CN100360695C - Nano Mg base composite material, preparing process and use thereof - Google Patents

Nano Mg base composite material, preparing process and use thereof Download PDF

Info

Publication number
CN100360695C
CN100360695C CNB2005100950255A CN200510095025A CN100360695C CN 100360695 C CN100360695 C CN 100360695C CN B2005100950255 A CNB2005100950255 A CN B2005100950255A CN 200510095025 A CN200510095025 A CN 200510095025A CN 100360695 C CN100360695 C CN 100360695C
Authority
CN
China
Prior art keywords
nih
hydrogen
composite material
mixture
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100950255A
Other languages
Chinese (zh)
Other versions
CN1752252A (en
Inventor
李李泉
朱云峰
刘小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CNB2005100950255A priority Critical patent/CN100360695C/en
Publication of CN1752252A publication Critical patent/CN1752252A/en
Application granted granted Critical
Publication of CN100360695C publication Critical patent/CN100360695C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to a nano magnesium base composite material and a preparing process and a use thereof, particularly to a nano magnesium base composite material having low temperature invertible hydrogen suction and discharge capability and a preparing process and a use thereof. The preparing process comprises that firstly, magnesium powder and nickel powder are evenly mixed, and a reaction product having high activity is prepared and obtained by using the technology of hydriding combustion synthesis; then, the reaction product and a simple substance or a compound which is used as a catalyzed phase are mixed, and a nano composite material is obtained by strong mechanical milling. The nano magnesium base composite material has the excellent hydrogen suction and discharge capability; under the condition of room temperature, the material does not need to be activated; hydrogen suction quantity in 10 seconds of first circulation reaches to 3.0 wt %, and the material can be dehydrogenated when the temperature reaches to 150 DEG C. The composite material can be used for the storage and the transportation of hydrogen, a vehicle using the hydrogen as fuel and other fieldwork occasions needing the hydrogen.

Description

A kind of nano Mg base composite material and its production and use
Technical field
The present invention relates to a kind of nano Mg base composite material and its production and use, relate in particular to and a kind ofly have low-temp reversible and inhale and to put nano Mg base composite material of Hydrogen Energy power and its production and use.
Background technology
Emit the problem of environmental pollution that carbonic acid gas, carbon monoxide and sulfurous gas etc. bring during along with exhausted day by day and these combustion of fossil fuel of fossil energies such as coal, oil and natural gas, caused the great attention of countries in the world, people press for the novel continuable clean energy of research and development.Hydrogen Energy becomes the focus that countries in the world fall over each other to study owing to having cleaning, wide material sources and specific energy advantages of higher.The development and use of Hydrogen Energy comprise producing, store and using of hydrogen, and it is very important to research and develop efficient, safe, economic hydrogen storage technology.
Hydrogen storage material is varied, and wherein metal (or alloy) hydrogen storage material has obtained a large amount of research owing to have advantages such as the source is wide, economical and practical, safety and stability, mainly comprises AB 5Type rare earth-based alloy, non-AB 5Type rare earth-based alloy, AB 2Type Laves phase alloy, AB/A 2Type B alloy and several classes of V based solid solution type alloy.Wherein, magnesium base hydrogen-storing alloy is owing to have the favor that advantages such as aboundresources, inexpensive, light weight, hydrogen storage amount are big enjoy people, for example MgH 2Hydrogen storage amount up to 7.6wt.%, be higher than other classification metal (or alloy) hydrogen storage material far away, yet Magnuminium has the higher and dissatisfactory shortcoming of dynamic performance of the hydrogen discharging temperature of suction, especially hydrogen discharging performance is relatively poor, usually must could discharge hydrogen more than 250~300 ℃, restrict the application of this material.Existing studies show that, by with Mg with make a kind of nano Mg base composite material (Ref:Jean-Louis Bobet et al, International Journal of Hydrogen Energy 26 (2001) 493-501 as catalysis simple substance or compound ball milling under hydrogen atmosphere or argon gas atmosphere mutually; YQ.Hu et al, Joumalof Alloys and Compounds 375 (2004) 265-269), the hydrogen storage property of this material is improved to a certain extent, and for example active increasing inhales hydrogen discharging temperature and descends, and speed for hydrogen absorbing and releasing accelerates.Although by insistent research, the suction hydrogen temperature of Magnuminium can be reduced to about 100 ℃, however the suction hydrogen dynamic performance variation of alloy, and alloy still must just can put hydrogen more than 200 ℃.
Summary of the invention
The object of the present invention is to provide and a kind ofly have low-temp reversible and inhale and to put the nano Mg base composite material of Hydrogen Energy power; Another object of the present invention provides this preparation methods; A further object of the invention is that this nano Mg base composite material is being used for the storage of hydrogen, transportation, and need use the purposes of the field work occasion of hydrogen with the vehicles that hydrogen acts as a fuel with other.
Technical scheme of the present invention is: the invention provides a kind of nano Mg base composite material, it is characterized in that the per-cent of its component and the shared gross weight of each component is: Magnuminium is 70%-99%, and the simple substance of catalysis phase or compound are 1%-30%; Wherein simple substance is a kind of among graphite, B, Al, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Pd, Pt, La, the Ce; Compound is selected from Al 2O 3, TiO 2, V 2O 5, Cr 2O 3, Fe 2O 3, ZrO 2, TiVMn, TiVCr, a kind of among the TiCrMo; Magnuminium is for adopting hydrogenation combustion synthesis process synthetic Magnuminium.
The per-cent of preferred its component and the shared gross weight of each component is: Magnuminium is 80%-97%, and the simple substance of catalysis phase or compound are 3%-20%.
Preferred Magnuminium is Mg 2Ni, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4And/or the mixture of Mg and Ni; Perhaps be Mg 2I, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4The mixture of any one or a few and any ratio of Mg; Perhaps be Mg 2Ni, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4The mixture of any one or a few and any ratio of Ni.More preferably Magnuminium is Mg 2NiH 4, or Mg 2NiH 4Mixture with Ni.
Preferred simple substance is graphite or Co, and compound is TiVMn.
The invention provides a kind of preparation method of above-mentioned matrix material, its step comprises: A. is 1 with magnesium powder and nickel powder with the mole proportioning: 1-20: 1 mixes, and adopts hydrogenation burning synthetic prepared to obtain corresponding pulverous Magnuminium; B. be that 70%-99% Magnuminium powder is 1%-30% catalysis simple substance or a compound mutually with the per-cent that accounts for gross weight with the per-cent that accounts for gross weight in the steps A; C. by powerful mechanical ball milling said mixture, get nano Mg base composite material.All on sale on the above raw materials market.
The per-cent of preferred its component and the shared gross weight of each component is: Magnuminium is 80%-97%, and the simple substance of catalysis phase or compound are 3%-20%.
Preferred Magnuminium is Mg 2Ni, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4And/or the mixture of Mg and Ni; Perhaps be Mg 2Ni, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4The mixture of any one or a few and any ratio of Mg; Perhaps be Mg 2Ni, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4The mixture of any one or a few and any ratio of Ni.More preferably Magnuminium is Mg 2NiH 4, or Mg 2NiH 4Mixture with Ni.
Preferred simple substance is graphite or Co, and compound is TiVMn.
Wherein the mole proportioning of magnesium powder and nickel powder is 1.5 among the preferred steps A: 1-10: 1; Adopted hydrogenation burning synthetic processing parameter to be among the preferred steps A: when synthetic magnesium powder behind the mixing and nickel powder are placed the hydrogen atmosphere reactor of pressure 0.1-2MPa, synthesis temperature 300-600 ℃, generated time 1-10 hour.
Use planetary high-energy ball mill that mixture is carried out powerful mechanical ball milling among the preferred steps C, mixture is under argon gas or the hydrogen atmosphere protection, 1-100 hour ball milling time, ratio of grinding media to material 10-50: 1.
The present invention also provides above-mentioned nano Mg base composite material, need use storage, the transportation of hydrogen at the vehicles that act as a fuel with hydrogen and other, and the purposes of field work occasion.
Beneficial effect:
1. the Magnuminium that adopts the hydrogenation combustion synthesis process to synthesize has very high reactive behavior, and it is Mg, Ni, Mg 2Ni, MgH 2, Mg 2NiH 0.3, Mg 2NiH 4In the mixture of one or both or two or more composition.With above-mentioned reaction product with as catalysis simple substance or compound mutually, under the protection of argon gas or hydrogen atmosphere, can prepare required nano Mg base composite material by powerful mechanical ball milling, preparation technology is simple, is suitable for suitability for industrialized production.
2. preparation-obtained nano Mg base composite material has very high reactive behavior and excellent low temperature is inhaled the Hydrogen Energy power of putting, and material need not activation, and at room temperature the hydrogen first in 20 seconds can reach 3.0wt.%, and gets final product dehydrogenation in the time of 150 ℃.
3. prepared nano Mg base composite material can be used for storage, the transportation of hydrogen, and need use the field work occasion of hydrogen with the vehicles that hydrogen acts as a fuel with other.
Embodiment
Below by embodiment the present invention is elaborated.
Embodiment 1
Take by weighing mole proportioning and be 1: 1 8.0g magnesium nickel metal powder, mix and be placed in the high-pressure reactor, reactor vacuumizes, and charge into argon gas and clean for 1-2 time, vacuumize again, charge into 1.6MPa purity at last and be 99.995% hydrogen, 1 hour internal heating sample to 450 ℃, be incubated and naturally cool to room temperature after 5 hours, reaction product is high reactivity Mg 2NiH 4The mixture of powder and nickel powder.Take by weighing 1.94g hydrogenation combustion synthesis reaction product and 0.06g Co powder, mix the back and under 0.1MPa high-purity argon gas atmosphere protection, carry out powerful mechanical ball milling, 80 hours ball milling time, ratio of grinding media to material 40: 1.The Mg-based nanocomposite for preparing need not activation, and at room temperature the hydrogen first in 20 seconds promptly reaches 1.9wt.%, and gets final product dehydrogenation in the time of 150 ℃.
Embodiment 2
Take by weighing mole proportioning and be 2: 1 8.0g magnesium nickel metal powder, mix and be placed in the high-pressure reactor, reactor vacuumizes, and charge into argon gas and clean for 1-2 time, vacuumize again, charge into 1.6MPa purity at last and be 99.995% hydrogen, 1 hour internal heating sample to 500 ℃, be incubated and naturally cool to room temperature after 2 hours, reaction product is high reactivity Mg 2NiH 4Powder.Take by weighing 1.6g hydrogenation combustion synthesis reaction product and 0.4g TiVMn powder, mix the back and under 0.1MPa high-purity argon gas atmosphere protection, carry out powerful mechanical ball milling, 20 hours ball milling time, ratio of grinding media to material 20: 1.The Mg-based nanocomposite for preparing need not activation, and at room temperature the hydrogen first in 20 seconds promptly reaches 2.5wt.%, and gets final product dehydrogenation in the time of 150 ℃.
Embodiment 3
Take by weighing mole proportioning and be 2: 1 8.0g magnesium nickel metal powder, mix and be placed in the high-pressure reactor, reactor vacuumizes, and charge into argon gas and clean for 1-2 time, vacuumize again, charge into 1.8MPa purity at last and be 99.995% hydrogen, 1 hour internal heating sample to 550 ℃, naturally cool to room temperature then immediately, reaction product is high reactivity Mg 2NiH 4Powder.Take by weighing 1.9g hydrogenation combustion synthesis reaction product Mg 2NiH 4And the 0.1g Graphite Powder 99, mix the back and under 0.1MPa high-purity argon gas atmosphere protection, carry out powerful mechanical ball milling, 30 hours ball milling time, ratio of grinding media to material 30: 1.The Mg-based nanocomposite for preparing need not activation, and at room temperature the hydrogen first in 20 seconds promptly reaches 3.0wt.%, and gets final product dehydrogenation in the time of 150 ℃.
Embodiment 4
Take by weighing mole proportioning and be 10: 1 8.0g magnesium nickel metal powder, mix and be placed in the high-pressure reactor, reactor vacuumizes, and charge into argon gas and clean for 1-2 time, vacuumize again, charge into 1.8MPa purity at last and be 99.995% hydrogen, 1 hour internal heating sample to 550 ℃, naturally cool to room temperature then immediately, reaction product is Mg, MgH 2, Mg 2NiH 0.3And Mg 2NiH 4The mixture of powder.Take by weighing 1.4g hydrogenation combustion synthesis reaction product and 0.6g Graphite Powder 99, mix the back and under 0.1MPa high-purity argon gas atmosphere protection, carry out powerful mechanical ball milling, 30 hours ball milling time, ratio of grinding media to material 30: 1.The Mg-based nanocomposite for preparing need not activation, and at room temperature the hydrogen first in 20 seconds promptly reaches 2.8wt.%, and gets final product dehydrogenation in the time of 150 ℃.
Embodiment 5
Take by weighing mole proportioning and be 20: 1 8.0g magnesium nickel metal powder, mix and be placed in the high-pressure reactor, reactor vacuumizes, and charge into argon gas and clean for 1-2 time, vacuumize again, charge into 1.8MPa purity at last and be 99.995% hydrogen, 1 hour internal heating sample to 600 ℃, naturally cool to room temperature then immediately, reaction product is Mg, MgH 2, Mg 2NiH 0.3And Mg 2NiH 4The mixture of powder.Take by weighing 1.4g hydrogenation combustion synthesis reaction product and 0.6g TiCrMo powder, mix the back and under 0.4MPa high-purity hydrogen atmosphere protection, carry out powerful mechanical ball milling, 40 hours ball milling time, ratio of grinding media to material 30: 1.The Mg-based nanocomposite for preparing need not activation, and at room temperature the hydrogen first in 20 seconds promptly reaches 2.9wt.%, and gets final product dehydrogenation in the time of 150 ℃.

Claims (12)

1, a kind of nano Mg base composite material, it is characterized in that the per-cent of its component and the shared gross weight of each component is: Magnuminium is 70%-99%, the simple substance of catalysis phase or compound are 1%-30%; Wherein simple substance is a kind of among graphite, B, Al, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Pd, Pt, La, the Ce; Compound is Al 2O 3, TiO 2, V 2O 5, Cr 2O 3, Fe 2O 3, ZrO 2, TiVMn, TiVCr, a kind of among the TiCrMo; Magnuminium is for adopting hydrogenation combustion synthesis process synthetic.
2, matrix material according to claim 1, it is characterized in that the per-cent of its component and the shared gross weight of each component is: Magnuminium is 80%-97%, the simple substance of catalysis phase or compound are 3%-20%.
3, matrix material according to claim 1 is characterized in that Magnuminium is MgH 2, Mg 2NiH 0.3, Mg 2NiH 4In any one or a few mixture, perhaps be Mg and Ni mixture again and MgH 2, Mg 2NiH 0.3, Mg 2NiH 4In any one or a few mixture; Perhaps be MgH 2, Mg 2NiH 0.3, Mg 2NiH 4The mixture of any one or a few and any ratio of Mg; Perhaps be MgH 2, Mg 2NiH 0.3, Mg 2NiH 4The mixture of any one or a few and any ratio of Ni.
4, matrix material according to claim 2 is characterized in that Magnuminium is Mg 2NiH 4, or Mg 2NiH 4Mixture with Ni.
5, matrix material according to claim 1 is characterized in that simple substance is graphite or Co, and compound is TiVMn.
6, a kind of preparation method of matrix material as claimed in claim 1, its step comprises:
A. be 1 with magnesium powder and nickel powder with the mole proportioning: 1-20: 1 mixes, and adopts hydrogenation burning synthetic prepared to obtain corresponding pulverous Magnuminium;
The per-cent that B. will account for gross weight is that the Magnuminium powder in the steps A of 70%-99% is 1%-30% catalysis simple substance or a compound mutually with the per-cent that accounts for gross weight;
C. by powerful mechanical ball milling said mixture, get nano Mg base composite material.
7,, it is characterized in that the mole proportioning of magnesium powder and nickel powder is 1.5 in the steps A: 1-10: 1 according to the described method of claim 6.
8, according to the described method of claim 6, it is characterized in that adopting in the steps A hydrogenation burning synthetic processing parameter to be: the hydrogen atmosphere reactor that when synthetic magnesium powder behind the mixing and nickel powder is placed pressure 0.1-2MPa, synthesis temperature 300-600 ℃, generated time 1-10 hour.
9, according to the method for claim 6, it is characterized in that using among the step C planetary high-energy ball mill that mixture is carried out powerful mechanical ball milling, mixture is under argon gas or the hydrogen atmosphere protection, 1-100 hour ball milling time, ratio of grinding media to material 10: 1-50: 1.
10, a kind of purposes of nano Mg base composite material as claimed in claim 1 is as the storage or the transportation of hydrogen.
11, a kind of purposes as claimed in claim 10 is characterized in that the application of nano Mg base composite material in the vehicles that act as a fuel with hydrogen.
12, a kind of purposes as claimed in claim 10 is characterized in that the application in the nano Mg base composite material operation occasion in the open air.
CNB2005100950255A 2005-10-26 2005-10-26 Nano Mg base composite material, preparing process and use thereof Expired - Fee Related CN100360695C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100950255A CN100360695C (en) 2005-10-26 2005-10-26 Nano Mg base composite material, preparing process and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100950255A CN100360695C (en) 2005-10-26 2005-10-26 Nano Mg base composite material, preparing process and use thereof

Publications (2)

Publication Number Publication Date
CN1752252A CN1752252A (en) 2006-03-29
CN100360695C true CN100360695C (en) 2008-01-09

Family

ID=36679256

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100950255A Expired - Fee Related CN100360695C (en) 2005-10-26 2005-10-26 Nano Mg base composite material, preparing process and use thereof

Country Status (1)

Country Link
CN (1) CN100360695C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318222B (en) * 2007-06-06 2011-06-15 中国科学院金属研究所 Metal alloy nano-stick or nano-wire manufactured with Laves phase hydrogenation method and process thereof
CN101623627B (en) * 2008-07-10 2011-08-17 北京有色金属研究总院 Catalyst for improving hydrogen production kinetics performance of hydrogen storage material of Li-Mg-N-H system and using method thereof
CN101475142B (en) * 2009-02-02 2010-09-29 南京工业大学 Zintl phase hydrogen storage material and preparation thereof
CN101786004B (en) * 2010-01-13 2013-01-02 西安交通大学 Catalyst containing trace noble metals for dehydrogenating organic hydrogen storage medium and preparation method
CN101967590B (en) * 2010-10-26 2012-05-23 华南理工大学 Magnesium indium solid solution and preparation method thereof
CN102418018B (en) * 2011-11-16 2013-09-04 南京工业大学 Nano-magnesium-based hydrogen storage material and preparation method thereof
CN105063445A (en) * 2015-08-12 2015-11-18 厦门理工学院 Magnesium-based ternary solid solution hydrogen-storage alloy and preparation method thereof
CN105586519A (en) * 2015-12-21 2016-05-18 安泰科技股份有限公司 High-performance nano magnesium-based hydrogen storage material and preparation method thereof
CN106811643A (en) * 2017-01-22 2017-06-09 安徽臣诺机器人科技有限公司 A kind of handling machinery arm machine pawl and preparation method thereof
CN110963461A (en) * 2019-12-31 2020-04-07 世能氢电科技有限公司 Metal oxide and porous material composite hydrogen storage material and preparation method thereof
CN111498801A (en) * 2020-06-09 2020-08-07 世能氢电科技有限公司 MgH2-Ni-metal oxide-Ti-Fe composite hydrogen storage material and preparation method thereof
CN114411028B (en) * 2022-01-21 2022-09-20 徐州工程学院 Trace nickel composite layered magnesium composite material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580306A (en) * 2003-08-04 2005-02-16 北京有色金属研究总院 Method for preparing magnesium base hydrogen-storage material using hydrogenation combustion method and its magnesium base hydrogen-storage material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580306A (en) * 2003-08-04 2005-02-16 北京有色金属研究总院 Method for preparing magnesium base hydrogen-storage material using hydrogenation combustion method and its magnesium base hydrogen-storage material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Activation characteristics of graphite modifiedhydrogenabsorbing materials. S.Bouaricha等.Journal of Alloys and Compounds,No.325. 2001 *
Effect of surface modification of an MgNi alloy with graphiteby ball-milling on the rate of hydrogen absorption. Shinji Nohara等.Journal of Alloys and Compounds,No.252. 1997 *
Metal oxides as catalysts for improved hydrogen sorption innanocrystalline Mg-based materials. W.Oelerich等.Journal of Alloys and Compounds,No.315. 2001 *

Also Published As

Publication number Publication date
CN1752252A (en) 2006-03-29

Similar Documents

Publication Publication Date Title
CN100360695C (en) Nano Mg base composite material, preparing process and use thereof
KR100567426B1 (en) Nanocomposites with activated interfaces prepared by mechanical grinding of magnesium hydrides and process for preparing the same
EP1124754B1 (en) Reversible hydrogen storage composition
CN101476070B (en) Magnesium-based hydrogen occluding alloy and manufacturing method thereof
CN105584989B (en) A kind of amorphous magnesium aluminum-base composite hydrogen storage material and preparation method thereof
JP5152822B2 (en) Mg-MH-based hydrogen storage alloy and method for producing the same
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
JP3824052B2 (en) Method for producing nanocrystalline metal hydride
CN100431945C (en) Method for preparing magnesium based hydrogen storage material
Ma et al. Effects of trimesic acid-Ni based metal organic framework on the hydrogen sorption performances of MgH2
CN100368074C (en) Nano composite hydrogen-storing material and preparing method
CN110963461A (en) Metal oxide and porous material composite hydrogen storage material and preparation method thereof
US7749484B2 (en) Li-B-Mg-X system for reversible hydrogen storage
WO2004000726A1 (en) Hydrogen occluding material and method for use thereof
CN1876561A (en) Li-Mg-N-H hydrogen storage material and process for preparing same
Wang et al. Synthesis of Mg-based composite material with in-situ formed LaH3 and its hydrogen storage characteristics
JP2000104135A (en) Ternary hydrogen storage alloy and its production
JP2007117989A (en) Hydrogen storage material and its production method
CN100482833C (en) Surface catalyzed high activity magnesium-base hydrogen storing material and preparing method thereof
CN102556971A (en) Li-Mg-based composite hydrogen storage material and preparation method thereof
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
CN102212721A (en) Magnesium-nickel based hydrogen storage material and preparation method thereof
CN101623627B (en) Catalyst for improving hydrogen production kinetics performance of hydrogen storage material of Li-Mg-N-H system and using method thereof
JP2006007064A (en) Hydrogen storage material and manufacturing method thereof
US20080199395A1 (en) Reversible Hydrogen Storage Composition, Method of Making and Uses of Said Composition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080109

Termination date: 20101026