CN100392441C - 层叠光学薄膜、椭圆偏振片和图像显示装置 - Google Patents

层叠光学薄膜、椭圆偏振片和图像显示装置 Download PDF

Info

Publication number
CN100392441C
CN100392441C CNB2005101137017A CN200510113701A CN100392441C CN 100392441 C CN100392441 C CN 100392441C CN B2005101137017 A CNB2005101137017 A CN B2005101137017A CN 200510113701 A CN200510113701 A CN 200510113701A CN 100392441 C CN100392441 C CN 100392441C
Authority
CN
China
Prior art keywords
thin film
optical thin
film
mentioned
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101137017A
Other languages
English (en)
Other versions
CN1760703A (zh
Inventor
畑昌宏
北村吉绍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of CN1760703A publication Critical patent/CN1760703A/zh
Application granted granted Critical
Publication of CN100392441C publication Critical patent/CN100392441C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明的层叠光学薄膜,是对含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜进行拉伸而得到的光学薄膜,层叠有:光弹性模量的绝对值为2.0×10-11~6.0×10-11m2/N且控制三维折射率以使Nz系数满足Nz≤0.9、正面相位差满足Re≥80nm的光学薄膜(1);光学上显示正的单向性的光学薄膜(2);和由光学上显示负的单向性的材料形成且具有该材料倾斜取向的部分的厚30~90μm的光学薄膜(3)。由此,本发明提供的光学薄膜,即使在相对于画面的法线方向是从斜向观察显示图像时,也可以抑制显示图像的着色,能够显示灰度颠倒区域少的图像,而且耐久性出色。

Description

层叠光学薄膜、椭圆偏振片和图像显示装置
技术领域
本发明涉及一种层叠光学薄膜。本发明的光学薄膜可以单独或与其它光学薄膜组合作为相位差薄膜、视角补偿薄膜、光学补偿薄膜、椭圆偏振片(包括圆偏振片)、亮度改善薄膜等各种光学薄膜使用。特别是本发明的层叠光学薄膜在与偏振片层叠作为椭圆偏振片使用的情况下极为有用。
另外,本发明还涉及使用上述层叠光学薄膜、椭圆偏振片等的液晶显示装置、有机EL(电致发光)显示装置、PDP等图像显示装置。本发明的层叠光学薄膜、椭圆偏振片可以如上述应用于各种液晶显示装置等中,特别适合应用于可以安装于便携式信息通信器件、个人电脑等中的反射半透过型液晶显示装置等中。另外,作为液晶显示装置,适合安装于TN(Twisted nematic)模式、OCB(Optically compensated bend)、均相(homogeneous)模式的液晶显示装置中。
背景技术
以往,在便携式信息通信器件、液晶监视器、液晶电视、有机EL显示装置等的图像显示装置中,大多使用的是以提高画质为目的由各种高分子材料构成的光学薄膜。这样的光学薄膜例如是通过对具有双折射性的高分子薄膜进行拉伸加工而制造的。其中,在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx、ny、nz时,控制了用式(nx-nz)/(nx-ny)表示的Nz系数的光学薄膜因为扩大上述液晶显示装置等图像显示装置的视角,所以优选使用。
光学薄膜的优选的Nz系数根据液晶显示装置的模式(TN、VA、OCB、IPS等)而不同。为此,为了得到需要的Nz系数的光学薄膜,可以适宜选择使用薄膜的可加工性出色且易于将双折射控制为需要的Nz系数的高分子材料。例如满足Nz系数≤0.9的光学薄膜为了将折射率至少控制为nz>ny,优选使用成为这种折射率并表现双折射的高分子材料。
从双折射的表现性出色等优点出发,满足Nz系数≤0.9的光学薄膜,例如可以通过对作为高分子薄膜的含有2,2-双(4-羟苯基)丙烷的单元的聚碳酸酯树脂薄膜进行拉伸而得到(参照专利文献1)。从具有高透明性的观点或具有适度的耐热性的观点出发,优选该聚碳酸酯树脂。但是,拉伸聚碳酸酯树脂薄膜得到的光学薄膜在接受应力时的双折射的变化率大,即光弹性模量的绝对值大。所以,例如在将该光学薄膜贴合于偏振片上时就存在不均匀严重的的问题。另外,近年来,伴随着液晶电视等的液晶面板的大型化,对面板施加的应力也在变大,进而更需要相位差变化率(双折射的变化率)小的光学薄膜材料。另外,该光学薄膜在贴合于显示装置之后的使用环境下,具有相位差变化大等问题。由于存在这种问题,所以上述光学薄膜不能用于近年来的要求高耐热、高温高耐湿性的用途中。
另一方面,作为光弹性模量的绝对值较小的高分子材料,已知例如降冰片烯系树脂(参照专利文献2)。但是,降冰片烯系树脂尽管光弹性模量的绝对值小,但同时具有双折射性小的性质。所以,可以通过拉伸加工赋予的相位差存在界限。特别是难以控制三维折射率以满足Nz系数≤0.9。
另外,过去,在反射半透过型液晶显示装置等中,适合利用对具有宽频带的波长区域的入射光(可见光区域)起到λ/4板或λ/2板功能的宽频带相位差板。作为该宽频带相位差板,有提议使多个具有光学各向异性的聚合物薄膜的光轴交叉并进行层叠而成的层叠薄膜。在这些层叠薄膜中,使2层或多张拉伸薄膜的光轴交叉而实现宽频带化(例如,参照专利文献3、专利文献2、专利文献5)。
但是,即使在使用上述专利文献3~5的构成的宽频带相位差板的情况下,在相对于画面的法线方向从上下左右的斜向观察显示画面的情况下,存在显示图像的色样变化或者白图像和黑图像发生颠倒的灰度颠倒的缺点。
专利文献1:特开平5-157911号公报
专利文献2:特开2000-56131号公报
专利文献3:特开平5-100114号公报
专利文献4:特开平10-68816号公报
专利文献5:特开平10-90521号公报
发明内容
本发明的目的在于提供一种光学薄膜,其特征在于,即使在相对于画面的法线方向从斜向观察显示图像时,也可以抑制显示图像的着色,能够显示灰度颠倒区域少的图像,而且耐久性出色。
另外,本发明的目的还在于,提供层叠了上述光学薄膜和偏振片的椭圆偏振片。
进而,本发明的目的还在于,提供使用了上述光学薄膜、椭圆偏振片的图像显示装置。
本发明人等为了解决上述课题而进行了潜心研究,结果发现通过使用下述层叠光学薄膜可以实现上述目的,以至完成本发明。
即,本发明涉及一种层叠光学薄膜,层叠有第一光学薄膜1、第二光学薄膜2和第三光学薄膜3,其中,
关于所述的第一光学薄膜1,是对含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜进行拉伸而得到的光学薄膜,其光弹性模量的绝对值为2.0×10-11~6.0×10-11m2/N,在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx1、ny1、nz1,薄膜厚度设为d1(nm)时,  控制三维折射率以使
用Nz=(nx1-nz1)/(nx1-ny1)表示的Nz系数满足Nz≤0.9,
且正面相位差(Re)=(nx1-ny1)×d1满足Re≥80nm;
关于所述的第二光学薄膜2,在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx2、ny2、nz2时,满足
Figure C20051011370100061
而且其显示光学上的正的单向性;
关于所述的第三光学薄膜3,是由光学上显示负的单向性的材料形成而且具有该材料倾斜取向的部分,其厚度为30~90μm。
上述本发明的层叠光学薄膜,是层叠控制三维折射率的第一光学薄膜1,光学上显示正的单向性的第二光学薄膜2和使光学上显示负的单向性的材料倾斜取向而成的第三光学薄膜3而成的,作为补偿宽频带且宽视角的相位差薄膜比较有用。使用该层叠光学薄膜的液晶显示装置等图像显示装置,可以实现宽视角,而且在从斜向观察显示画面的情况下也可以抑制显示着色,能够显示灰度颠倒区域少的图像。
上述第一光学薄膜1使用除了聚碳酸酯系树脂以外还含有苯乙烯系树脂的高分子薄膜。通过配合这种苯乙烯系树脂,可以将光学薄膜的光弹性模量的绝对值控制为2.0×10-11~6.0×10-11m2/N的范围内,而且耐久性出色。因此,即使在用于大型面板的情况下,在应力下相位差值的变化也少,即使例如在要求高耐热、高温高耐湿性的用途中也可以很好使用。光弹性模量的绝对值优选为3.0×10-11~5.0×10-11m2/N。当光弹性模量的绝对值超过6.0×10-11时,耐久性不充分,在应力下的相位差变化大。另一方面,当光弹性模量的绝对值不到2.0×10-11时,拉伸加工性差,难以控制Nz系数,所以不优选。另外,上述光学薄膜由于是以聚碳酸酯系树脂为主成分,所以聚碳酸酯系树脂具有的双折射的表现性、控制性也良好。另外,聚碳酸酯系树脂与苯乙烯系树脂的互溶性也良好,光学薄膜具有高透明性。
上述第一光学薄膜1具有在上述中定义的Nz系数为Nz≤0.9的宽视角特性。到Nz系数为Nz>0.9时,难以实现宽视角。Nz系数越小越好,优选满足Nz≤0.7。进而,优选满足Nz≤0.5。还有,包括(nx1-nz1)<0的情况,光学薄膜的Nz系数也可以为负值。其中,从扩大上下左右方向的视角的观点出发,优选将Nz系数控制为-1以上,进而-0.5以上。
另外,从正面相位差的偏差小的观点出发,上述第一光学薄膜1的正面相位差(Re)满足Re≥80nm。当Re<80nm时,正面相位差的偏差变大。Re优选为Re≥90nm,进而优选为Re≥100nm。其中,从减小厚度方向相位差的偏差的观点出发,优选为Re≤300nm。另外,厚度方向的相位差:(nx1-nz1)×d1优选为-300~300nm,进而优选为0~270nm。
另外,从耐久性出色的观点出发,上述层叠光学薄膜优选第三光学薄膜3的厚度为30~90μm。
在上述层叠光学薄膜中,优选作为第一光学薄膜1的材料的苯乙烯系树脂的重均分子量为20000以下。另外,第一光学薄膜1的玻璃化温度优选在110~180℃范围。
另外,在上述层叠光学薄膜中,作为第二光学薄膜2,可以使用对含有降冰片烯系聚合物的高分子薄膜进行拉伸而得到的构件。另外,作为第二光学薄膜2,可以使用对含有与第一光学薄膜1相同的材料的、即含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜进行拉伸而得到的光学薄膜,其光弹性模量的绝对值为0.5×10-11~6.0×10-11m2/N,优选为1.0×10-11~6.0×10-11m2/N。使用这些材料的第二光学薄膜2的耐久性良好。
在上述层叠光学薄膜中,形成上述第三光学薄膜3的光学上显示为负的单向性的材料,优选为圆盘状液晶化合物。对光学上显示负的单向性的材料没有特别限制,但从倾斜取向的控制好,而且用通常的材料其成本比较低廉的观点出发,优选圆盘状液晶化合物。
另外,在上述层叠光学薄膜中,形成上述第三光学薄膜3的在光学上显示为负的单向性的材料,优选其平均光轴与第三光学薄膜3的法线方向所成的倾斜角度在5°~50°的范围内而进行倾斜取向。
如上所述,第三光学薄膜3可以作为与控制了三维折射率的第一光学薄膜1组合而成的层叠光学薄膜使用,但通过将第三光学薄膜3的上述倾斜角度控制在5°以上,安装于液晶显示装置等时的视角扩大效果大。另一方面,通过将上述倾斜角度控制在50°以下,可以便视角在上下左右任意方向(4个方向)上都良好且可以通过方向抑制视角的变好或变坏。从该观点来看,上述倾斜角度优选为10°~30°。
还有,光学上显示负的单向性的光学材料(例如圆盘状液晶性分子)的倾斜取向状态,可以是不随着与薄膜面内的距离发生变化的均匀的倾斜(tilt)取向,也可以随着上述光学材料和薄膜面内的距离发生变化。
上述层叠光学薄膜,在光学上显示正的单向性的第二光学薄膜2与使光学上显示负的单向性的材料倾斜取向而成的第三光学薄膜3之间配置控制了三维折射率的第一光学薄膜1,这可以实现宽视角并更有效地抑制从斜向观察时的灰度颠倒区域。
另外,本发明还涉及一种椭圆偏振片,其特征在于,层叠有上述层叠光学薄膜和偏振片。上述椭圆偏振片在第二光学薄膜2的一侧层叠有偏振片,这从宽视角、斜向观察时的灰度颠倒区域的观点来看优选。
进而,本发明还涉及一种图像显示装置,其特征在于,层叠有上述层叠光学薄膜或椭圆偏振片。作为图像显示装置,可以很好用于TN模式、OCB、均相模式的液晶显示装置中。
附图说明
图1是表示本发明的层叠型光学薄膜的截面图的一个方式。
图2是表示本发明的层叠型光学薄膜的截面图的一个方式。
图3是表示本发明的层叠型光学薄膜的截面图的一个方式。
图4是表示本发明的椭圆偏振片的截面图的一个方式。
图5是表示本发明的椭圆偏振片的截面图的一个方式。
图6是表示本发明的椭圆偏振片的截面图的一个方式。
图7是表示比较例的椭圆偏振片的截面图的一个方式。
图8是表示比较例的椭圆偏振片的截面图的一个方式。
图9是表示比较例的椭圆偏振片的截面图的一个方式。
图10是表示实施例的反射半透过型液晶显示装置的截面图。
图中,1-控制了三维折射率的光学薄膜1,2-光学上显示正的单向性的光学薄膜2,3-使显示负的单向性的材料发生倾斜取向而成的光学薄膜3,P-偏振片,L-液晶单元,BL-背光灯。
具体实施方式
下面一边参照附图一边对本发明的层叠光学薄膜进行说明。如图1~图3所示,本发明的层叠光学薄膜层叠有控制了三维折射率的光学薄膜1,光学上显示正的单向性的光学薄膜2和使光学上显示负的单向性的材料倾斜取向而成的光学薄膜3。对这些光学薄膜的层叠顺序没有特别限制。在图1中,以光学薄膜2/光学薄膜1/光学薄膜3的顺序进行层叠,在图2中,以光学薄膜2/光学薄膜3/光学薄膜1的顺序进行层叠,在图3中,以光学薄膜3/光学薄膜2/光学薄膜1的顺序进行层叠。其中,优选以如图1所示的配置进行层叠。
另外,可以在上述层叠光学薄膜上层叠偏振片P而作为椭圆偏振片。图4~图6是表示在图1~图3中所示的层叠光学薄膜上层叠了偏振片P的椭圆偏振片P1。还有,对偏振片P在上述层叠光学薄膜上的层叠位置没有特别限制,在安装于液晶显示装置时,从进一步扩大视角的观点出发,优选如图4~图5所示的那样在光学薄膜2的一侧层叠偏振片P。特别优选图4的情况。
还有,在图1~图6中,各光学薄膜、偏振片可以借助粘合剂层进行层叠。粘合剂层可以为1层,也可以为2层以上重叠形式。
上述光学薄膜1为含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜的拉伸薄膜(相位差薄膜)。
聚碳酸酯系树脂可以没有特别限制地使用用于光学薄膜中的各种树脂。聚碳酸酯系树脂例如优选由芳香族2价酚成分和碳酸酯成分构成的芳香族聚碳酸酯。
芳香族聚碳酸酯通常可以通过使芳香族2价酚化合物与碳酸酯前体发生反应而得到。即,可以通过在苛性碱和溶剂的存在下向芳香族2价酚化合物中吹入碳酰氯的碳酰氯法,或者在催化剂的存在下使芳香族2价酚化合物和双芳基碳酸酯(ビスアリ一ルカ一ボネ一ト)发生酯交换的酯交换法而得到。
在这里,作为碳酸酯前体的具体例子,可以举出碳酰氯、上述的2价酚类的二氯甲酸酯、二苯基碳酸酯、二对甲苯基碳酸酯、苯基对甲苯基碳酸酯、二对氯苯基碳酸酯、二萘基碳酸酯等。其中,优选碳酰氯、二苯基碳酸酯。
作为与上述碳酸酯前体物质发生反应的芳香族2价酚化合物的具体例子,可以举出2,2-双(4-羟苯基)丙烷、2,2-双(4-羟基-3,5-二甲基苯基)丙烷、双(4-羟苯基)甲烷、1,1-双(4-羟苯基)乙烷、2,2-双(4-羟苯基)丁烷、2,2-双(4-羟基-3,5-二甲基苯基)丁烷、2,2-双(4-羟基-3,5-二丙基苯基)丙烷、1,1-双(4-羟苯基)环己烷、1,1-双(4-羟苯基)-3,3,5-三甲基环己烷、其它物质等。它们可以单独使用,也可以2种以上并用。优选2,2-双(4-羟苯基)丙烷、1,1-双(4-羟苯基)环己烷、1,1-双(4-羟苯基)-3,3,5-三甲基环己烷。特别优选2,2-双(4-羟苯基)丙烷与1,1-双(4-羟苯基)-3,3,5-三甲基环己烷并用。
作为芳香族2价酚化合物,在并用2,2-双(4-羟苯基)丙烷与1,1-双(4-羟苯基)-3,3,5-三甲基环己烷的情况下,可以通过改变二者的使用比例来调整上述光学薄膜1的Tg和光弹性模量的绝对值。如果增加聚碳酸酯系树脂中的1,1-双(4-羟苯基)-3,3,5-三甲基环己烷的含有率,则可以提高Tg,降低光弹性模量的绝对值。就上述光学薄膜1而言,为了充分降低光弹性模量的绝对值而且确保耐久性和适合自身支撑性、拉伸性等的Tg以及刚性,聚碳酸酯系树脂中的2,2-双(4-羟苯基)丙烷与1,1-双(4-羟苯基)-3,3,5-三甲基环己烷的含有比率优选为前者∶后者=2∶8~8∶2。更优选3∶7~6∶4。特别优选3∶7~5∶5。
上述聚碳酸酯系树脂的重均分子量(Mw),通过采用以四氢呋喃作为展开溶剂的GPC法进行测量的聚苯乙烯换算,优选为25000~200000。更优选为30000~150000。进而优选为40000~100000。特别优选为50000~80000。通过使上述聚碳酸酯系树脂的重均分子量在上述范围内,可以得到机械强度出色的光学薄膜1。
另一方面,在本发明中使用的苯乙烯系树脂,是指通过使苯乙烯系单体聚合而得到的苯乙烯系聚合物。作为上述苯乙烯系单体的具体例子,可以举出苯乙烯、α-甲基苯乙烯、2,4-二甲基苯乙烯等。另外,也可以使用市售的苯乙烯系树脂等。可以举例为苯乙烯树脂、丙烯腈-苯乙烯树脂、丙烯腈-丁二烯-苯乙烯树脂、丙烯腈-乙烯-苯乙烯树脂、苯乙烯-马来酰亚胺共聚物、苯乙烯-马来酸酐共聚物等。它们可以单独使用,也可以2种以上并用。另外,也可以并用上述苯乙烯系树脂和苯乙烯系单体。
就上述苯乙烯系树脂的重均分子量(Mw)而言,通过采用以四氢呋喃作为展开溶剂的凝胶渗透色谱(GPC)法进行测量的聚苯乙烯换算,优选为20000以下。更优选为1000~10000。特别优选为1000~6000。最优选为1000~3000。如果在上述范围内,均质混合苯乙烯系树脂和聚碳酸酯系树脂,可以得到透明性高的薄膜。
对上述聚碳酸酯系树脂与苯乙烯系树脂的比率进行适宜调整,以使高分子薄膜(光学薄膜1)的透明性好且光弹性模量的绝对值在上述范围内。通常,在将聚碳酸酯系树脂与苯乙烯系树脂的总量设为100重量份的情况下,上述苯乙烯系树脂的含量优选为20~40重量份,更优选为22~38重量份。特别优选为25~35重量份,苯乙烯系树脂用于使本发明的光学薄膜1的光弹性模量的绝对值降低。如果在上述范围内,由于可以充分降低光学薄膜1的光弹性模量的绝对值并可以确保耐久性和适合自身支撑性、拉伸性等的玻璃化温度(也称为Tg)以及刚性,所以可以使下述两种情况共存,即,即使用于液晶显示装置中也难以因应力而产生相位差值的偏差或不均,同时还以低拉伸倍率得到具有nx1>nz1>ny1的关系的相位差薄膜。
本发明的光学薄膜1的苯乙烯系树脂的含量,可以通过对该光学薄膜1进行GPC测量而求得。具体地说,将该光学薄膜1溶解于四氢呋喃而作为0.1重量%的溶液,静置1晚之后,对用0.45μm的薄膜滤器过滤的液体进行GPC测量。得到的微分分子量分布曲线可以用峰的谷分割为低分子量成分和高分子量成分的2部分。苯乙烯系树脂的含量可以通过式:[低分子量成分峰的总面积/(低分子量成分峰的总面积+高分子量成分峰的总面积)]×100求得。
上述聚碳酸酯系树脂和苯乙烯系树脂,优选其重均分子量(Mw)的差(聚碳酸酯系树脂的Mw-苯乙烯系树脂的Mw)为24000~92000。更优选为29000~87000。特别优选为39000~77000。最优选为49000~67000。如果在上述范围内,可以得到透明性高的高分子薄膜。
作为含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜的厚度的范围,可以根据设计的相位差值、拉伸性、相位差值的产生容易度等进行选择,优选使用20~500μm的薄膜。更优选为30~300μm。特别优选为40~100μm。最优选为50~80μm。如果在上述范围内,可以得到充分的薄膜自身支撑性,得到宽范围的相位差值。
上述高分子薄膜的光透过率在波长590mm处优选为80%以上。更优选为85%以上。特别优选为90%以上。对于得到的光学薄膜1,也优选具有同样的光透过率的薄膜。
对上述高分子薄膜的玻璃化温度(Tg)没有特别限制,优选为110~185℃。更优选为120~170℃。特别优选为125~150℃。Tg如果在110℃以上,就会容易地得到热稳定性良好的薄膜,如果是185℃以下的温度,则容易通过拉伸来控制薄膜面内和厚度方向的相位差值。玻璃化温度(Tg)可以通过以JIS K 7121为基准的DSC法求得。
上述高分子薄膜可以通过从通常使用的溶液的浇铸法或熔融挤出法得到。另外,上述高分子薄膜可以通过混合苯乙烯系树脂和聚碳酸酯系树脂而得到。对树脂的混合方法没有特别限定,例如使用浇铸法制作薄膜的情况,是以规定的比例将树脂连同溶媒一起进行搅拌混合,而可以作为均匀溶液使用。另外,使用熔融挤出法制作薄膜的情况,可以以规定的比例熔融混合树脂来使用。为了提高上述光学薄膜1的流平性而得到良好的光学均匀性,优选使用从溶液的浇铸法。
作为在上述浇铸法中使用的溶媒,例如可以举出苯、甲苯、二甲苯、甲氧基苯、1,2-二甲氧基苯等芳香族烃类,氯仿、二氯甲烷、四氯化碳、二氯乙烷、四氯乙烷、三氯乙烯、四氯乙烯、氯苯、邻二氯苯等卤化烃类,苯酚、对氯苯酚等酚类、二***、二丁醚、四氢呋喃、苯甲醚、二噁烷、四氢呋喃等醚类,丙酮、甲基异丁基酮、甲基乙基甲酮、环己酮、环戊酮、2-戊酮、3-戊酮、2-己酮、3-己酮、2-庚酮、3-庚酮、4-庚酮、2,6-二甲基-4-庚酮、2-吡咯烷酮、N-甲基-2-吡咯烷酮等酮类,正丁醇或2-丁醇、环己醇、异丙醇、叔丁醇或丙三醇、乙二醇、三甘醇、乙二醇单甲醚、二甘醇二甲醚、丙二醇、二丙二醇、2-甲基-2,4-戊烷二醇等醇类,二甲替甲酰胺、二甲替乙酰胺等酰胺类,乙腈、丁腈等腈类,甲基溶纤剂、甲基溶纤剂乙酸酯等溶纤剂类,醋酸乙酯、醋酸丁酯、乳酸甲酯等酯类,还有二氯甲烷、二硫化碳、乙基溶纤剂、丁基溶纤剂等作为上述溶剂的例子,但不限定于这些。
作为上述溶剂,优选二氯甲烷、氯仿、1,2-二氯乙烷、环戊酮、环己酮、甲基异丁基酮、甲基乙基甲酮、二甘醇二甲醚、甲苯、醋酸乙酯、四氢呋喃、1,3-二噁茂烷、1,4-二噁烷、氯苯。从溶解性和涂料(dope)的稳定性良好的观点出发,更优选使用四氢呋喃或二氯甲烷。它们可以单独使用,还可以混合2种以上使用。
在上述浇铸法中使用的溶液的整个固体成分浓度,因树脂的溶解性、涂敷粘度、向基材上的润湿性、涂布后的厚度等而不同,为了得到流平性高的高分子薄膜,优选相对于溶剂100重量份,溶解固体成分2~100重量份,进而优选为4~50重量份,特别优选为5~40重量份。
在不违背本发明的目的的范围内,在本发明中使用的高分子薄膜中也可以根据需要含有残存溶媒、稳定剂、增塑剂、紫外线吸收剂、防静电剂等其它成分。
接着,对本发明的光学薄膜1的制造方法进行说明。本发明的光学薄膜1的制造方法,是通过在含有苯乙烯系树脂和聚碳酸酯系树脂的上述高分子薄膜的一面或两面上贴合收缩性薄膜并加热拉伸而进行的。
使用的收缩性薄膜是用于在加热拉伸时赋予与拉伸方向正交的方向的收缩力。具体地说,可以举例为双向拉伸薄膜或单向拉伸薄膜等。作为用于上述收缩性薄膜的材料,可以举出聚酯、聚苯乙烯、聚乙烯、聚丙烯、聚氯乙烯、聚偏氯乙烯等,但不限于此。从收缩均匀性、耐热性良好的观点来看,优选使用双向拉伸聚丙烯薄膜。
上述收缩性薄膜优选使用所层叠的上述高分子薄膜的宽幅方向的收缩率为5%以上收缩的薄膜。作为上述收缩性薄膜的收缩率,在140℃下的薄膜长幅方向的收缩率:S(MD)为2.7~9.4%,而且,宽幅方向的收缩率:S(TD)为4.6~15.8%。更优选S(MD)为2.7~8.7%,S(TD)为4.6~10.6%。特别优选S(MD)为3.7~7.7%,S(TD)为5.6~9.6%。最优选S(MD)为4.7~6.7%,S(TD)为6.6~8.6%。
另外,上述收缩性薄膜使用宽幅方向的收缩率与长幅方向的收缩率的差:ΔS=S(TD)-S(MD)优选在0.1%~3.9%的范围内的薄膜。更优选为0.9%~2.9%。特别优选为1.4%~2.4%。最优选为1.8%~2.1%。如果MD方向的收缩率大,除了拉伸张力之外,上述收缩性薄膜的收缩力施加在拉伸机上而难以均匀拉伸。如果在上述范围内,则不会向拉伸机等设备施加过度负荷,可以进行均匀的拉伸。
上述收缩率S(MD)和S(TD)可以根据JIS Z 1712的加热收缩率A法而求得(其中,不同之处为:用140℃的加热温度代替120℃,向试验片施加重量3g)。具体地说,从纵(MD)、横(TD)方向取得宽20mm、长150mm的试验片各5张,制作在各自的中央部以约100mm的距离标上标点的试验片。以施加重量3g的状态下,将该试验片垂直悬吊于温度保持在140℃±3℃下的空气循环式恒温槽中,加热15分钟后,取出,在标准状态(室温)下放置30分钟,然后使用JIS B 7507中规定的游标卡尺测量标准间距离,求得5个测量值的平均值,可以通过S(%)=[(加热前的标准间距离(mm)-加热后的标准间距离(mm))/加热前的标准间距离(mm)]×100算出。
作为上述收缩薄膜的优选厚度范围,可以按照上述收缩率、相位差值等进行选择,例如优选为10~500μm,更优选为20~300μm。特别优选为30~100μm。最优选为40~80μm。如果在上述范围内,可以制作获得充分的收缩率且具有良好的光学均匀性的光学薄膜1。
上述收缩性薄膜向上述高分子薄膜的贴合方法,是以上述收缩性薄膜的收缩方向至少包含与拉伸方向正交的方向的成分的方式来进行的。即,以上述收缩性薄膜的收缩力的全部或一部分作用于和上述高分子薄膜的拉伸方向正交的方向的方式进行。因而,上述收缩性薄膜的收缩方向也可以与上述高分子薄膜的拉伸方向斜交,没有需要是完全正交的方向。
作为上述收缩性薄膜的贴合方法,没有特别限制,从制造上容易的观点来看,优选在上述高分子薄膜与上述收缩性薄膜之间设置粘合剂层来粘接的方法。上述粘合剂层可以在上述高分子薄膜或上述收缩性薄膜的一方或两方上形成。通常,上述收缩性薄膜由于在制作上述光学薄膜1之后被剥离,所以作为上述粘合剂,优选在加热拉伸工序中粘接性和耐热性出色,在其后的剥离工序中容易剥离,在上述光学薄膜1的表面上没有粘合剂残留。从剥离性出色的观点出发,上述粘合剂层更优选设在上述收缩性薄膜上。
作为形成上述粘合剂层的粘合剂,使用丙烯酸系、合成橡胶系、橡胶系、硅酮系等。从粘接性、耐热性、剥离性出色的观点出发,优选将丙烯酸系聚合物作为基础聚合物的丙烯酸系粘合剂。优选丙烯酸系聚合物的通过以四氢呋喃为展开溶剂的GPC法算出的重均分子量(Mw),通过聚苯乙烯换算为30000~2500000。
作为用于上述丙烯酸系聚合物的单体,可以使用各种(甲基)丙烯酸烷基酯。例如,可以例示(甲基)丙烯酸烷基酯(例如甲酯、乙酯、丙酯、丁酯、2-乙基己酯、异辛酯、异壬酯、异癸酯、十二烷基酯、月桂酯、十三烷基酯、十五烷基酯、十六烷基酯、十七烷基酯、十八烷基酯、十九烷基酯、二十烷基酯等碳原子数为1~20的烷基酯),它们可以单独使用或组合使用。
另外,为了向得到的丙烯酸系聚合物赋予极性,可以连同上述(甲基)丙烯酸烷基酯,将(甲基)丙烯酸、衣康酸等含羧基单体;(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯等含羟基单体;N-羟甲基丙烯酰胺等含酰胺基单体;(甲基)丙烯腈等含氰基单体;(甲基)丙烯酸缩水甘油酯等含环氧基单体;醋酸乙烯酯等乙烯基酯类;苯乙烯、α-甲基苯乙烯等苯乙烯系单体等作为共聚单体使用。
还有,对丙烯酸系聚合物的聚合法没有特别限制,可以采用溶液聚合、乳液聚合、悬浮聚合、UV聚合等公知的聚合法。
另外,在上述粘合剂中可以含有交联剂。作为交联剂,可以举出聚异氰酸酯化合物、聚胺化合物、三聚氰胺树脂、尿素树脂、环氧树脂等。进而,在上述粘合剂中,可以根据需要适当使用催化剂、增粘剂、增塑剂、填充剂、抗氧化剂、紫外线吸收剂、硅烷偶合剂等。
对形成粘合剂层的方法没有特别限制,可以举出在脱模薄膜上涂布粘合剂、干燥后转印到上述高分子薄膜上的方法(转印法),在上述高分子薄膜上直接涂布粘合剂后干燥的方法(直印法)等。
作为上述粘合剂层的优选厚度范围,没有特别限制,可以适当根据粘合力或上述光学薄膜1的表面状态来决定。例如,优选为1~100μm,更优选为5~50μm。特别优选为10~30μm。如果在上述范围内,可以制作获得了充分的收缩率且具有良好的光学均匀性的光学薄膜1。上述粘合剂层也可以层叠不同组成或不同种类的层使用。另外,根据需要,上述粘合剂层可以以控制粘接力为目的配合增粘树脂之类的天然或合成的树脂类、抗氧化剂等适当的添加剂。
对于上述粘合剂层的露出面,在供于使用前为了防止其污染等,可以临时粘贴剥离纸或脱模薄膜(也称为隔离件)覆盖。由此可以防止在通常的操作状态下与粘合剂层接触的现象。作为上述隔离件,例如可以使用根据需要用硅酮系或长链烷基系、氟系或硫化钼等适宜剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等以往常用的适宜的隔离件。
对在上述高分子薄膜与粘合剂层的界面上的23℃下的粘接力,没有特别限制,但优选为0.1~10N/50mm。更优选为0.1~5N/50mm。特别优选为0.2~3N/50mm。关于上述粘接力的测量方法,利用以JIS Z 0237为基准的手动辊往复三次将上述收缩性薄膜压接到上述高分子薄膜上,将如此得到的构件作为粘接力测量用样品,在对该样品进行高压锅处理(50℃、15分钟、5kg/cm2)之后,利用以JIS B 7721为基准的装置,采用以JIS Z 0237为基准的90度拉开法(提拉速度:300mm/min)进行测量。上述粘接力可以通过例如以下方式的一种或两种以上实现:在上述高分子薄膜的设有粘合剂层的一侧的表面上实施电晕处理或等离子体处理等适宜的表面处理来控制与粘合剂层的粘接力的方式、在粘接上述高分子薄膜与上述收缩性薄膜的状态下实施加热处理或高压锅处理等适宜的处理来控制粘接力的方式等适宜的方式的1种或2种以上。
上述收缩性薄膜可以根据设计的收缩力等且以1张或2张以上的适宜数量粘接在上述高分子薄膜的一面或两面上,但在粘接于两面的情况下或在一面上粘接数张的情况下,在其内外或上下的收缩性薄膜的收缩率可以相同,也可以不同。
对本发明的上述加热拉伸方法没有特别限制,如果是可以向上述高分子薄膜的拉伸方向附加张力、向与上述拉伸方向正交的方向附加收缩力的方法,可以使用以往公知的拉伸处理法。例如,可以举出纵单向拉伸法、横单向拉伸法、纵横同时双向拉伸法、纵横顺序双向拉伸法等。上述拉伸处理法可以使用例如轧辊拉伸机、拉幅机或双向拉伸机等适宜的拉伸机。另外,上述加热拉伸也可以分为2次或3次以上的工序进行。拉伸上述高分子薄膜的方向可以是薄膜长幅方向(MD方向),也可以是宽幅方向(TD方向)。另外,也可以使用特开2003-262721号公报的图1中记载的拉伸法,成为倾斜方向。
上述加热拉伸的温度(也称为拉伸温度),在上述高分子薄膜的玻璃化温度(Tg)以上进行拉伸时,光学薄膜1的相位差值容易变得均匀、另外薄膜难以结晶化(白浊)等,从这些观点来看优选。上述拉伸温度优选为上述高分子薄膜的Tg+1℃~Tg+30℃。更优选为Tg+2℃~Tg+20℃。进而优选为Tg+3℃~Tg+15℃。特别优选为Tg+5℃~Tg+10℃。拉伸温度如果在上述范围内,可以进行均匀的加热拉伸。另外,上述拉伸温度在薄膜宽幅方向上恒定,这可以制作相位差值的偏差小的、具有良好的光学均匀性的光学薄膜1。
对将上述拉伸温度保持恒定的具体方法没有特别限制,可以举出使用了热风或冷风等进行循环的空气循环式恒温炉、利用微波或远红外线等的加热器、用于温度调节进行加热或冷却的辊、热管辊或金属带等的公知的加热或冷却方法或者温度控制方法。
上述拉伸温度如果偏差大,拉伸不均匀变大,而引起最终获得的光学薄膜1的相位差值的偏差。因而,薄膜宽幅方向的温度偏差越小越好,更优选面内方向的温度偏差为±1.0℃以下,特别优选为±1.0℃以下的范围内。
上述加热拉伸时的拉伸倍率是由使用的高分子薄膜的苯乙烯系树脂的含量、挥发性成分等的种类、挥发性成分等的残留量、设计的相位差值等决定的,没有特别限定,例如优选使用1.05~2.00倍。更优选为1.10~1.50倍。特别优选为1.20~1.40倍。最优选为1.25~1.30倍。如果在上述范围内,则可以提供薄膜宽幅的收缩小且在拉伸方向上难以裂开的机械强度出色的光学薄膜1。对通过拉伸得到的光学薄膜的厚度(d1)没有特别限制,优选为1~150μm,更优选为5~50μm。
对拉伸时的输送速度没有特别限制,从拉伸装置的机械精度、稳定性等出发,优选为0.5m/分钟以上,更优选为1m/分钟以上。
就在光学上显示正的单向性的光学薄膜2而言,在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx2、ny2、nz2时,可以没有特别限制地使用满足
Figure C20051011370100181
的薄膜。即,在光学上显示正的单向性的材料,是指在三维折射率椭圆体中一个方向的主轴的折射率比其它2个方向的折射率大的材料。
在光学上显示正的单向性的光学薄膜2,例如可以通过在面方向上对高分子聚合物薄膜进行单向拉伸处理而得到。作为形成光学薄膜2的高分子聚合物,例如可以举出聚碳酸酯,聚丙烯等聚烯烃,聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯,降冰片烯系聚合物,聚乙烯醇、聚乙烯醇缩丁醛、聚甲基乙烯基醚、聚丙烯酸羟乙酯、羟乙基纤维素、羟丙基纤维素、甲基纤维素、聚芳基化物(ポリアリレ一ト)、聚砜、聚醚砜、聚苯硫醚、聚苯醚、聚烯丙基砜、聚乙烯醇、聚酰胺、聚酰亚胺、聚氯乙烯、三乙酰纤维素等纤维素系聚合物,丙烯酸系聚合物,苯乙烯系聚合物,或它们的二元系、三元系各种共聚物、接枝共聚物、混合物等。其中,优选降冰片烯系聚合物。另外,优选拉伸材料与光学薄膜1相同的含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜而作为光弹性模量的绝对值为0.5×10-11~6.0×10-11m2/N的光学薄膜。
作为形成光学薄膜2的材料,也可以利用棒状向列相液晶性化合物。可以使棒状向列相液晶性化合物倾斜取向,其倾斜取向状态可以通过其分子结构、取向膜的种类和适宜添加到光学各向异性层内的添加剂(例如增塑剂、粘合剂、表面活性剂)的使用来控制。
光学薄膜2的正面相位差((nx2-ny2)×d2(厚度:nm)),优选为0~500nm,进而优选为1~350nm。厚度方向的相位差((nx2-nz2)×d2),优选为0~500nm,进而优选为1~350nm。
对光学薄膜2的厚度没有特别限制,优选为1~200μm,进而优选为2~80μm。
形成光学薄膜3的在光学上显示负的单向性材料,是指在三维折射率椭圆体中一个方向的主轴的折射率比其它2个方向的折射率小的材料。
作为在光学上显示负的单向性的材料,例如可以举出聚酰亚胺系材料或圆盘状液晶化合物等液晶系材料。另外,还可以举出以这些材料为主成分,混合其它低聚物或聚合物并使其发生反应,使显示负的单向性的材料倾斜取向的状态固定化而成为薄膜状的材料。在使用圆盘状液晶化合物的情况下,液晶性分子的倾斜取向状态,可以通过其分子结构、取向膜的种类和适宜添加到光学各向异性层内的添加剂(例如增塑剂、粘合剂、表面活性剂)的使用来控制。
在将光学薄膜3的薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx3、ny3、nz3时,光学薄膜3的正面相位差((nx3-ny3)×d3(厚度:nm))优选为0~200nm,进而优选为1~150nm。厚度方向的相位差((nx3-nz3)×d3)优选为10~400nm,进而优选为50~300nm。如上所述,从耐久性的观点出发,光学薄膜3的厚度(d3)为30~90μm。
优选将上述光学薄膜1与光学薄膜3层叠为各自的滞相轴所成的较小的角度为70°~90°。更优选为80°~90°。
对本发明的层叠光学薄膜的形状没有特别限制,优选为长方形。另外,在长方形的情况下,对其大小没有特别限制,但在用于1~8英寸左右的可动装置的用途的情况下,优选短边为15~150mm左右,长边为20~200mm左右。
另外,如图4~图6所示,本发明的层叠光学薄膜可以制成层叠了偏振片P的椭圆偏振片,但,偏振片P与光学薄膜1、光学薄膜2的层叠在层叠光学薄膜为长方形的情况下,当其长边为0°时,优选如下所述地沿逆时针旋转。层叠光学薄膜的长边与偏振片的吸收轴的夹角优选为175°±5°。另外,层叠光学薄膜的长边与光学薄膜1的滞相轴的夹角优选为0°±5°。另外,层叠光学薄膜的长边与光学薄膜2的滞相轴的夹角优选为65°±5°。另外,光学薄膜3的层叠优选层叠光学薄膜的长边与光学薄膜3的滞相轴的夹角为90°±5°。
偏振片P通常是在偏振镜的一侧或两侧具有保护薄膜的构件。对偏振镜没有特别限制,可以使用各种偏振镜。作为偏振镜,例如可以举出,在聚乙烯醇系薄膜、部分甲缩醛化聚乙烯醇系薄膜、乙烯-醋酸乙烯酯共聚物系部分皂化薄膜等亲水性高分子薄膜上,吸附碘或二色性染料等二色性物质后单向拉伸的材料;聚乙烯醇的脱水处理物或聚氯乙烯的脱盐酸处理物等聚烯系取向薄膜等。其中,优选使用的是拉伸聚乙烯醇系薄膜、吸附二色性材料(碘、染料)并进行取向的偏振镜。对偏振镜的厚度没有特别的限定,但是通常为约5~80μm左右。
将聚乙烯醇系薄膜用碘染色后经单向拉伸而成的偏振镜,例如,可以通过将聚乙烯醇浸渍于碘的水溶液进行染色后,拉伸至原长度的3~7倍来制作。根据需要,也可以浸渍于硼酸或碘化钾等的水溶液中。此外,根据需要,也可以在染色前将聚乙烯醇系薄膜浸渍于水中水洗。通过水洗聚乙烯醇系薄膜,除了可以洗去聚乙烯醇系薄膜表面上的污物或防粘连剂之外,还可以通过使聚乙烯醇系薄膜溶胀,防止染色斑等不均匀现象。拉伸既可以在用碘染色之后进行,也可以一边染色一边进行拉伸,或者也可以在拉伸之后用碘进行染色。也可以在硼酸或碘化钾等的水溶液中或水浴中进行拉伸。
作为设于上述偏振镜的一侧或两侧的保护薄膜,优选在透明性、机械强度、热稳定性、水分屏蔽性、各向同性等各方面具有良好性质的材料。作为上述保护薄膜的材料,例如,可以举例为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯系聚合物;二乙酰纤维素或三乙酰纤维素等纤维素系聚合物;聚甲基丙烯酸甲酯等丙烯酸系聚合物;聚苯乙烯或丙烯腈-苯乙烯共聚物(AS树脂)等苯乙烯系聚合物;聚碳酸酯系聚合物等。此外,作为形成上述保护薄膜的聚合物的例子,还可以举例为如聚乙烯、聚丙烯、具有环状或降冰片烯结构的聚烯烃,乙烯-丙烯共聚物之类的聚烯烃系聚合物;氯乙烯系聚合物;尼龙或芳香族聚酰胺等酰胺系聚合物;酰亚胺系聚合物;砜系聚合物;聚醚砜系聚合物;聚醚-醚酮系聚合物;聚苯硫醚系聚合物;乙烯基醇系聚合物,偏氯乙烯系聚合物;聚乙烯醇缩丁醛系聚合物;芳基化物系聚合物;聚甲醛系聚合物;环氧系聚合物;或者上述聚合物的混合物等。另外,还可以举出使丙烯酸系、氨基甲酸酯系、丙烯酸氨基甲酸酯系、环氧系、硅酮系等热固化型或紫外线固化型树脂等薄膜化的材料等。
此外,可以举出在特开2001-343529号公报(WO 01/37007)中记载的聚合物薄膜,例如包含(A)在侧链具有取代和/或未取代亚氨基的热塑性树脂、和(B)在侧链具有取代和/或未取代苯基和腈基的热塑性树脂的树脂组合物。作为具体实例,可以举例为含有由异丁烯和N-甲基马来酰亚胺组成的交替共聚物及丙烯腈-苯乙烯共聚物的树脂组合物的薄膜。作为薄膜可以使用由树脂组合物的混合挤出制品等构成的薄膜。
保护薄膜的厚度可以适当确定,但是从强度和处理性等操作性、薄层性等观点来看,一般为约10~500μm左右。特别优选为20~300μm,更优选30~200μm。
另外,保护薄膜最好不要着色。因此,优选使用用Rth=(nx-nz)·d(其中,nx是薄膜平面内的滞相轴方向的折射率,nz是薄膜厚度方向的折射率,d是薄膜厚度)表示的薄膜厚度方向的相位差值为-90nm~+75nm的保护薄膜。通过使用该厚度方向的相位差值(Rth)为-90nm~+75nm的保护薄膜,可以大致消除由保护薄膜引起的偏振片的着色(光学着色)。厚度方向相位差值(Rth)进一步优选为-80nm~+60nm,特别优选-70nm~+45nm。
作为保护薄膜,从偏振性能和耐久性等观点来看,优选用碱等对表面进行皂化处理的三乙酰纤维素薄膜。特别适宜的是三乙酰纤维素薄膜。此外,当在偏振镜的两侧设置保护薄膜时,既可以在其正反面使用由相同聚合物材料组成的保护薄膜,也可以使用由不同的聚合物材料等组成的保护薄膜。上述偏振镜和保护薄膜通常利用水性粘合剂进行粘附。作为水性胶粘剂,可以举例为聚乙烯醇系胶粘剂、明胶系胶粘剂、乙烯系胶乳系、水性聚氨酯、水性聚酯等。
作为上述保护薄膜,还可以使用实施了硬涂层或防反射处理、防粘连处理、以扩散或防眩为目的的处理的薄膜。
实施硬涂层处理的目的是防止偏振片的表面损坏等,例如可以通过在保护薄膜的表面上附加由丙烯酸系及硅酮系等适当的紫外线固化型树脂构成的硬度、滑动特性等良好的固化被膜的方法等形成。实施防反射处理的目的是防止在偏振片表面的外光的反射,可以通过形成基于以往的防反射薄膜等来完成。此外,实施防粘连处理的目的是防止与相邻层的粘附。
另外,实施防眩处理的目的是防止外光在偏振片表面反射而干扰偏振片透射光的辨识性等,例如,可以通过采用喷砂方式或压纹加工方式的粗表面化方式以及配合透明微粒的方式等适当的方式,向透明保护薄膜表面赋予微细凹凸结构来形成。作为在上述表面微细凹凸结构的形成中含有的微粒,例如,可以使用平均粒径为0.5~50μm的由氧化硅、氧化铝、氧化钛、氧化锆、氧化锡、氧化铟、氧化镉、氧化锑等组成的往往具有导电性的无机系微粒、由交联或者未交联的聚合物等组成的有机系微粒等透明微粒。当形成表面微细凹凸结构时,微粒的使用量相对于100重量份形成表面微细凹凸结构的透明树脂,通常为大约2~50重量份,优选5~25重量份。防眩层也可以兼当用于将偏振片透射光扩散而扩大视角等的扩散层(视角扩大功能等)。
还有,上述防反射层、防粘连层、扩散层和防眩层等除了可以设置成保护薄膜自身以外,还可以作为与透明保护薄膜分开配置的另一光学层设置。
对形成粘合剂层的粘合剂没有特别限制,可以适宜地选择使用将丙烯酸系聚合物、硅酮系聚合物、聚酯、聚氨基甲酸酯、聚酰胺、聚醚、氟系或橡胶系等聚合物作为基础聚合物的物质。特别是,可以优选使用丙烯酸系粘合剂之类的光学透明性出色的、显示适当的润湿性、凝聚性和粘接性的粘合特性、在耐气候性或耐热性等方面出色的物质。
可以用适宜的方式形成粘合剂层。作为其例子,例如可以举出以下方式,即调制在由甲苯或乙酸乙酯等适宜溶剂的纯物质或混合物构成的溶剂中溶解或分散基础聚合物或其组合物而成的约10~40质量%的粘合剂溶液,然后通过流延方式或涂敷方式等适宜铺展方式直接将其附设在上述基板上或液晶薄膜上的方式;或者基于上述在隔离件上形成粘合层后将其移送并粘贴在上述液晶层上的方式等。
另外,在粘合剂层中也可以含有例如天然或合成的树脂类,特别是增粘树脂,或者由玻璃纤维、玻璃珠、金属粉、其它无机粉末等组成的填充剂或颜料、着色剂、抗氧化剂等可以添加到粘合层中的添加剂。另外,也可以是含有微粒而显示光扩散性的粘合剂层等。
粘合剂层的厚度可以适当根据使用目的或粘接力等来决定,通常为1~500μm,优选为5~200μm,特别优选为10~100μm。
对于粘合剂层的露出面,在供于使用前为了防止其污染等,可以临时粘贴隔离件覆盖。由此可以防止在通常的操作状态下与粘合层接触的现象。作为隔离件,例如可以使用根据需要用硅酮系或长链烷基系、氟系或硫化钼等适宜剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等以往常用的适宜的隔离件。
此外,在上述光学薄膜、粘合剂层等各层上,也可以利用例如用水杨酸酯系化合物或苯并苯酚(benzophenol)系化合物、苯并***系化合物或氰基丙烯酸酯系化合物、镍络合盐系化合物等紫外线吸收剂进行处理的方式等方式,使之具有紫外线吸收能力。
本发明的光学薄膜、椭圆偏振片适合用于图像显示装置中。特别适合用于TN模式、OCB、均相模式液晶显示装置中。例如,优选用于形成反射半透过型的液晶显示装置等各种装置。反射半透过型液晶显示装置等适合作为便携式信息通信器件、个人电脑被利用。在形成反射型半透过型液晶显示装置时,本发明中的椭圆偏振片配置于液晶单元的背光灯侧。
图10是表示在反射半透过型液晶显示装置中借助粘合剂层将图4~图6所示的本发明的椭圆偏振片P1配置于液晶单元L的背光灯(BL)侧的图。对下侧(背光灯侧)的在液晶单元L上层叠的椭圆偏振片P1一侧没有特别限制,但优选椭圆偏振片P1的偏振片P离液晶单元L一侧最远。在液晶单元L中封入有液晶。在上侧的液晶单元基板上设置透明电极,在下侧的液晶单元基板上设置兼作电极的反射层。在上侧的液晶单元基板的上部具有用于反射半透过型液晶显示装置的椭圆偏振片P2、各种光学薄膜。椭圆偏振片P2也优选偏振片P离液晶单元L一侧最远。
此外,在将本发明的层叠光学薄膜或椭圆偏振片安装于液晶显示装置等时,在光学薄膜3中,优选光学上显示负的单向性的材料的平均光轴(倾斜取向的平均角度),配置成朝向与液晶分子的取向方向大致相同的方向,所述的液晶分子在上下施加电压使其取向的液晶单元的厚度方向的中心(midplane)中。在这种情况下,液晶单元的取向可以为扭曲型,也可以为非扭曲型。
上述图10的反射半透过型液晶显示装置是表示液晶单元的一个例子的装置,本发明的层叠光学薄膜、椭圆偏振片可以用于其它各种液晶显示装置中。
还有,在上述中,半透过型偏振片可以通过作成用反射层反射光的同时使光透过的半透半反镜等半透过型的反射层而获得。半透过型偏振片通常被设于液晶单元的背面侧,可以形成如下类型的液晶显示装置等,即,在比较明亮的环境中使用液晶显示装置等的情况下,反射来自于辨识侧(显示侧)的入射光而显示图像,在比较暗的环境中,使用内置于半透过型偏振片的背面的背光灯等内置光源来显示图像。即,半透过型偏振片在如下类型的液晶显示装置等的形成中十分有用,即,在明亮的环境下可以节约背光灯等光源使用的能量,在比较暗的环境下也可以使用内置光源的类型的液晶显示装置等。
另外,本发明的光学薄膜、椭圆偏振片可以用于其它各种液晶显示装置。上述光学薄膜、椭圆偏振片在实际使用时可以层叠其它光学层而使用。对该光学层没有特别限定,可以使用例如反射板或半透过板、相位差板(包括1/2或1/4等波长片)等在液晶显示装置等的形成中可以使用的光学层1层或2层以上。例如,可以举出在偏振片上进一步层叠反射板或半透过反射板而成的反射型偏振片或半透过型偏振片、在偏振片上进一步层叠亮度改善薄膜而成的偏振片。
反射型偏振片是在偏振片上设置反射层而成的,可以用于形成反射从辨识侧(显示侧)入射的入射光来进行显示的类型的液晶显示装置等,并且可以省略内置的背光灯等光源,从而具有易于使液晶显示装置薄型化等优点。形成反射型偏振片时,可以通过根据需要借助透明保护层等后在偏振片的一面附设由金属等组成的反射层的方式等适当的方式进行。
作为反射型偏振片的具体例子,可以举例为通过根据需要在经消光处理的透明保护薄膜的一面上,附设由铝等反射性金属组成的箔或蒸镀膜而形成反射层的偏振片等。另外,还可以举例为通过使上述透明保护薄膜含有微粒而形成表面微细凹凸结构,并在其上具有微细凹凸结构的反射层的反射型偏振片等。上述的微细凹凸结构的反射层通过漫反射使入射光扩散,由此防止定向性和外观发亮,具有可以抑制明暗不均的优点等。另外,含有微粒的透明保护薄膜还具有当入射光及其反射光透过它时可以通过扩散进一步抑制明暗不均的优点等。反映透明保护薄膜的表面微细凹凸结构的微细凹凸结构的反射层的形成,例如可以通过用真空蒸镀方式、离子镀方式、溅射方式等蒸镀方式或镀覆方式等适当的方式在透明保护层的表面上直接附设金属的方法等进行。
作为代替将反射板直接附设在上述偏振片的透明保护薄膜上的方法,还可以在以该透明薄膜为基准的适当的薄膜上设置反射层形成反射薄片等后作为反射板使用。还有,由于反射层通常由金属组成,所以从防止由于氧化而造成的反射率的下降,进而长期保持初始反射率的观点和避免另设保护层的观点等来看,优选用透明保护薄膜或偏振片等覆盖其反射面的使用形式。
将偏振片和亮度改善薄膜贴合在一起而成的偏振片通常被设于液晶单元的背面一侧。亮度改善薄膜是显示如下特性的薄膜,即,当因液晶显示装置等的背光灯或来自背面侧的反射等,有自然光入射时,反射特定偏光轴的直线偏振光或规定方向的圆偏振光,而使其他光透过。因此将亮度改善薄膜与偏振片层叠而成的偏振片可以使来自背光灯等光源的光入射,而获得规定偏振光状态的透射光,同时,所述规定偏振光状态以外的光不能透过,被予以反射。借助设于其后侧的反射层等再次反转在该亮度改善薄膜面上反射的光,使之再次入射到亮度改善薄膜上,使其一部分或全部作为规定偏振光状态的光透过,从而增加透过亮度改善薄膜的光,同时向偏振镜提供难以吸收的偏振光,从而增大能够在液晶显示图像的显示等中利用的光量,并由此可以提高亮度。即,在不使用亮度改善薄膜而用背光灯等从液晶单元的背面侧穿过偏振镜而使光入射的情况下,具有与偏振镜的偏光轴不一致的偏光方向的光基本上被偏振镜所吸收,因而无法透过偏振镜。即,虽然会因所使用的偏振镜的特性而不同,但是大约50%的光会被偏振镜吸收掉,因此,液晶图像显示等中能够利用的光量将减少,导致图像变暗。由于亮度改善薄膜反复进行如下操作,即,使具有能够被偏振镜吸收的偏光方向的光不是入射到偏振镜上,而是使该类光在亮度改善薄膜上发生反射,进而借助设于其后侧的反射层等完成反转,使光再次入射到亮度改善薄膜上,这样,亮度改善薄膜只使在这两者间反射并反转的光中的、其偏光方向变为能够通过偏振镜的偏光方向的偏振光透过,同时将其提供给偏振镜,因此可以在液晶显示装置的图像的显示中有效地使用背光灯等的光,从而可以使画面明亮。
也可以在亮度改善薄膜和所述反射层等之间设置扩散板。由亮度改善薄膜反射的偏振光状态的光朝向所述反射层等,所设置的扩散板可将通过的光均匀地扩散,同时消除偏振光状态而成为非偏振光状态。即,扩散板使偏振光恢复到原来的自然光状态。反复进行如下的作业,即,将该非偏振光状态即自然光状态的光射向反射层等,经过反射层等而反射后,再次通过扩散板而又入射到亮度改善薄膜上。这样通过在亮度改善薄膜和所述反射层等之间设置使偏振光恢复到原来的自然光状态的扩散板,可以在维持显示画面的亮度的同时,减少显示画面的亮度的不均,从而可以提供均匀并且明亮的画面。通过设置该扩散板,可适当增加初次入射光的重复反射次数,并利用扩散板的扩散功能,可以提供均匀的明亮的显示画面。
作为所述亮度改善薄膜,例如可以使用:电介质的多层薄膜或折射率各向异性不同的薄膜多层叠层体之类的显示出使规定偏光轴的直线偏振光透过而反射其他光的特性的薄膜、胆甾醇型液晶聚合物的取向薄膜或在薄膜基材上支撑了该取向液晶层的薄膜之类的显示出将左旋或右旋中的任一种圆偏振光反射而使其他光透过的特性的薄膜等适宜的薄膜。
因此,通过利用使所述的规定偏光轴的直线偏振光透过的类型的亮度改善薄膜,使该透射光直接沿着与偏光轴一致的方向入射到偏振片上,可以在抑制由偏振片造成的吸收损失的同时,使光有效地透过。另一方面,利用胆甾醇型液晶层之类的使圆偏振光透过的类型的亮度改善薄膜,虽然可以直接使光入射到偏振镜上,但是,从抑制吸收损失这一点考虑,最好借助相位差板对该圆偏振光进行直线偏振光化,之后再入射到偏振片上。而且,通过使用1/4波长片作为该相位差板,可以将圆偏振光变换为直线偏振光。
在可见光区域等较宽波长范围中能起到1/4波长片作用的相位差板,例如可以利用以下方式获得,即,将相对于波长550nm的浅色光能起到1/4波长片作用的相位差层和显示其他的相位差特性的相位差层例如能起到1/2波长片作用的相位差层重叠的方式等。所以,配置于偏振片和亮度改善薄膜之间的相位差板可以由1层或2层以上的相位差层构成。
还有,就胆甾醇型液晶层而言,也可以组合不同反射波长的材料,构成重叠2层或3层以上的配置构造,由此获得在可见光区域等较宽的波长范围内反射圆偏振光的构件,从而可以基于此而获得较宽波长范围的透过圆偏振光。
另外,偏振片如同所述偏振光分离型偏振片那样,可以由层叠了偏振片和2层或3层以上的光学层的构件构成。所以,也可以是组合了所述反射型偏振片或半透过型偏振片和相位差板而成的反射型椭圆偏振片或半透过型椭圆偏振片等。
液晶显示装置的形成可以按照以往的方式进行。即,一般来说,液晶显示装置可通过适宜地组合液晶单元和光学元件以及根据需要而加入的照明***等构成部件并装入驱动电路等而形成。除了使用本发明的椭圆偏振片这一点以外,并没有特别限定,可以按照以往的方式进行。对于液晶单元而言,也可以使用例如TN型或STN型、π型等任意类型的液晶单元。
可以在液晶单元的背面侧形成在照明***中使用了背光灯或反射板的装置等适宜的液晶显示装置。此时,本发明的椭圆偏振片可以设置在液晶单元的一侧或两侧上。当将光学元件设置在双侧时,它们既可以是相同的材料,也可以是不同的材料。另外,在形成液晶显示装置时,可以在适宜的位置上配置1层或2层以上例如扩散板、防眩层、防反射膜、保护板、棱镜阵列、透镜阵列薄片、光扩散板、背光灯等适宜的部件。
下面对有机电致发光装置(有机EL显示装置)进行说明。一般来说,有机EL装置中在透明基板上依次层叠透明电极、有机发光层和金属电极而形成发光体(有机电致发光体)。这里,有机发光层是各种有机薄膜的层叠体,已知有:例如由三苯基胺衍生物等构成的空穴注入层和由蒽等荧光性的有机固体构成的发光层的层叠体、或此种发光层和由二萘嵌苯衍生物等构成的电子注入层的层叠体、或者这些空穴注入层、发光层及电子注入层的层叠体等各种组合。
有机EL显示装置根据如下的原理进行发光,即,通过在透明电极和金属电极上加上电压,向有机发光层中注入空穴和电子,由这些空穴和电子的复合而产生的能量激发荧光物质,被激发的荧光物质回到基态时,就会放射出光。中间的复合机理与一般的二极管相同,由此也可以推测出,电流和发光强度相对于外加电压显示出伴随整流性的较强的非线性。
在有机EL显示装置中,为了取出有机发光层中产生的光,至少一方的电极必须是透明的,通常将由氧化铟锡(ITO)等透明导电体制成的透明电极作为阳极使用。另一方面,为了容易进行电子的注入而提高发光效率,在阴极中使用功函数较小的物质是十分重要的,通常使用Mg-Ag、Al-Li等金属电极。
在具有此种构成的有机EL显示装置中,有机发光层由厚度为10nm左右的极薄的膜构成。所以,有机发光层也与透明电极一样,使光基本上完全地透过。其结果是,在不发光时从透明基板的表面入射并透过透明电极和有机发光层而在金属电极反射的光会再次向透明基板的表面侧射出,因此,当从外部进行辨识时,有机EL显示装置的显示面如同镜面。
在包括如下所述的有机电致发光体的有机EL显示装置中,可以在透明电极的表面侧设置偏振片,同时在这些透明电极和偏振片之间设置相位差板,上述有机电致发光体中,在通过施加电压而进行发光的有机发光层的表面侧设有透明电极,同时在有机发光层的背面侧设有金属电极。
由于相位差板及偏振片具有使从外部入射并在金属电极反射的光成为偏振光的作用,因此由该偏振光作用具有使得从外部无法辨识出金属电极的镜面的效果。特别是,采用1/4波长片构成相位差板,并且将偏振片和相位差板的偏振光方向的夹角调整为π/4时,可以完全遮蔽金属电极的镜面。
即,入射于该有机EL显示装置的外部光因偏振片的存在而只有直线偏振光成分透过。该直线偏振光一般会被相位差板转换成椭圆偏振光,而当相位差板为1/4波长片并且偏振片和相位差板的偏光方向的夹角为π/4时,就会成为圆偏振光。
该圆偏振光透过透明基板、透明电极、有机薄膜,在金属电极上反射,之后再次透过有机薄膜、透明电极、透明基板,由相位差板再次转换成直线偏振光。由于该直线偏振光与偏振片的偏振光方向正交,因此无法透过偏振片。其结果是,可以将金属电极的镜面完全地遮蔽。
[实施例]
下面,举出实施例和比较例对本发明进行具体地说明,但这些实施例对本发明没有任何限制。通过下述方法测量各例的光学薄膜(拉伸后)等的特性。
<光弹性模量的绝对值>
使用日本分光公司制的椭圆偏振计(M220),在室温(23℃)下,测量向宽2cm的光学薄膜施加1×10-6~30×10-6的应力时的应力折射率,将其绘制成图,由应力双折射Δn=cδ算出c:光弹性模量的绝对值(m2/N)。其中,δ:应力(N/m2)。
<折射率的测量:Nz系数,相位差>.
光学薄膜的折射率的测量是通过自动双折射测量装置(王子计测机器株式会社制,自动双折射计)测量薄膜面内与厚度方向的主折射率nx、ny、nz在λ=590nm处的特性。从得到的折射率值求得Nz=(nx-nz)/(nx-ny)。另外,从折射率值和光学薄膜厚度(d:nm)求得正面相位差(Re)=(nx-ny)×d,厚度方向的相位差=(nx-nz)×d。
<玻璃化温度:Tg>
使用セイコ一电子制的DSC5500,在20ml/分的氮气流下、以10℃/分的升温速度进行测量。
<重均分子量>
使用TOSOH制的HLC-8120GPC***,通过凝胶渗透色谱法(GPC)法(聚苯乙烯标准),算出四氢呋喃可溶成分的重均分子量。
<倾斜角度>
在光学薄膜3中,倾斜取向的光学材料的平均光轴与光学薄膜3的法线方向构成的倾斜角度,是以滞相轴为轴将光学薄膜3向左右倾斜-50°~50°,用上述测量装置测量相位差,成为显示最小的相位差的角度的绝对值。另外,在上述测量中,将来自测量器的光源的光的入射方向与相对于薄膜面内的法线一致时的测量角设为0°。
实施例1
(控制了三维折射率的光学薄膜1)
(高分子薄膜)
作为含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜,使用锺淵化学工业(株)制的产品名:エルメツク薄膜(厚度55μm)。聚碳酸酯系树脂含有源自2,2-双(4-羟苯基)丙烷和源自1,1-双(4-羟苯基)-3,3,5-三甲基环己烷的物质,其配合比例为重量比40∶60。另外,高分子薄膜中的苯乙烯系树脂(重均分子量10000)的含有比例为27重量%。
<光学薄膜1>
借助粘合剂层在上述高分子薄膜(エルメツク薄膜)的两面上贴付由双向拉伸聚酯薄膜构成的热收缩性薄膜。然后,同时用双向拉伸机保持并在145℃下拉伸至1.3倍。得到的拉伸薄膜(光学薄膜1)是透明的,厚度为60μm,正面相位差为140nm,厚度方向的相位差为70nm,Nz系数为0.5。另外,光弹性模量的绝对值:5.0×10-11,Tg:140℃。
(在光学上显示正的单向性的光学薄膜2)
在170℃下,单向拉伸厚100μm的降冰片烯系薄膜(JSR株式会社制,产品名ア一トン薄膜)至1.5倍。就得到的拉伸薄膜(光学薄膜2)而言,其厚度为75μm,正面相位差为270nm,厚度方向的相位差为270nm,Nz系数为1.0。
Nz系数1.0在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx2、ny2、nz2时,在
Figure C20051011370100311
的情况下成立。另外,光弹性模量的绝对值:1.0×10-11,Tg:170℃。
(使光学上显示负的单向性的材料倾斜取向而成的光学薄膜3)
使用富士胶片株式会社制的WVSA128(厚度:80μm)。该薄膜是通过将圆盘状液晶涂布于支撑体上来制作的,正面相位差:33nm、厚度方向的相位差:160nm,倾斜取向的平均光轴的倾斜角度:20°。
(层叠光学薄膜和椭圆偏振片)
借助粘合剂层(丙烯酸系粘合剂、厚度30μm)层叠上述光学薄膜1、光学薄膜2和光学薄膜3,得到如图1所示的层叠光学薄膜。接着,借助粘合剂层(丙烯酸系粘合剂、厚度30μm)在上述层叠光学薄膜的光学薄膜2侧层叠偏振片(P:日东电工(株)制,TEG1465DU),得到如图4所示的椭圆偏振片。椭圆偏振片的尺寸为120mm×160mm。上述椭圆偏振片在以长边为0°的情况下逆时针回转,以使光学薄膜1的滞相轴的夹角为0°,光学薄膜2的滞相轴的夹角为65°,偏振片的吸收轴的夹角为175°。使光学薄膜3的滞相轴的夹角为90°。
实施例2
如图5所示,借助粘合剂层(丙烯酸系粘合剂、厚度30μm),将实施例1中使用的光学薄膜1、光学薄膜2、光学薄膜3和偏振片P按照光学薄膜1/光学薄膜3/光学薄膜2/偏振片P的顺序进行层叠,得到椭圆偏振片。椭圆偏振片的尺寸、光学薄膜1~光学薄膜3、偏振片P的层叠角度与实施例1相同。
实施例3
如图6所示,借助粘合剂层(丙烯酸系粘合剂、厚度30μm),将实施例1中使用的光学薄膜1、光学薄膜2、光学薄膜3和偏振片P按照光学薄膜1/光学薄膜2/光学薄膜3/偏振片P的顺序进行层叠,得到椭圆偏振片。椭圆偏振片的尺寸、光学薄膜1~光学薄膜3、偏振片P的层叠角度与实施例1相同。
比较例1
(使光学上显示负的单向性的材料倾斜取向的光学薄膜3’)
使用富士胶片株式会社制的WVSA12B(厚度:110μm)。该薄膜是通过将圆盘状液晶涂布于支撑体上来制作的,正面相位差:30nm、厚度方向的相位差:160nm,倾斜取向的平均光轴的倾斜角度:20°。
(层叠光学薄膜和椭圆偏振片)
在实施例1中,除了使用上述光学薄膜3’代替光学薄膜3以外,用与实施例1相同的方法得到层叠光学薄膜。接着,借助粘合剂层(丙烯酸系粘合剂、厚度30μm)在上述层叠光学薄膜的光学薄膜2侧层叠偏振片(P:日东电工(株)制,TEG1465DU),得到如图7所示的椭圆偏振片。椭圆偏振片的尺寸、光学薄膜1~3、偏振片P的层叠角度与实施例1相同。
比较例2
(在光学上显示正的单向性的光学薄膜2-1)
在170℃下,单向拉伸厚100μm的降冰片烯系薄膜(JSR株式会社制,产品名ア一トン薄膜)至1.3倍。就得到的拉伸薄膜而言,其厚度:80μm、正面相位差:140nm、厚度方向的相位差:140nm,Nz系数1。将其作为光学薄膜2-1。另外,光弹性模量的绝对值:1.0×10-11、Tg:170℃。
(椭圆偏振片)
如图8所示,借助粘合剂层(丙烯酸系粘合剂、厚度30μm),将上述光学薄膜2-1、在实施例1中使用的光学薄膜2和偏振片P按照光学薄膜2/光学薄膜2-1/偏振片P的顺序进行层叠,得到椭圆偏振片。上述椭圆偏振片的尺寸与实施例1相同。另外,椭圆偏振片在以长边为0°的情况下在逆时针回转,以使光学薄膜2-1的滞相轴的夹角为0°、光学薄膜2的滞相轴的夹角为65°、偏振片的吸收轴的夹角为175°。
比较例3
(高分子薄膜)
作为由聚碳酸酯系树脂构成的高分子薄膜,使用锺淵化学工业(株)制的产品名:R薄膜(厚度70μm)。
<光学薄膜1’>
借助粘合剂层在上述高分子薄膜(R薄膜)的两面上贴付由双向拉伸聚酯薄膜构成的热收缩性薄膜。然后,同时用双向拉伸机保持并在160℃下拉伸至1.1倍。得到的透明的拉伸薄膜是透明的,其厚度为80μm,正面相位差为140nm,厚度方向的相位差为70nm,Nz系数为0.5。另外,光弹性模量的绝对值:12.0×10-11、Tg:155℃。
(椭圆偏振片)
如图9所示,借助粘合剂层(丙烯酸系粘合剂、厚度30μm),将上述光学薄膜1’和偏振片P按照光学薄膜1’/偏振片P的顺序进行层叠,得到椭圆偏振片。
(评价)
将在实施例和比较例中制作的椭圆偏振片作为图10的反射半透过型TFT-TN型液晶显示装置的背光灯侧的椭圆偏振片P1进行安装。另一方面,将在比较例2中制作的椭圆偏振片作为辨识侧的椭圆偏振片P2进行安装。椭圆偏振片P1和椭圆偏振片P2都以让偏振片侧成为离液晶单元L侧最远的层叠位置的方式进行安装。对上述液晶显示装置进行下述评价。结果显示于表1。
<视角>
在上述液晶显示装置中显示白图像、黑图像,用ELDIM公司制的EZcontrast160D测量正面和上下左右、视角0°~70°上的XYZ显示***中的Y值、x值、y值。
将此时的对比度(Y值(白图像)/Y值(黒图像))的值为10以上的角度作为视角。
另外,对于白图像,比较评价上下左右各倾斜40°时的色度(x40,y40)相对于画面的正面的色度(x0,y0)的色度变化量。色度变化量是以下述式求得。结果表示于表1。
Figure C20051011370100341
<耐久性>
将上述液晶显示装置投入下述条件下。
条件(1):85℃×480小时
条件(2):60℃,90%RH×480小时
条件(3):-30℃~85℃的热冲击,各30分钟×200次
用下述基准并从对比度的变化量来评价在上述各条件中的经过一段时间的显示图像的面内不均。
对比度的变化量={(经过一段时间-初始值)/(初始值)}×100(%)的绝对值
◎:对比度的变化量≤10%。
○:对比度的变化量>10%且<20%。
×:对比度的变化量≥20%。

Claims (11)

1.一种层叠光学薄膜,层叠有第一光学薄膜(1)、第二光学薄膜(2)和第三光学薄膜(3),其中,
所述的第一光学薄膜(1),是对含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜进行拉伸而得到的光学薄膜,其光弹性模量的绝对值为2.0×10-11~6.0×10-11m2/N,在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx1、ny1、nz1,薄膜厚度设为d1(nm)时,控制三维折射率并使
用Nz=(nx1-nz1)/(nx1-ny1)表示的Nz系数满足Nz≤0.9,
且正面相位差Re=(nx1-ny1)×d1满足Re≥80nm;
所述的第二光学薄膜(2),在将薄膜面内的折射率为最大的方向设为X轴,与X轴垂直的方向设为Y轴、薄膜的厚度方向设为Z轴,各轴方向的折射率设为nx2、ny2、nz2时,满足
Figure C2005101137010002C1
而且其显示光学上的正的单向性;
所述的第三光学薄膜(3),是由光学上显示负的单向性的材料形成而且具有该材料倾斜取向的部分,第三光学薄膜(3)的厚度为30~90μm。
2.根据权利要求1所述的层叠光学薄膜,其特征在于,
作为第一光学薄膜(1)的材料的苯乙烯系树脂的重均分子量为20000以下。
3.根据权利要求1所述的层叠光学薄膜,其特征在于,
第一光学薄膜(1)的玻璃化温度为110~180℃范围。
4.根据权利要求1所述的层叠光学薄膜,其特征在于,
第二光学薄膜(2)是对含有降冰片烯系聚合物的高分子薄膜进行拉伸而得到的光学薄膜。
5.根据权利要求1所述的层叠光学薄膜,其特征在于,
第二光学薄膜(2)是对含有聚碳酸酯系树脂和苯乙烯系树脂的高分子薄膜进行拉伸而得到的光学薄膜,
该光学薄膜的光弹性模量的绝对值为0.5×10-11~6.0×10-11m2/N。
6.根据权利要求1所述的层叠光学薄膜,其特征在于,
形成第三光学薄膜(3)的光学上显示为负的单向性的材料,是圆盘状液晶化合物。
7.根据权利要求1所述的层叠光学薄膜,其特征在于,
形成第三光学薄膜(3)的光学上显示为负的单向性的材料,以该材料的平均光轴与第三光学薄膜(3)的法线方向形成的倾斜角度为5°~50°的范围进行倾斜取向。
8.根据权利要求1所述的层叠光学薄膜,其特征在于,
在光学上显示正的单向性的第二光学薄膜(2)与由光学上显示负的单向性的材料倾斜取向而成的第三光学薄膜(3)之间,配置有控制了三维折射率的第一光学薄膜(1)。
9.一种椭圆偏振片,其特征在于,
层叠有偏振片和权利要求1所述的层叠光学薄膜。
10.一种椭圆偏振片,其特征在于,
在权利要求8所述的层叠光学薄膜的第二光学薄膜(2)的一侧层叠有偏振片。
11.一种图像显示装置,其特征在于,
包括权利要求1~8中任意1项所述的层叠光学薄膜、或者权利要求9或10所述的椭圆偏振片。
CNB2005101137017A 2004-10-13 2005-10-12 层叠光学薄膜、椭圆偏振片和图像显示装置 Expired - Fee Related CN100392441C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004299094 2004-10-13
JP2004299094A JP2006113203A (ja) 2004-10-13 2004-10-13 積層光学フィルム、楕円偏光板および画像表示装置

Publications (2)

Publication Number Publication Date
CN1760703A CN1760703A (zh) 2006-04-19
CN100392441C true CN100392441C (zh) 2008-06-04

Family

ID=35481709

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101137017A Expired - Fee Related CN100392441C (zh) 2004-10-13 2005-10-12 层叠光学薄膜、椭圆偏振片和图像显示装置

Country Status (7)

Country Link
US (1) US20060077320A1 (zh)
EP (1) EP1647847B1 (zh)
JP (1) JP2006113203A (zh)
KR (1) KR100717562B1 (zh)
CN (1) CN100392441C (zh)
DE (1) DE602005001751T2 (zh)
TW (1) TWI266086B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030604B2 (ja) * 2007-01-29 2012-09-19 セイコーインスツル株式会社 ウェハ外観検査装置
US8282754B2 (en) 2007-04-05 2012-10-09 Avery Dennison Corporation Pressure sensitive shrink label
KR101232572B1 (ko) 2007-04-05 2013-02-12 애브리 데니슨 코포레이션 감압 수축 라벨
KR100951524B1 (ko) * 2007-04-23 2010-04-07 삼성코닝정밀유리 주식회사 디스플레이 장치용 광학 필터
JP5639476B2 (ja) * 2008-11-28 2014-12-10 三井化学株式会社 有機el素子の面封止剤、表示装置の製造方法および表示装置
WO2011094117A2 (en) 2010-01-28 2011-08-04 Avery Dennison Corporation Label applicator belt system
KR101309816B1 (ko) * 2010-12-17 2013-09-23 제일모직주식회사 광학 필터 및 이를 포함하는 액정 디스플레이
JP5923864B2 (ja) * 2011-04-20 2016-05-25 日本ゼオン株式会社 有機el表示装置
CN102589845B (zh) * 2012-02-24 2014-06-04 明基材料有限公司 偏光片的检测方法
US9399317B2 (en) 2012-03-05 2016-07-26 Zeon Corporation Retarder manufacturing method using cross-linked particles of a polymer having negative intrinsic birefringence
KR20180098698A (ko) * 2013-08-26 2018-09-04 후지필름 가부시키가이샤 휘도 향상 필름, 광학 시트 부재 및 액정 표시 장치
JP6767792B2 (ja) * 2016-07-01 2020-10-14 オリンパス株式会社 偏波分離素子、光学系及び光学機器
KR102405820B1 (ko) * 2016-10-31 2022-06-08 니폰 제온 가부시키가이샤 광대역 파장 필름 및 그 제조 방법 그리고 원 편광 필름의 제조 방법
JP6815354B2 (ja) * 2018-06-25 2021-01-20 住友化学株式会社 積層体
US11997916B2 (en) 2019-02-08 2024-05-28 Toyobo Co., Ltd. Polyester film and use thereof
CN113614815B (zh) 2019-02-08 2024-05-14 东洋纺株式会社 折叠型显示器和移动终端设备
CN112351884A (zh) * 2019-03-27 2021-02-09 大阪瓦斯株式会社 辐射冷却装置和辐射冷却方法
JP7425544B2 (ja) * 2019-05-13 2024-01-31 日東電工株式会社 プラスチック光ファイバおよびその製造方法、ならびに該プラスチック光ファイバを用いたプラスチック光ファイバコード
WO2020241279A1 (ja) 2019-05-28 2020-12-03 東洋紡株式会社 ポリエステルフィルム、積層フィルム、及びその用途
CN113874212B (zh) 2019-05-28 2023-10-24 东洋纺株式会社 层叠薄膜及其用途
CN113874191B (zh) 2019-05-28 2024-03-12 东洋纺株式会社 聚酯薄膜及其用途
US20240176189A1 (en) * 2021-03-24 2024-05-30 Toyobo Co., Ltd. Image display device, and method for selecting combination of backlight light source and polarizing plate in liquid crystal display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068816A (ja) * 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
JPH1090521A (ja) * 1996-07-24 1998-04-10 Sumitomo Chem Co Ltd 偏光軸回転積層位相差板およびこれを用いた投射型液晶表示装置
JP2000056131A (ja) * 1998-08-10 2000-02-25 Nitto Denko Corp 位相差板、積層偏光板及び液晶表示装置
EP1160591A1 (en) * 1999-11-12 2001-12-05 Kaneka Corporation Transparent film
US6417904B1 (en) * 1999-09-13 2002-07-09 Nitto Denko Corporation Optically compensatory film, optically compensatory polarizing plate and liquid-crystal display device
WO2002088784A2 (en) * 2001-04-27 2002-11-07 Jsr Corporation Thermoplastic norbornene resin based optical film
EP1300701A1 (en) * 2000-05-15 2003-04-09 Fuji Photo Film Co., Ltd. Optical compensating sheet, polarizing plate, and liquid-crystal display
CN1573373A (zh) * 2003-06-16 2005-02-02 日东电工株式会社 层压光学薄膜、椭圆形偏振片和图像显示器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220478B2 (ja) * 1991-06-07 2001-10-22 日本ゼオン株式会社 液晶ディスプレイ用位相板
EP0656559B1 (en) * 1993-11-25 2002-10-16 Fuji Photo Film Co., Ltd. Optical compensatory sheet
EP1457792A1 (en) * 1998-10-30 2004-09-15 Teijin Limited Retardation film and optical device employing it
US6891589B2 (en) * 2002-12-16 2005-05-10 Nitto Denko Corporation Optical film, elliptically polarizing plate and image display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090521A (ja) * 1996-07-24 1998-04-10 Sumitomo Chem Co Ltd 偏光軸回転積層位相差板およびこれを用いた投射型液晶表示装置
JPH1068816A (ja) * 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
JP2000056131A (ja) * 1998-08-10 2000-02-25 Nitto Denko Corp 位相差板、積層偏光板及び液晶表示装置
US6417904B1 (en) * 1999-09-13 2002-07-09 Nitto Denko Corporation Optically compensatory film, optically compensatory polarizing plate and liquid-crystal display device
EP1160591A1 (en) * 1999-11-12 2001-12-05 Kaneka Corporation Transparent film
EP1300701A1 (en) * 2000-05-15 2003-04-09 Fuji Photo Film Co., Ltd. Optical compensating sheet, polarizing plate, and liquid-crystal display
WO2002088784A2 (en) * 2001-04-27 2002-11-07 Jsr Corporation Thermoplastic norbornene resin based optical film
CN1573373A (zh) * 2003-06-16 2005-02-02 日东电工株式会社 层压光学薄膜、椭圆形偏振片和图像显示器

Also Published As

Publication number Publication date
KR20060051529A (ko) 2006-05-19
KR100717562B1 (ko) 2007-05-11
CN1760703A (zh) 2006-04-19
DE602005001751T2 (de) 2007-12-06
TWI266086B (en) 2006-11-11
TW200619699A (en) 2006-06-16
DE602005001751D1 (de) 2007-09-06
JP2006113203A (ja) 2006-04-27
US20060077320A1 (en) 2006-04-13
EP1647847A1 (en) 2006-04-19
EP1647847B1 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
CN100392441C (zh) 层叠光学薄膜、椭圆偏振片和图像显示装置
CN1755406B (zh) 光学薄膜和图像显示装置
CN100426017C (zh) 相位差薄膜及其制造方法、光学薄膜以及它们的应用
KR100734796B1 (ko) 위상차 필름 및 이를 제조하는 방법, 및 모두 위상차필름을 이용하는 광학 필름, 액정 패널, 및 액정 표시 장치
US9138947B2 (en) Method for producing polarizer, polarizer, polarizing plate, optical film, and image display device
CN100439948C (zh) 相位差板及其制造方法、光学膜
CN101290367B (zh) 偏振片、光学薄膜及图像显示装置
CN101371172B (zh) 偏振片的制造方法、偏振片、偏振板、光学薄膜以及图像显示装置
KR100814307B1 (ko) 액정 표시 장치
EP1489437B1 (en) Laminated optical film, elliptically polarizing plate, and image viewing display
US20050018328A1 (en) Optical film, polarizing optical film, and image viewing display
US20080252974A1 (en) Elliptically Polarizing Plate, Optical Film and Image Display
CN100495087C (zh) 光学薄膜和图像显示装置
CN101568863A (zh) 连结组合型光学薄膜、液晶面板、图像显示装置及液晶显示装置
US7289266B1 (en) Polarizer, optical film, and image display
US20070195243A1 (en) Optical Film And Image Display
CN100445780C (zh) 偏振镜及其制造方法、偏振片、光学薄膜和图像显示装置
CN101772718A (zh) 椭圆偏振片、其制造方法以及使用了其的液晶显示装置
US20040265593A1 (en) Method for manufacturing polarizer, optical film and image display
EP1408351A1 (en) Polarizer, optical film, and image display
US20070159580A1 (en) Polarizing plate, optical film and image display
JP2005308988A (ja) 円偏光型反射偏光板、光学素子、集光バックライトシステムおよび液晶表示装置
CN100410697C (zh) 宽视场角偏振片的制造方法
US20070146882A1 (en) Polarizer, optical film and image display
WO2020138368A1 (ja) 位相差層付偏光板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

Termination date: 20091112