开度,来判定填充在制冷剂回路10内的制冷剂量是否适当。
另外,作为制冷剂量是否适当的判定基准,也可根据过冷度及跟随过冷度变动而变动的其他运转状态量的组合来判定制冷剂量是否适当,例如利用根据热源侧热交换器23出口处的过冷度得到的判定结果、以及根据利用侧膨胀阀41、51的开度得到的判定结果双方来判定制冷剂量是否适当等。
(5)变形例2
在上述制冷剂泄漏检测运转中,如图8及其说明所示,以使通常运转模式和制冷剂量判定运转模式以一定时间间隔切换的控制情况为例进行了说明,但并不限定于此。
例如也可不采用控制性切换,而是在空调装置1中预先设置用于切换到制冷剂量判定运转模式的开关等,通过服务人员或设备管理者在现场操作开关等来定期性地进行制冷剂泄漏检测运转。
另外,在上述关于制冷剂泄漏检测运转的说明中,说明了“强制地形成适合于判定填充在制冷剂回路10内的制冷剂量是否适当的制冷剂状态并使该状态稳定后、判定制冷剂量是否适当,故在判定制冷剂量是否适当时,没有必要参照前次的判定结果等”的情况,这是使本发明最大限度地发挥优点的情况,但若例如受到法律或基准的限制等时,并不排除根据多次制冷剂泄漏检测运转得到的结果来判定有无制冷剂泄漏、或根据与前次判定时的结果偏差来判定有无制冷剂泄漏、以及使用制冷剂刚填充后的结果来判定有无制冷剂泄漏等,在这种情况下,设有用于存储制冷剂量的时间变化等数据的存储器。
(6)其他实施例
上面参照附图对本发明的实施例进行了说明,但具体构成并不限定为这些实施例,可在不脱离本发明宗旨的范围内进行变更。
例如,在上述实施例中,以将本发明应用在可进行制冷取暖切换的空调装置中的情况为例进行了说明,但并不限定于此,只要是分体型的空调装置即可应用,例如也可将本发明应用在成对(日文:ペア)型的空调装置、制冷专用的空调装置及可进行制冷取暖同时运转的空调装置中。
作为其一例,下面对将本发明应用在可进行制冷取暖同时运转的空调装置中的实施例进行说明。
图10是可进行制冷取暖同时运转的空调装置101的概略制冷剂回路图。空调装置101主要包括:多台(在此为两台)利用单元4、5、热源单元102、以及制冷剂连接配管6、7、8。
利用单元4、5通过液态制冷剂连接配管6、作为气态制冷剂连接配管的吸入气体连接配管7、排出气体连接配管8及连接单元14、15与热源单元102连接,与热源单元102之间构成制冷剂回路110。另外,利用单元4、5的构成与上述空调装置1的利用单元4、5相同,省略其说明。
热源单元102通过制冷剂连接配管6、7、8与利用单元4、5连接,与利用单元4、5之间构成制冷剂回路110。下面对热源单元102的构成进行说明。
热源单元102主要包括构成制冷剂回路110的一部分的热源侧制冷剂回路110c。该热源侧制冷剂回路110c主要包括:压缩机21、三通切换阀122、热源侧热交换器23、蓄存器24、室外风扇27、开闭阀25、26、33。在此,除三通切换阀122和开闭阀33外的其他设备、阀类都与上述空调装置1的热源单元2的设备、阀类具有相同构成,故省略其说明。
三通切换阀122是用于切换热源侧制冷剂回路110c内的制冷剂流路的阀,在热源侧热交换器23作为冷凝器发挥作用时(以下称为冷凝运转状态),使压缩机21的排出侧与热源侧热交换器23的气体侧连接,在热源侧热交换器23作为蒸发器发挥作用时(以下称为蒸发运转状态),使压缩机21的吸入侧与热源侧热交换器23的气体侧连接。另外,在压缩机21的排出侧与三通切换阀122之间连接有排出气体连接配管8。在排出气体连接配管8上连接有排出气体开闭阀33。由此,由压缩机21压缩、排出后的高压气态制冷剂与三通切换阀122的切换动作无关,可向利用单元4、5供给。另外,在压缩机21的吸入侧连接有供从利用单元4、5返回的低压气态制冷剂流经的吸入气体连接配管7。
另外,在热源单元102中设置有各种传感器和热源侧控制部32,但这些都与上述空调装置1的各种传感器和热源侧控制部32具有相同构成,故省略其说明。
利用单元4、5的利用侧热交换器42、52的气体侧通过连接单元14、15可切换地与排出气体连接配管8及吸入气体连接配管7连接。连接单元14、15主要包括制冷取暖切换阀71、81。制冷取暖切换阀71、81是作为切换以下两种状态的切换机构发挥作用的阀,该两种状态是:利用单元4、5进行制冷运转时使利用单元4、5的利用侧热交换器42、52的气体侧与吸入气体连接配管7连接的状态(以下称为制冷运转状态)、以及利用单元4、5进行取暖运转时使利用单元4、5的利用侧热交换器42、52的气体侧与排出气体连接配管8连接的状态(以下称为取暖运转状态)。
采用这种空调装置101的构成,利用单元4、5可进行所谓的制冷取暖同时运转,例如利用单元4进行制冷运转而利用单元5进行取暖运转等。
并且,在该可进行制冷取暖同时运转的空调装置101中,在制冷剂量判定运转模式下,可将三通切换阀122切换成冷凝运转状态而使热源侧热交换器23作为制冷剂的冷凝器发挥作用,将制冷取暖切换阀71、81切换成制冷运转状态而使利用侧热交换器42、52作为制冷剂的蒸发器发挥作用,从而可使所有利用单元4、5都进行制冷运转,且通过利用侧膨胀阀41、51进行过热度控制、利用压缩机21进行蒸发压力控制等。由此,与上述空调装置1相同,可检测出热源侧热交换器23出口处的制冷剂的过冷度或跟随过冷度变动而变动的运转状态量,从而高精度地判定填充在制冷剂回路110内的制冷剂量是否适当。
产业上的可利用性:
采用本发明,在热源单元和利用单元通过制冷剂连接配管连接的分体型空调装置中,可高精度地判定填充在制冷剂回路内的制冷剂量是否适当。

Claims (7)

1、一种空调装置(1、101),其特征在于,包括制冷剂回路(10、110)和蓄存器(24),
所述制冷剂回路包括:具有运转负载量可变的压缩机(21)和热源侧热交换器(23)的热源单元(2、102)、具有利用侧膨胀机构(41、51)和利用侧热交换器(42、52)的利用单元(4、5)、以及连接所述热源单元与所述利用单元的液态制冷剂连接配管(6)及气态制冷剂连接配管(7),可至少进行使所述热源侧热交换器作为在所述压缩机中被压缩的制冷剂的冷凝器发挥作用、且使所述利用侧热交换器作为在所述热源侧热交换器中冷凝的制冷剂的蒸发器发挥作用的制冷运转,
所述蓄存器连接在所述压缩机的吸入侧,可根据所述利用单元的运转负荷来积存所述制冷剂回路内产生的剩余制冷剂,
该空调装置可在以下两种模式之间切换地进行运转:根据所述利用单元的运转负荷来控制所述热源单元及所述利用单元的各设备的通常运转模式;以及使所述利用单元进行制冷运转、控制所述利用侧膨胀机构使所述利用侧热交换器出口处的制冷剂的过热度为正值、且控制所述压缩机的运转负载量使所述利用侧热交换器中的制冷剂的蒸发压力为一定的制冷剂量判定运转模式,
在所述制冷剂量判定运转模式下,可检测出所述热源侧热交换器出口处的制冷剂的过冷度或跟随所述过冷度变动而变动的运转状态量,从而判定填充在所述制冷剂回路内的制冷剂量是否适当,
所述利用单元(4、5)设置有多台,
在所述制冷剂量判定运转模式下,使所述多台利用单元全部进行制冷运转。
2、如权利要求1所述的空调装置(1、101),其特征在于,所述制冷剂量判定运转模式下的运转定期进行。
3、如权利要求1所述的空调装置(1、101),其特征在于,所述制冷剂量判定运转模式下的运转在向所述制冷剂回路(10、110)内填充制冷剂时进行。
4、如权利要求1所述的空调装置(1、101),其特征在于,所述制冷剂回路(10、110)还包括切换机构(22、122、71、81),在所述通常运转模式下,该切换机构可在以下两种状态之间进行切换:制冷运转状态;以及使所述利用侧热交换(42、52)作为在所述压缩机(21)中被压缩的制冷剂的冷凝器发挥作用、且使所述热源侧热交换器(23)作为在所述利用侧热交换器中冷凝的制冷剂的蒸发器发挥作用的取暖运转状态,
所述利用侧膨胀机构(41、51)在所述制冷运转状态下,控制流经所述利用侧热交换器的制冷剂流量使作为蒸发器发挥作用的所述利用侧热交换器出口处的制冷剂的过热度为规定值,在所述取暖运转状态下,控制流经所述利用侧热交换器的制冷剂流量使作为冷凝器发挥作用的所述利用侧热交换器出口处的制冷剂的过冷度为规定值。
5、如权利要求1所述的空调装置(1、101),其特征在于,所述压缩机(21)由变频器控制的电动机(21a)驱动。
6、如权利要求1所述的空调装置(1、101),其特征在于,所述热源单元(2、102)还具有将作为热源的空气向所述热源侧热交换器(23)送入的送风风扇(27),
所述送风风扇可在所述制冷剂量判定运转模式下控制向所述热源侧热交换器供给的空气流量,使所述热源侧热交换器中的制冷剂的冷凝压力为规定值。
7、如权利要求6所述的空调装置(1、101),其特征在于,所述送风风扇(27)由直流电动机(27a)驱动。
CNB200580018953XA 2004-06-11 2005-06-10 空调装置 Active CN100434840C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004173839 2004-06-11
JP173839/2004 2004-06-11

Publications (2)

Publication Number Publication Date
CN1965203A CN1965203A (zh) 2007-05-16
CN100434840C true CN100434840C (zh) 2008-11-19

Family

ID=35503164

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200580018953XA Active CN100434840C (zh) 2004-06-11 2005-06-10 空调装置

Country Status (10)

Country Link
US (1) US7752855B2 (zh)
EP (2) EP1775532B1 (zh)
KR (2) KR20080022593A (zh)
CN (1) CN100434840C (zh)
AU (1) AU2005252968B2 (zh)
BR (1) BRPI0511969B1 (zh)
CA (1) CA2567304C (zh)
ES (2) ES2509964T3 (zh)
RU (1) RU2332621C1 (zh)
WO (1) WO2005121664A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933179B1 (ja) * 2005-12-16 2007-06-20 ダイキン工業株式会社 空気調和装置
JP4124228B2 (ja) * 2005-12-16 2008-07-23 ダイキン工業株式会社 空気調和装置
JP4165566B2 (ja) * 2006-01-25 2008-10-15 ダイキン工業株式会社 空気調和装置
JP4093275B2 (ja) 2006-03-20 2008-06-04 ダイキン工業株式会社 空気調和装置
JP4705878B2 (ja) * 2006-04-27 2011-06-22 ダイキン工業株式会社 空気調和装置
JP4904908B2 (ja) 2006-04-28 2012-03-28 ダイキン工業株式会社 空気調和装置
JP5011957B2 (ja) * 2006-09-07 2012-08-29 ダイキン工業株式会社 空気調和装置
ES2742529T3 (es) * 2006-09-21 2020-02-14 Mitsubishi Electric Corp Sistema de refrigeración/acondicionamiento de aire con función de detección de fugas de refrigerante, acondicionador de aire/refrigerador y método para detectar fugas de refrigerante
JP5055965B2 (ja) * 2006-11-13 2012-10-24 ダイキン工業株式会社 空気調和装置
WO2008079111A1 (en) * 2006-12-20 2008-07-03 Carrier Corporation Method for determining refrigerant charge
JP5125116B2 (ja) * 2007-01-26 2013-01-23 ダイキン工業株式会社 冷凍装置
JP4285583B2 (ja) * 2007-05-30 2009-06-24 ダイキン工業株式会社 空気調和装置
US8769976B2 (en) * 2007-06-12 2014-07-08 Danfoss A/S Method for controlling a refrigerant distribution
WO2008157757A1 (en) * 2007-06-21 2008-12-24 E. I. Du Pont De Nemours And Company Method for leak detection in heat transfer system
JP5130910B2 (ja) * 2007-12-28 2013-01-30 ダイキン工業株式会社 空気調和装置及び冷媒量判定方法
KR101488390B1 (ko) * 2008-02-05 2015-01-30 엘지전자 주식회사 공기조화장치의 냉매량 판단 방법
JP5326488B2 (ja) * 2008-02-29 2013-10-30 ダイキン工業株式会社 空気調和装置
JP5186951B2 (ja) * 2008-02-29 2013-04-24 ダイキン工業株式会社 空気調和装置
KR101545488B1 (ko) 2008-03-21 2015-08-21 엘지전자 주식회사 공기조화기의 냉매 충진방법
JP2010007994A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置および空気調和装置の冷媒量判定方法
KR101583344B1 (ko) * 2009-01-06 2016-01-19 엘지전자 주식회사 공기조화기 및 공기조화기의 냉매 충전 방법
US9243830B2 (en) * 2009-03-03 2016-01-26 Cleland Sales Corporation Microprocessor-controlled beverage dispenser
WO2010118745A2 (en) * 2009-04-16 2010-10-21 Danfoss A/S A method of controlling operation of a vapour compression system
WO2010137311A1 (ja) * 2009-05-29 2010-12-02 ダイキン工業株式会社 暖房専用空気調和装置
US9739513B2 (en) * 2010-06-23 2017-08-22 Mitsubishi Electric Corporation Air conditioning apparatus
JP2013250038A (ja) * 2012-06-04 2013-12-12 Daikin Industries Ltd 冷凍装置管理システム
JP6310054B2 (ja) * 2014-02-18 2018-04-11 東芝キヤリア株式会社 冷凍サイクル装置
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
WO2016135956A1 (ja) * 2015-02-27 2016-09-01 三菱電機株式会社 冷凍装置
WO2016135953A1 (ja) * 2015-02-27 2016-09-01 三菱電機株式会社 冷媒量異常検知装置及び冷凍装置
WO2016150664A1 (en) * 2015-03-24 2016-09-29 Danfoss Värmepumpar Ab A method for controlling compressor capacity in a vapour compression system
WO2017061010A1 (ja) * 2015-10-08 2017-04-13 三菱電機株式会社 冷凍サイクル装置
EP3546855B1 (en) * 2016-11-22 2020-09-09 Mitsubishi Electric Corporation Air conditioner and air conditioning system
JP6762422B2 (ja) * 2017-04-12 2020-09-30 三菱電機株式会社 冷凍サイクル装置
JP2019011899A (ja) 2017-06-30 2019-01-24 株式会社富士通ゼネラル 空気調和装置
CN107543290A (zh) * 2017-09-04 2018-01-05 广东美的暖通设备有限公司 多联机空调***控制方法和装置以及多联机空调***
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
CN109631435B (zh) * 2019-01-14 2021-06-01 四川长虹空调有限公司 制冷剂充注***及方法
CN109631437B (zh) * 2019-01-31 2021-06-04 四川长虹空调有限公司 制冷剂充注量合适性的判断方法
JP7007612B2 (ja) 2020-06-30 2022-01-24 ダイキン工業株式会社 冷凍システムおよび熱源ユニット
CN114413429B (zh) * 2022-01-26 2023-05-30 青岛海信日立空调***有限公司 空调***
CN115164274A (zh) * 2022-06-01 2022-10-11 青岛海尔空调电子有限公司 室内机风量控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214918A (en) * 1989-12-13 1993-06-01 Hitachi, Ltd. Refrigerator and method for indicating refrigerant amount
JP2000304388A (ja) * 1999-04-23 2000-11-02 Matsushita Refrig Co Ltd 空気調和装置
JP2001255024A (ja) * 2000-03-10 2001-09-21 Mitsubishi Heavy Ind Ltd 空気調和機およびその制御方法
JP2002350014A (ja) * 2001-05-22 2002-12-04 Daikin Ind Ltd 冷凍装置
CN1441214A (zh) * 2003-04-10 2003-09-10 上海交通大学 跨临界二氧化碳制冷***节流控制机构
CN1580672A (zh) * 2004-05-20 2005-02-16 上海交通大学 跨临界二氧化碳制冷***全机械式节流控制机构
CN1226573C (zh) * 2000-11-13 2005-11-09 大金工业株式会社 空调装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615937B2 (ja) 1983-04-25 1994-03-02 日本電装株式会社 冷凍サイクル制御装置
US4484452A (en) * 1983-06-23 1984-11-27 The Trane Company Heat pump refrigerant charge control system
JPH0721374B2 (ja) 1986-01-08 1995-03-08 株式会社日立製作所 冷媒量検知装置を備えた空気調和機
JPS63106910A (ja) 1986-10-24 1988-05-12 Hitachi Ltd 薄膜磁気ヘツド
JPH01120061U (zh) 1988-02-05 1989-08-15
SU1573310A1 (ru) 1988-08-18 1990-06-23 Научно-исследовательский институт санитарной техники Вентил торный конвектор
JPH0448160A (ja) 1990-06-14 1992-02-18 Hitachi Ltd 冷凍サイクル装置
JPH08152204A (ja) 1994-11-30 1996-06-11 Hitachi Ltd 空気調和機及びその運転方法
KR970034375A (ko) 1995-12-30 1997-07-22 박상록 차량용 공기조화기의 제어장치 및 그 방법
JP3719297B2 (ja) 1996-12-20 2005-11-24 株式会社デンソー 冷媒不足検出装置
JPH11211292A (ja) 1998-01-26 1999-08-06 Matsushita Electric Ind Co Ltd 冷凍装置の冷媒漏れ検出装置及び冷媒漏れ検出方法
JP2000130897A (ja) 1998-10-27 2000-05-12 Hitachi Ltd 冷媒封入量判定装置及び方法
RU2133922C1 (ru) 1999-01-12 1999-07-27 Лейзерович Борис Михайлович Система кондиционирования воздуха помещений
JP3584274B2 (ja) 1999-05-28 2004-11-04 株式会社日立製作所 冷媒量調整方法及び冷媒量判定装置
JP3719246B2 (ja) * 2003-01-10 2005-11-24 ダイキン工業株式会社 冷凍装置及び冷凍装置の冷媒量検出方法
US6981384B2 (en) * 2004-03-22 2006-01-03 Carrier Corporation Monitoring refrigerant charge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214918A (en) * 1989-12-13 1993-06-01 Hitachi, Ltd. Refrigerator and method for indicating refrigerant amount
JP2000304388A (ja) * 1999-04-23 2000-11-02 Matsushita Refrig Co Ltd 空気調和装置
JP2001255024A (ja) * 2000-03-10 2001-09-21 Mitsubishi Heavy Ind Ltd 空気調和機およびその制御方法
CN1226573C (zh) * 2000-11-13 2005-11-09 大金工业株式会社 空调装置
JP2002350014A (ja) * 2001-05-22 2002-12-04 Daikin Ind Ltd 冷凍装置
CN1441214A (zh) * 2003-04-10 2003-09-10 上海交通大学 跨临界二氧化碳制冷***节流控制机构
CN1580672A (zh) * 2004-05-20 2005-02-16 上海交通大学 跨临界二氧化碳制冷***全机械式节流控制机构

Also Published As

Publication number Publication date
ES2509964T3 (es) 2014-10-20
US20080209926A1 (en) 2008-09-04
BRPI0511969A (pt) 2008-01-22
EP1775532A4 (en) 2012-03-28
CA2567304C (en) 2011-10-11
CA2567304A1 (en) 2005-12-22
EP1775532A1 (en) 2007-04-18
EP1775532B1 (en) 2013-03-06
KR20070032683A (ko) 2007-03-22
WO2005121664A1 (ja) 2005-12-22
US7752855B2 (en) 2010-07-13
EP2535670A2 (en) 2012-12-19
AU2005252968B2 (en) 2008-07-31
BRPI0511969B1 (pt) 2018-11-27
EP2535670B1 (en) 2014-08-06
RU2332621C1 (ru) 2008-08-27
KR20080022593A (ko) 2008-03-11
CN1965203A (zh) 2007-05-16
AU2005252968A1 (en) 2005-12-22
ES2402690T3 (es) 2013-05-07
EP2535670A3 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
CN100434840C (zh) 空调装置
CN101432584B (zh) 空调装置
CN101331366B (zh) 空调装置
CN101512256B (zh) 空调装置
CN101865509B (zh) 空调装置的制冷剂量判定方法
CN101331372B (zh) 空调装置
CN102365510B (zh) 空调热水供给复合***
CN101326416B (zh) 空调装置
JP3852472B2 (ja) 空気調和装置
CN102844630B (zh) 空调热水供给复合***
CN101371087B (zh) 空调装置
JP4270197B2 (ja) 空気調和装置
CN101405550B (zh) 空调装置
CN101395436B (zh) 空调装置
KR20080081946A (ko) 공기 조화 장치
CN102095267B (zh) 空调装置
CN101512249B (zh) 制冷装置
CN108139086A (zh) 空调及控制空调的方法
CN102077042A (zh) 空气调节装置的制冷剂量判定方法及空气调节装置
CN101910759A (zh) 空气调节装置和制冷剂量判定方法
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
JPWO2014083682A1 (ja) 空気調和装置
CN101331371B (zh) 空调装置
WO2017110339A1 (ja) 空気調和装置
JP2007163104A (ja) 空気調和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant