CN100418267C - 一种具有较宽带宽的小型电结构的电介质天线 - Google Patents

一种具有较宽带宽的小型电结构的电介质天线 Download PDF

Info

Publication number
CN100418267C
CN100418267C CNB038191687A CN03819168A CN100418267C CN 100418267 C CN100418267 C CN 100418267C CN B038191687 A CNB038191687 A CN B038191687A CN 03819168 A CN03819168 A CN 03819168A CN 100418267 C CN100418267 C CN 100418267C
Authority
CN
China
Prior art keywords
antenna
dielectric
dielectric unit
unit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038191687A
Other languages
English (en)
Other versions
CN1675797A (zh
Inventor
提姆·约翰·帕尔默
萨拉·威尔逊
斯科特·威廉·斯宾塞·泰勒
西蒙·菲利普·金斯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Antenova Ltd
Original Assignee
Antenova Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antenova Ltd filed Critical Antenova Ltd
Publication of CN1675797A publication Critical patent/CN1675797A/zh
Application granted granted Critical
Publication of CN100418267C publication Critical patent/CN100418267C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

一种电介质天线,包括安装于电介质基底第一面上的电介质单元,位于基底第一面上并在基底与电介质单元间延伸的微带馈线,以及形成于基底的与第一面相对的第二面上的导电层,其中在导电层中与电介质单元的位置相对应的位置处形成有孔。该天线为小型电结构,其具有宽的带宽和好的增益特性,具有高效率且不易于失调。

Description

一种具有较宽带宽的小型电结构的电介质天线
本发明涉及一种包含馈线和带有孔的接地面(groundplane)的电介质天线,该电介质天线具有宽的带宽。
电介质天线是以选定的发射和接收频率发射或接收无线电波的装置,它可在例如移动远程通信中得到使用。通常,电介质天线由设置在接地基底上或接近于接地基底的许多电介质材料组成,能量通过***电介质材料的单极探针或通过设在接地基底中的单极孔馈线(aperture feed)(孔馈线是一种设在由电介质材料覆盖的接地基底之中的不连续馈线,其形状通常为矩形,当然椭圆形、长方形、梯形“H”形状,“<->”形状、或蝴蝶/蝴蝶结形状及这些形状的组合也是适当的。孔馈线可以由位于接地基底远离电介质材料的一侧上的条带形馈线进行激励,条带形馈线可以采用微带传输线、接地或不接地的共面传输线、三极板(triplate)、开槽线等形式)被传入和传出电介质材料。直接连接到微带传输线并由其激活也是可能的。作为一种选择,双极探针可以被***到电介质材料中,在这种情况下就不需要接地基底。如在作为例子的本申请人的共同未决的第09/431,548号美国专利申请以及KINGSLEY,S.P.和O′KEEFE,S.G.的出版物(题为“探针馈电式电介质谐振器天线的波束控制和单脉冲处理”,IEE学报-雷达声纳和导航,146,3,121-125,1999)中所述的那样,通过提供多馈线并按照一定顺序或以各种组合形式激励它们,就可形成可连续或逐渐增加地控制的一个或多个波束。上述参考文献的全部内容通过引用被并入本申请。
电介质天线的谐振特性尤其依赖于电介质材料体的形状和大小以及引至电介质材料的馈线的形状、大小和位置,此外还依赖于接地面的形状、大小和位置。应当认识到在电介质天线中,是电介质材料受到馈线的激励以进行辐射。这与介电负载的天线(DLA)形成对比,其中传统的导电辐射元件被包覆在用于修改辐射元件的谐振特性的电介质材料中。作为进一步的差别,DLA没有或只有很少的位移电流流入电介质,而电介质谐振器天线(DRA)或高介电天线(HDA)却具有可观的位移电流。
电介质天线可以采取多种形式,一种通常的形式为圆柱形、分成一半或四分之一的圆柱形。电介质媒介可由包括陶瓷介质在内的各种候选材料制成。
人们在1983年第一次对电介质谐振器天线(DRA)进行***学习[LONG,S.A.,MCALLISTER,M.W.,and SHEN,L.C.:“The ResonantCylindrical Dielectric Cavity Antenna”,IEEE Transactions on Antennas andPropagation,AP-31,1983,pp 406-412(LONG,S.A.,MCALLISTER,M.W.和SHEN,L.C.的“谐振圆柱式介电谐振腔天线”,IEEE天线和传播学报,AP-31,1983,第406-412页)]。自此,由于它们发射效率高,与最常使用的传输线具有良好的匹配,并且具有小的物理尺寸,所以人们对它们的辐射图的兴趣逐渐增加[MONGIA,R.K.and BHARTIA,P.:“DielectricResonator Antennas-A Review and General Design Relations for ResonantFrequency and  Bandwidth″,International Journal of Microwave andMillimetre-Wave Computer-Aided Engineering,1994,4,(3),pp 230-247,(MONGIA,R.K.和BHARTIA,P.的“电介质谐振器天线-谐振频率和带宽的回顾和一般设计关系”,微波和毫微波计算机辅助工程国际杂志,1994,4,(3),第230-247页)]。在PETOSA,A.,ITTIPIBOON,A.,ANTAR,Y.M.M.,ROSCOE,D.,and  CUHACI,M.:“Recent advances inDielectric-Resonator Antenna Technology”,IEEE Antennas and PropagationMagazine,1998,40,(3),pp 35-48(PETOSA,A.,ITTIPIBOON,A.,ANTAR,Y.M.M.,ROSCOE,D.和CUHACI,M.的“电介质谐振器天线技术的最新进展”,IEEE天线和传播杂志,1998,40,(3),第35-48页)中有关于一些更新进展的摘要。
已发现当被安装于或接近于接地面(接地基底)并由适当方法激励时,有多种基本形状可起到良好的电介质天线结构的作用。这些几何结构中最著名的可能为:
矩形[MCALLISTER,M.W.,LONG,S.A.and CONWAY G.L.:″Rectangular Dielectric Resonator Antenna″,Electronics Letters,1983,19,(6),pp 218-219(MCALLISTER,M.W.,LONG,S.A.和CONWAY G.L.的“矩形电介质谐振器天线”,电子学报,1983,19,(6),第218-219页)]。
三角形[ITTIPBOON,A.,MONGIA,R.K.,ANTAR,Y.M.M.,BHARTIA,P.and CUHACI,M:″Aperture Fed Rectangular and TriangularDielectric Resonators for use as Magnetic Dipole Antennas″,ElectronicsLetters,1993,29,(23),pp 2001-2002(ITTIPBOON,A.,MONGIA,R.K.,ANTAR,Y.M.M.,BHARTIA,P.和CUHACI,M的“用作磁偶极子天线的孔馈电式矩形和三角形电介质谐振器”,电子学报1993,29,(23),第2001-2002页)]
半球形[LEUNG,K.W.:“Simple results for conformal-stripexcited hemispherical dielectric resonator antenna”,Electronics Letters,2000,36,(11)(LEUNG,K.W.的“共形条带激励的半球形电介质谐振器天线的简单结果”,电子学报2000,36,(11))]。
柱形[LONG,S.A.,MCALLISTER,M.W.,and SHEN,L.C.:“The Resonant Cylindrical Dielectric Cavity Antenna”,IEEE Transactionson Antennas and Propagation,AP-31,1983,pp 406-412(LONG,S.A.,MCALLISTER,M.W.和SHEN,L.C.的“谐振柱式介电谐振腔天线”,IEEE天线和传播学报,AP-31,1983,第406-412页)]。
分成一半的柱形(垂直安装于接地面上的半柱形)[MONGIA,R.K.,ITTIPIBOON,A.,ANTAR,Y.M.M.,BHARTIA,P.and CUHACI,M:“A  Half-Split Cylindrical Dielectric Resonator Antenna UsingSlot-Coupling”,IEEE Microwave and guided Wave Letters,1993,Vol.3,No.2,pp 38-39(MONGIA,R.K.,ITTIPIBOON,A.,ANTAR,Y.M.M.,BHARTIA,P.and CUHACI,M的“应用槽隙耦合的分成一半的柱形电介质谐振器天线”,IEEE微波和波导杂志,1993,第3卷,(2)第38-39页)]。
这些天线设计中的一些还被分成了多个部分。例如,圆柱形DRA可被分为两半[TAM,M.T.K.and MURCH,R.D.:“Half volume dielectricresonator antenna designs”,Electronics Letters,1997,33,(23),pp 1914-1916(TAM,M.T.K.和MURCH,R.D.的“半体电介质谐振器天线设计”,电学学报,1997,33,(23),第1914-1916页)]。然而,将天线分为两半或对其进一步分割并不能改变其柱形的或矩形的等基本几何形状。
高介质天线(HDA)与DRA类似,但与DRA在电介质谐振器下设置有完整的接地面不同的是,HDA具有较小的接地面或根本没有接地面。DRA通常具有深的、良好定义的谐振频率,而HDA倾向于具有非良好定义的响应,但它可在较宽的频率范围内工作。HDA可采用与DRA类似的多种优选形状。然而,可以制造任何任意的电介质形状以用于发射,这一点在试图使天线与其外壳共形的时候是有用的。
在DRA和HDA中,主辐射器都为电介质谐振器。在DLA中,主辐射器为导电部件(如铜线或类似物),电介质用于改善天线在其中工作的媒介,并且通常使天线更小。
为了实现本申请的目的,本文中的表述“电介质天线”被定义为涵盖了DRA、HDA和DLA(因为本发明的某些实施例可被认为是非均匀负载的单极子)。
根据本发明的第一个方面,它提供了一种电介质天线,其包括:安装于电介质基底的第一面上的电介质单元;设置于基底的第一面上并在基底与电介质单元间延伸的微带馈线(microstrip feed),以及形成于基底与第一面相对的第二面上的导电层,其中在导电层中与电介质单元的位置相对应的位置处形成有孔。
本发明的各实施方案在电结构上较小,具有宽的带宽和好的增益特性,具有高效率且不易于失调(detuned)。
本发明的各实施方案尤其适合用作移动电话的手机天线,这种天线需要更宽的带宽以涵盖现代手机所需要的、可在3G和蓝牙波段以及现有的GSM波段上使用的附加功能。
基底的第二面上的导电层可作为本发明各实施方案的天线的接地面。
导电层中的孔,其从面积上优选地大于面向或接触基底的第一面的电介质单元的表面。孔的形状可为矩形或其他任何适当的形状。孔可具有与面向或接触基底的第一面的电介质单元的表面相似或基本相同的形状,或者也可具有不同的形状。
该电介质谐振器可以为一块低损耗介电陶瓷材料,其形状优选地为长方形或矩形、分成一半的柱形、或者其弯曲表面被磨掉以充分变平的分成一半的柱形。也不排除其他的形状或结构,例如分成四分之一的柱形。已发现本发明的各实施方案可与具有不同介电常数的不同介电陶瓷材料一起良好地工作。虽然通常优选地使电介质单元的至少一些部分与基底的第一面相接触,但本发明的各实施方案在当电介质单元安装于接近基底但并未直接与基底接触时仍可发挥正常的功能。例如,在微带馈线与基底的第一面并不完全平齐并且电介质单元被安装在微带馈线的顶部的情况下,在面向基底的第一面的电介质单元的表面与基底自身的第一面之间可存在小的空气间隙。该间隙可由介质垫(dielectric pad)或介质带或者其他介质填充材料桥接(bridge),或者也可由导电垫或导电带或者其他导电填充材料桥接。
使微带馈线在电介质单元的一端处或者朝向电介质单元的一端地从电介质单元和基底的第一面之间经过是有利的。优选地,微带馈线在电介质单元附近具有基本线性的延伸部分,该基本线性的延伸部分被设置成与电介质单元的长轴(major axis)基本垂直。
微带馈线可以仅延伸穿过电介质单元的部分宽度,或者可以延伸穿过电介质单元的整个宽度,或者可以延伸超出电介质单元的整个宽度。虽然当以上述方式设置微带馈线时可观测到本发明各实施方案天线的最佳性能,但通过实验发现其他馈线形状也是有效的,包括弯曲或卷曲环绕于电介质单元下方的馈线,或者位于电介质单元下方并且并非每点都与电介质单元的长轴垂直的“L”形、“U”形等形状的馈线。
导电层中的孔不必每一面都被导电材料环绕。例如,孔可形成于基底的边缘或拐角处,或者可延伸越过基底的整个宽度。然而,孔通常优选地为其所有面上都环绕有导电材料。
已发现对于电介质单元的任何特定形状或结构都存在最佳或近似最佳的孔的尺寸。
增加槽隙的宽度(即,在微带馈线的延伸方向上)趋向于增加电介质天线的带宽。
增加槽隙的长度(即,在通常与微带馈线的延伸方向垂直的方向上)趋向于改善电介质天线的频率匹配,但会增加天线的谐振或工作频率。
本申请的申请人发现,导电层中孔的存在对于得到异常优越的宽的带宽性能是至关重要的。然而,通过实验发现,如果导电材料不与主接地面相接触,则在孔任意一个或两个表面上,孔的一部分可能被导电材料“填入”。另外,当孔穿过基底的顶缘由此与主接地面只有一个交界时,以及当孔与接地面同侧的面被填入导电材料并且在二者之间仅有很小的间隙时,要获得好的回波损耗(return loss)(50欧姆的良好匹配)则该间隙的宽度是极其重要的。间隙为0.5mm时回波损耗较差,间隙为2mm时较好,间隙大于5mm时为优良。
本发明各实施方案的原型是利用印刷电路板基底材料作为电介质基底并用铜作为导电层而构成的。显然也可使用具有适合特性的其它材料。已发现本发明各实施方案的天线在使用具有不同厚度和不同介电系数的不同类型基底时可良好工作。
还发现电介质单元可被设置在基底的第二表面上,即与孔同侧的面。在这种结构中,更类似于通常的槽隙馈电(slot feeding),但具有比通常所用大得多的槽隙或孔。
根据本发明的第二个方面,它提供了一种电介质天线,包括:设置于电介质基底的第一面上的微带馈线;形成于基底与第一面相对的第二面上并且其中形成有孔的导电层,以及安装于基底的第二面上的电介质单元,该电介质单元位于所述孔以内或至少与所述孔重叠。
在本发明的第一个和第二个方面的某些实施例中,在面向或接触电介质基底的第一或第二面的电介质单元的表面上可通过例如金属化处理(metallisation)设置导电覆层或导电层。这在天线制造过程中可提供帮助,因为电介质单元可通过回流(reflow)或逆流(reflux)焊接与电介质基底的适当表面和/或微带馈线连接。可选的或附加地,可通过例如金属化处理在电介质单元的一个或多个其它表面上设置导电覆层或导电层。
为了更好地理解本发明并说明它是如何被实施的,下面将参照附图通过举例的方式进行说明,在附图中:
图1是本发明的第一个方面的第一实施方案的平面示意图;
图2是图1的实施例的立体图;
图3是本发明的第一个方面的第二实施方案的平面图;
图4是图1的实施方案的垂直仰角辐射图的图表;
图5是图1的实施方案的水平仰角辐射图的图表;
图6是图1的实施方案的方位角辐射图的图表;
图7示出了本发明第一个方面的第三实施方案的计算机模拟3D辐射图,该实施方案也在图7中示出;
图8示出了图1、图2和图3的实施方案的备选方案,其中电介质单元的底面设置有导电覆层或导电层;以及
图9示出了本发明第二个方面的一个实施方案。
参照图1,其中示出了PCB(印刷电路板)形式的电介质基底1,其第一表面上安装有低损耗介电陶瓷块(pellet)2,该介电陶瓷块2被形成为分成一半的柱形体,并且其弯曲面被磨掉以留下平的顶表面。微带馈线3从SMA连接器4延伸横穿基底1的第一表面,并且在陶瓷块2和基底1的第一表面之间穿行。可以看到微带馈线3与陶瓷块2的长轴基本正交,并且在陶瓷块2一端的下面穿行。基底1与第一表面相对的第二表面设置有导电金属层5,在陶瓷块2下面的区域除外,在该区域中通过导电材料5的缺乏而限定出孔6。
一种原型电介质天线已由长为18.2mm、高为5.8mm、宽为8mm的陶瓷块2组成;该陶瓷块2被安装在长为80mm、宽为35mm、厚(深度)为1.6mm的PCB 1上。使用铜层作为导电层5。在一个实施方案中,孔6具有35mm的长度(对应于PCB 1的宽度)和14mm的宽度;在另一个实施方案中,孔6具有35mm的长度和13.5mm的宽度。
上所原型电介质天线的典型性能数据示于表1:
表1
  最低频率   中心频率   最高频率   测量电平   带宽%   增益
  S11   1444MHz   1837MHz   2230MHz   VSWR3∶1   43%   N/A
  S21   1250MHz   1790MHz   2330MHz   -3dB   60%   3.3dBi
结果显示,对于这样一种具有良好增益(3.3dBi)的小型天线来说,S11回波损耗带宽和S21传输带宽都相当的大。
图2示出了图1中实施方案的备选视图,其具有与图1中已标记部分相似的部分。其中清楚的示出了陶瓷块2被磨平的顶表面7。
图3示出了本发明的一个备选实施方案,其中孔6延伸穿过基底1的整个宽度。
图4、图5和图6分别示出了在各种频率下图1所示实施方案的垂直仰角辐射图、水平仰角辐射图以及方位角辐射图。从图中可以看到,在从1710MHz到2170MHz的频率波段内可获得有用的增益。该频率波段覆盖了欧洲的1800MHz、美国的1900MHz以及WCDMA移动电话频率波段。
使用Ansoft
Figure C0381916800141
HFSS电磁仿真软件对本发明的电介质天线进行模拟。模拟结果证实,该电介质天线可在宽的带宽范围内有效地辐射,并且该结果并不仅是由电缆、微带或类似物的辐射所产生的测量假象(measurement artefact)。图7示出了在1940MHz下3D辐射图的模拟,其与该频率下测得的图案基本相符。图7还示出了具有图1中所标记的部分的模拟电介质天线的示意图。
图8示出了图1、图2、图3和图7的各实施方案的备选实施方案,其包括电介质PCB基底1,介电陶瓷块2安装于基底1的第一表面上。微带馈线3从SMA连接器4横穿基底1的第一表面,并且在陶瓷块2和基底1之间穿行。基底1的第二表面设置有起接地面作用的导电金属层5,在陶瓷块2下面的区域除外,在该区域中通过导电材料5的缺乏而限定出孔6。与图1、图2、图3和图7的各实施方案形成对比的是,在介电陶瓷块2的下面上设置有金属层或覆层8,其与微带馈线3和电介质基底1的第一表面相接触。金属层或覆层8允许通过回流或逆流焊接而使陶瓷块2与基底1连接,这样就能够快速、简单地制造天线,并可实现陶瓷块2和基底1之间的健壮的物理连接。
图9示出了本发明的第二个方面的一个实施方案,其中提供了电介质PCB基底1,在其下面(除了因导电金属层5的缺乏而限定出的孔6以外的地方)上设置有金属层5。微带馈线3设置在基底1的顶面上,馈线3从SMA连接器4延伸至所述顶面上与位于基底1的下面上的金属层5之中的孔6的位置相对应的区域。与图1、图2、图3和图7的各实施方案形成对比的是,低损耗介电陶瓷块2被安装在基底1下面的孔6中。本实施方案的电介质天线可被考虑以槽隙馈电方式工作,但具有比通常所用的大得多的槽隙或孔6。实际上,在图示的实施方案中,槽隙或孔6宽于陶瓷块2。
本发明优选的特征能应用于本发明的所有方面并且可以任何组合的方式使用。
在贯穿本文的说明书和权利要求书中,词语“包括(comprise)”和“包含(contain)”及其变体(如“包括(comprising)”和“包括(comprises)”)的意思是“包括但不限于”,且不意图排除其它组分、整体、部分、添加物或步骤。

Claims (38)

1. 一种电介质天线,包括安装于电介质基底的第一面上的电介质单元;位于所述基底的所述第一面上并在所述基底与所述电介质单元之间延伸的微带馈线;以及形成于所述基底的与所述第一面相对的第二面上的导电层,其中在所述导电层中与所述电介质单元的位置相对应的位置处形成有孔。
2. 如权利要求1所述的天线,其中,所述孔从面积上大于面向或接触所述电介质基底的所述电介质单元的表面。
3. 如权利要求1或2所述的天线,其中,所述孔的所有侧面上都被所述导电层环绕。
4. 如权利要求1或2所述的天线,其中,所述孔延伸至所述基底的所述第二面的至少一个边缘或拐角,并且由此不是其所有侧面上都被所述导电层环绕。
5. 如权利要求1或2所述的天线,其中,所述电介质单元由低损耗介电陶瓷材料制成。
6. 如权利要求1或2所述的天线,其中,所述电介质单元的形状为长方形或矩形。
7. 如权利要求1或2所述的天线,其中,所述电介质单元的形状为分成一半或分成四分之一的柱形。
8. 如权利要求5所述的天线,其中,所述电介质单元的边缘区域或弯曲的表面通过磨削而被削切或变平。
9. 如权利要求1或2所述的天线,其中,所述孔具有与面向或接触所述电介质基底的所述电介质单元的表面的形状相同的形状。
10. 如权利要求1或2所述的天线,其中,所述孔具有与面向或接触所述电介质基底的所述电介质单元的表面的形状不同的形状。
11. 如权利要求1所述的天线,其中,所述微带馈线在所述电介质单元的一端处或者朝向所述电介质单元的一端地从所述电介质单元和所述基底的所述第一面之间经过。
12. 如权利要求1或2所述的天线,其中,所述电介质单元具有平行于所述基底的长轴和短轴,这些轴分别限定出所述电介质单元的长度和宽度。
13. 如权利要求12所述的天线,其中,在所述电介质单元附近,所述微带馈线具有与所述长轴正交的线性的延伸部分。
14. 如权利要求1或2所述的天线,其中,在所述电介质单元附近,所述微带馈线被弯曲、弯折或卷曲。
15. 如权利要求12所述的天线,其中,所述微带馈线仅延伸穿过所述电介质单元的部分宽度。
16. 如权利要求12所述的天线,其中,所述微带馈线延伸穿过所述电介质单元的整个宽度。
17. 如权利要求12所述的天线,其中,所述微带馈线延伸超出所述电介质单元的整个宽度。
18. 如权利要求1或2所述的天线,其中,所述孔被部分地填充以不与所述导电层相接触的导电材料。
19. 如权利要求1或2所述的天线,其中,在所述电介质单元的至少一个表面上设置有导电覆层或导电层。
20. 如权利要求19所述的天线,其中,所述至少一个表面是面向或接触所述电介质基底的所述电介质单元的表面。
21. 一种电介质天线,包括:位于电介质基底的第一面上的微带馈线;形成于所述基底的与所述第一面相对的第二面上并且其中形成有孔的导电层;以及安装于所述基底的所述第二面上的电介质单元,所述电介质单元位于所述孔以内或至少与所述孔重叠,其中,所述孔从面积上大于面向或接触所述电介质基底的所述电介质单元的表面。
22. 如权利要求21所述的天线,其中,所述孔的所有侧面上都被所述导电层环绕。
23. 如权利要求21所述的天线,其中,所述孔延伸至所述基底的所述第二面的至少一个边缘或拐角,并且由此不是其所有侧面上都被所述导电层环绕。
24. 如权利要求21所述的天线,其中,所述电介质单元由低损耗介电陶瓷材料制成。
25. 如权利要求21所述的天线,其中,所述电介质单元的形状为长方形或矩形。
26. 如权利要求21所述的天线,其中,所述电介质单元的形状为分成一半或分成四分之一的柱形。
27. 如权利要求24所述的天线,其中,所述电介质单元的边缘区域或弯曲的表面通过磨削而被削切或变平。
28. 如权利要求21所述的天线,其中,所述孔具有与面向或接触所述电介质基底的所述电介质单元的表面的形状相同的形状。
29. 如权利要求21所述的天线,其中,所述孔具有与面向或接触所述电介质基底的所述电介质单元的表面的形状不同的形状。
30. 如权利要求21所述的天线,其中,所述电介质单元具有平行于所述基底的长轴和短轴,这些轴分别限定出所述电介质单元的长度和宽度。
31. 如权利要求30所述的天线,其中,在所述电介质单元附近,所述微带馈线具有与所述长轴正交的线性的延伸部分。
32. 如权利要求21所述的天线,其中,在所述电介质单元附近,所述微带馈线被弯曲、弯折或卷曲。
33. 如权利要求30所述的天线,其中,所述微带馈线仅延伸穿过所述电介质单元的部分宽度。
34. 如权利要求30所述的天线,其中,所述微带馈线延伸穿过所述电介质单元的整个宽度。
35. 如权利要求30所述的天线,其中,所述微带馈线延伸超出所述电介质单元的整个宽度。
36. 如权利要求21所述的天线,其中,所述孔被部分地填充以不与所述导电层相接触的导电材料。
37. 如权利要求21所述的天线,其中,在所述电介质单元的至少一个表面上设置有导电覆层或导电层。
38. 如权利要求37所述的天线,其中,所述至少一个表面是面向或接触所述电介质基底的所述电介质单元的表面。
CNB038191687A 2002-08-14 2003-08-14 一种具有较宽带宽的小型电结构的电介质天线 Expired - Fee Related CN100418267C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0218820.9 2002-08-14
GBGB0218820.9A GB0218820D0 (en) 2002-08-14 2002-08-14 An electrically small dielectric resonator antenna with wide bandwith

Publications (2)

Publication Number Publication Date
CN1675797A CN1675797A (zh) 2005-09-28
CN100418267C true CN100418267C (zh) 2008-09-10

Family

ID=9942238

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038191687A Expired - Fee Related CN100418267C (zh) 2002-08-14 2003-08-14 一种具有较宽带宽的小型电结构的电介质天线

Country Status (8)

Country Link
US (1) US7161535B2 (zh)
EP (1) EP1543587A1 (zh)
JP (1) JP4312714B2 (zh)
KR (1) KR20050050642A (zh)
CN (1) CN100418267C (zh)
AU (1) AU2003264718A1 (zh)
GB (2) GB0218820D0 (zh)
WO (1) WO2004017461A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400498B (en) * 2002-05-15 2005-04-13 Antenova Ltd Dielectrically-loaded antenna structure using a microstrip transmission line as a signal feed and radiator
AU2003234005A1 (en) 2002-05-15 2003-12-02 Antenova Limited Improvements relating to attaching dielectric resonator antennas to microstrip lines
GB0218820D0 (en) 2002-08-14 2002-09-18 Antenova Ltd An electrically small dielectric resonator antenna with wide bandwith
GB2421357B (en) * 2002-12-07 2007-06-20 Zhipeng Wu Broadband miniaturised dielectric resonator antennas with a virtual ground plane
GB0311361D0 (en) * 2003-05-19 2003-06-25 Antenova Ltd Dual band antenna system with diversity
GB2403069B8 (en) 2003-06-16 2008-07-17 Antenova Ltd Hybrid antenna using parasiting excitation of conducting antennas by dielectric antennas
GB2412246B (en) * 2004-03-16 2007-05-23 Antenova Ltd Dielectric antenna with metallised walls
TWI259607B (en) * 2005-04-29 2006-08-01 Benq Corp Antenna device
US8059036B2 (en) * 2007-06-06 2011-11-15 Nokia Corporation Enhanced radiation performance antenna system
US8248323B2 (en) * 2008-05-30 2012-08-21 Motorola Solutions, Inc. Antenna and method of forming same
CN104617395B (zh) * 2014-12-23 2018-05-15 北京邮电大学 一种多频段介质谐振手机终端天线
WO2016101136A1 (zh) * 2014-12-23 2016-06-30 北京邮电大学 一种多频段介质谐振手机终端天线
WO2017083100A2 (en) * 2015-10-26 2017-05-18 Commscope, Inc. Of North Carolina Stripline feed structure for superluminal antenna array
US10355361B2 (en) 2015-10-28 2019-07-16 Rogers Corporation Dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
CN105609926A (zh) * 2016-03-02 2016-05-25 青岛中科移动物联科技有限公司 一种小型适用于Bluetooth***的PCB天线
CN106207447A (zh) * 2016-07-01 2016-12-07 杨浩昕 一种谐振器天线
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
JP7245787B2 (ja) 2017-06-07 2023-03-24 ロジャーズ コーポレーション 誘電体共振器アンテナ・システム
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
JP2022510892A (ja) 2018-12-04 2022-01-28 ロジャーズ コーポレーション 誘電体電磁構造およびその製造方法
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
US20210328351A1 (en) * 2020-04-17 2021-10-21 Apple Inc. Electronic Devices Having Dielectric Resonator Antennas with Parasitic Patches

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952972A (en) * 1996-03-09 1999-09-14 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Broadband nonhomogeneous multi-segmented dielectric resonator antenna system
EP0982799A2 (de) * 1998-08-17 2000-03-01 Philips Corporate Intellectual Property GmbH Dielektrische Resonatorantenne
US6198450B1 (en) * 1995-06-20 2001-03-06 Naoki Adachi Dielectric resonator antenna for a mobile communication
US20020101382A1 (en) * 2001-02-01 2002-08-01 Takayoshi Konishi Chip antenna and antenna unit including the same

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2046530B (en) 1979-03-12 1983-04-20 Secr Defence Microstrip antenna structure
CA1191696A (en) 1981-05-11 1985-08-13 Paul L. Valint, Jr. Liquid membrane process for uranium recovery
US4755820A (en) * 1985-08-08 1988-07-05 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Antenna device
JPH01144801A (ja) 1987-12-01 1989-06-07 Fujitsu Ltd 誘電体フィルタ
JPH02257702A (ja) 1989-03-29 1990-10-18 Murata Mfg Co Ltd 準マイクロ波帯誘電体アンテナ
US4980694A (en) * 1989-04-14 1990-12-25 Goldstar Products Company, Limited Portable communication apparatus with folded-slot edge-congruent antenna
GB2268626A (en) 1992-07-02 1994-01-12 Secr Defence Dielectric resonator antenna.
US5453754A (en) * 1992-07-02 1995-09-26 The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Dielectric resonator antenna with wide bandwidth
JP3185513B2 (ja) * 1994-02-07 2001-07-11 株式会社村田製作所 表面実装型アンテナ及びその実装方法
JPH07249927A (ja) 1994-03-09 1995-09-26 Murata Mfg Co Ltd 表面実装型アンテナ
JP3158846B2 (ja) * 1994-03-09 2001-04-23 株式会社村田製作所 表面実装型アンテナ
JPH07307612A (ja) * 1994-05-11 1995-11-21 Sony Corp 平面アンテナ
US6384785B1 (en) * 1995-05-29 2002-05-07 Nippon Telegraph And Telephone Corporation Heterogeneous multi-lamination microstrip antenna
US6104349A (en) * 1995-08-09 2000-08-15 Cohen; Nathan Tuning fractal antennas and fractal resonators
JPH0955618A (ja) 1995-08-17 1997-02-25 Murata Mfg Co Ltd チップアンテナ
US5748149A (en) 1995-10-04 1998-05-05 Murata Manufacturing Co., Ltd. Surface mounting antenna and antenna apparatus
JP2856701B2 (ja) 1995-12-20 1999-02-10 日本電気株式会社 マイクロ波回路
JPH10163738A (ja) 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 表面実装型アンテナ及びその実装方法
US6031503A (en) * 1997-02-20 2000-02-29 Raytheon Company Polarization diverse antenna for portable communication devices
US6184833B1 (en) * 1998-02-23 2001-02-06 Qualcomm, Inc. Dual strip antenna
DE19858790A1 (de) * 1998-12-18 2000-06-21 Philips Corp Intellectual Pty Dielektrische Resonatorantenne
US6329959B1 (en) * 1999-06-17 2001-12-11 The Penn State Research Foundation Tunable dual-band ferroelectric antenna
US6452565B1 (en) * 1999-10-29 2002-09-17 Antenova Limited Steerable-beam multiple-feed dielectric resonator antenna
GB2360133B (en) 2000-03-11 2002-01-23 Univ Sheffield Multi-segmented dielectric resonator antenna
US6768460B2 (en) * 2000-03-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Diversity wireless device and wireless terminal unit
US6337666B1 (en) * 2000-09-05 2002-01-08 Rangestar Wireless, Inc. Planar sleeve dipole antenna
GB2377556B (en) 2001-07-11 2004-09-15 Antenova Ltd Dual band dielectric resonator antenna
US6801164B2 (en) * 2001-08-27 2004-10-05 Motorola, Inc. Broad band and multi-band antennas
GB2386475A (en) 2002-03-12 2003-09-17 Antenova Ltd Multi-element dielectric resonator antenna
US6819287B2 (en) * 2002-03-15 2004-11-16 Centurion Wireless Technologies, Inc. Planar inverted-F antenna including a matching network having transmission line stubs and capacitor/inductor tank circuits
GB0207052D0 (en) * 2002-03-26 2002-05-08 Antenova Ltd Novel dielectric resonator antenna resonance modes
AU2003234005A1 (en) * 2002-05-15 2003-12-02 Antenova Limited Improvements relating to attaching dielectric resonator antennas to microstrip lines
GB0218820D0 (en) 2002-08-14 2002-09-18 Antenova Ltd An electrically small dielectric resonator antenna with wide bandwith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198450B1 (en) * 1995-06-20 2001-03-06 Naoki Adachi Dielectric resonator antenna for a mobile communication
US5952972A (en) * 1996-03-09 1999-09-14 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Broadband nonhomogeneous multi-segmented dielectric resonator antenna system
EP0982799A2 (de) * 1998-08-17 2000-03-01 Philips Corporate Intellectual Property GmbH Dielektrische Resonatorantenne
US20020101382A1 (en) * 2001-02-01 2002-08-01 Takayoshi Konishi Chip antenna and antenna unit including the same

Also Published As

Publication number Publication date
EP1543587A1 (en) 2005-06-22
GB0218820D0 (en) 2002-09-18
AU2003264718A1 (en) 2004-03-03
GB2393039A (en) 2004-03-17
JP2005536134A (ja) 2005-11-24
CN1675797A (zh) 2005-09-28
US20050242996A1 (en) 2005-11-03
GB0319101D0 (en) 2003-09-17
WO2004017461A1 (en) 2004-02-26
JP4312714B2 (ja) 2009-08-12
KR20050050642A (ko) 2005-05-31
GB2393039B (en) 2004-09-29
US7161535B2 (en) 2007-01-09

Similar Documents

Publication Publication Date Title
CN100418267C (zh) 一种具有较宽带宽的小型电结构的电介质天线
CN1809947B (zh) 使用电介质天线对导电天线进行寄生激励的混合天线
KR101133203B1 (ko) 이동 전화 핸드셋과 pda등에 사용되는 안테나
US7095374B2 (en) Low-profile embedded ultra-wideband antenna architectures for wireless devices
US20050162316A1 (en) Improvements relating to attaching antenna structures to electrical feed structures
EP1432071A3 (en) Compact and low-profile antenna device having wide range of resonance frequencies
JP2005521315A (ja) 新しい誘電体共振器形アンテナの共振モード
JP3206825B2 (ja) プリントアンテナ
Wong et al. Internal patch antenna with a thin air-layer substrate for GSM/DCS operation in a PDA phone
US7911390B2 (en) Antenna structure
US6421015B1 (en) Planar helix antenna with two frequencies
US20070091000A1 (en) Impedance transformation type wide band antenna
Bhattacharya et al. Bandwidth enrichment for micro-strip patch antenna using pendant techniques
WO2005091430A2 (en) Dielectric antenna with metallised walls
CN100495818C (zh) 用于平面倒f天线的辐射装置
CN106684544A (zh) 一种小型化单极子超宽带天线
Ambhore et al. Properties and Design of Single Element Meander Line Antenna.
KR102626156B1 (ko) 전자기적 결합 급전과 u형 슬롯을 이용한 저자세 평면 안테나
Singh et al. COMPARATIVE STUDY OF DIFFERENT TYPES OF MICROSTRIP PATCH ANTENNAS FOR RFID.
GB2400499A (en) An electrically small dielectric antenna with wide bandwidth
Lee et al. A novel conformal multiband antenna design based on fractal concepts
JP2020115637A (ja) アンテナ装置
Haji-hashemi et al. Dielectric resonator antenna based on fudgeflake geometry
Syrytsin et al. Switchable Phased Antenna Array with Passive Elements for 5G Mobile Terminals
Chang et al. Printed EMC PIFA for WLAN Operation in the Mobile Device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080910

Termination date: 20100814